
Topics in Prediction and Learning
Lectures 2 and 3:

Online Convex Optimization

Peter Bartlett

Computer Science and Statistics
University of California at Berkeley

Mathematical Sciences
Queensland University of Technology

27 February–9 March, 2017
CREST, ENSAE

1 / 132

Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses loss `t ∈ L.

3 Player incurs loss `t(at).

Player’s aim:

Rn :=
n∑

t=1

`t(at)− inf
n∑

t=1

`t().

2 / 132

Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses loss `t ∈ L.

3 Player incurs loss `t(at).

Player’s aim:

Rn :=
n∑

t=1

`t(at)− inf
n∑

t=1

`t().

2 / 132

Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses loss `t ∈ L.

3 Player incurs loss `t(at).

Player’s aim:

Rn :=
n∑

t=1

`t(at)− inf
n∑

t=1

`t().

2 / 132

Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses loss `t ∈ L.

3 Player incurs loss `t(at).

Player’s aim:

Rn :=
n∑

t=1

`t(at)− inf
n∑

t=1

`t().

2 / 132

Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses loss `t ∈ L.

3 Player incurs loss `t(at).

Player’s aim:

Minimize regret:

Rn :=
n∑

t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a).

2 / 132

Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses loss `t ∈ L.

3 Player incurs loss `t(at).

Player’s aim:

Minimize regret wrt comparison C:

Rn :=
n∑

t=1

`t(at)− inf
â∈C

n∑
t=1

`t(ât).

2 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Quadratic loss: `t(a) = ‖xt − a‖2.

Linear regression: `t(a) = (xt · a− yt)
2.

Absolute loss linear regression: `t(a) = |xt · a− yt |.
Prediction with expert advice: `t(a) = w>t a (A = ∆m).

3 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Quadratic loss: `t(a) = ‖xt − a‖2.

Linear regression: `t(a) = (xt · a− yt)
2.

Absolute loss linear regression: `t(a) = |xt · a− yt |.
Prediction with expert advice: `t(a) = w>t a (A = ∆m).

3 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Quadratic loss: `t(a) = ‖xt − a‖2.

Linear regression: `t(a) = (xt · a− yt)
2.

Absolute loss linear regression: `t(a) = |xt · a− yt |.
Prediction with expert advice: `t(a) = w>t a (A = ∆m).

3 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Quadratic loss: `t(a) = ‖xt − a‖2.

Linear regression: `t(a) = (xt · a− yt)
2.

Absolute loss linear regression: `t(a) = |xt · a− yt |.

Prediction with expert advice: `t(a) = w>t a (A = ∆m).

3 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Quadratic loss: `t(a) = ‖xt − a‖2.

Linear regression: `t(a) = (xt · a− yt)
2.

Absolute loss linear regression: `t(a) = |xt · a− yt |.
Prediction with expert advice: `t(a) = w>t a (A = ∆m).

3 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Shortest path: `t(a) = w>t a (A = flow, wt = edge weights).

Portfolio optimization: `t(a) = − log(r>t a) (A = ∆m).

Collaborative filtering: `t(A) = (xt − Ait ,jt)
2. (A = Rm×n).

SVM: `t(A) =
(
1− ytx

>
t a
)

+
+ λ‖a‖2. (A = RKHS).

Density estimation: `t(a) = − log (exp(a′T (yt)− A(a))), for
exponential family with sufficient statistic T (y).

4 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Shortest path: `t(a) = w>t a (A = flow, wt = edge weights).

Portfolio optimization: `t(a) = − log(r>t a) (A = ∆m).

Collaborative filtering: `t(A) = (xt − Ait ,jt)
2. (A = Rm×n).

SVM: `t(A) =
(
1− ytx

>
t a
)

+
+ λ‖a‖2. (A = RKHS).

Density estimation: `t(a) = − log (exp(a′T (yt)− A(a))), for
exponential family with sufficient statistic T (y).

4 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Shortest path: `t(a) = w>t a (A = flow, wt = edge weights).

Portfolio optimization: `t(a) = − log(r>t a) (A = ∆m).

Collaborative filtering: `t(A) = (xt − Ait ,jt)
2. (A = Rm×n).

SVM: `t(A) =
(
1− ytx

>
t a
)

+
+ λ‖a‖2. (A = RKHS).

Density estimation: `t(a) = − log (exp(a′T (yt)− A(a))), for
exponential family with sufficient statistic T (y).

4 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Shortest path: `t(a) = w>t a (A = flow, wt = edge weights).

Portfolio optimization: `t(a) = − log(r>t a) (A = ∆m).

Collaborative filtering: `t(A) = (xt − Ait ,jt)
2. (A = Rm×n).

SVM: `t(A) =
(
1− ytx

>
t a
)

+
+ λ‖a‖2. (A = RKHS).

Density estimation: `t(a) = − log (exp(a′T (yt)− A(a))), for
exponential family with sufficient statistic T (y).

4 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Shortest path: `t(a) = w>t a (A = flow, wt = edge weights).

Portfolio optimization: `t(a) = − log(r>t a) (A = ∆m).

Collaborative filtering: `t(A) = (xt − Ait ,jt)
2. (A = Rm×n).

SVM: `t(A) =
(
1− ytx

>
t a
)

+
+ λ‖a‖2. (A = RKHS).

Density estimation: `t(a) = − log (exp(a′T (yt)− A(a))), for
exponential family with sufficient statistic T (y).

4 / 132

Online Prediction as a Zero-Sum Game

Online Convex Optimization

A = convex subset of Rd .

L = set of convex real functions on A.

Examples

Shortest path: `t(a) = w>t a (A = flow, wt = edge weights).

Portfolio optimization: `t(a) = − log(r>t a) (A = ∆m).

Collaborative filtering: `t(A) = (xt − Ait ,jt)
2. (A = Rm×n).

SVM: `t(A) =
(
1− ytx

>
t a
)

+
+ λ‖a‖2. (A = RKHS).

Density estimation: `t(a) = − log (exp(a′T (yt)− A(a))), for
exponential family with sufficient statistic T (y).

4 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice

Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy

With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

5 / 132

Binary Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow.

We have access to a set of m experts, who each make a forecast.

Can we ensure that we predict almost as well as the best expert?

We’ll consider two settings: voting and prediction.

6 / 132

Binary Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow.

We have access to a set of m experts, who each make a forecast.

Can we ensure that we predict almost as well as the best expert?

We’ll consider two settings: voting and prediction.

6 / 132

Binary Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow.

We have access to a set of m experts, who each make a forecast.

Can we ensure that we predict almost as well as the best expert?

We’ll consider two settings: voting and prediction.

6 / 132

Binary Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow.

We have access to a set of m experts, who each make a forecast.

Can we ensure that we predict almost as well as the best expert?

We’ll consider two settings: voting and prediction.

6 / 132

Binary Prediction with Expert Advice

Voting

The player votes for a mixture of experts:

we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) = |a>ft − yt |, where ft ∈ {0, 1}m are the
forecasts of the experts and yt ∈ {0, 1} is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on
their forecasts:

we set A = (∆m){0,1}
m

, and the loss function at time t is
`t(a) = |a(ft)

>ft − yt |.
The comparison class C is the set of constant functions. (That is, a ∈ C
has p ∈ ∆m so that for all f ∈ {0, 1}m, a(f) = p.)

7 / 132

Binary Prediction with Expert Advice

Voting

The player votes for a mixture of experts:
we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) = |a>ft − yt |, where ft ∈ {0, 1}m are the
forecasts of the experts and yt ∈ {0, 1} is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on
their forecasts:

we set A = (∆m){0,1}
m

, and the loss function at time t is
`t(a) = |a(ft)

>ft − yt |.
The comparison class C is the set of constant functions. (That is, a ∈ C
has p ∈ ∆m so that for all f ∈ {0, 1}m, a(f) = p.)

7 / 132

Binary Prediction with Expert Advice

Voting

The player votes for a mixture of experts:
we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) = |a>ft − yt |, where ft ∈ {0, 1}m are the
forecasts of the experts and yt ∈ {0, 1} is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on
their forecasts:

we set A = (∆m){0,1}
m

, and the loss function at time t is
`t(a) = |a(ft)

>ft − yt |.
The comparison class C is the set of constant functions. (That is, a ∈ C
has p ∈ ∆m so that for all f ∈ {0, 1}m, a(f) = p.)

7 / 132

Binary Prediction with Expert Advice

Voting

The player votes for a mixture of experts:
we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) = |a>ft − yt |, where ft ∈ {0, 1}m are the
forecasts of the experts and yt ∈ {0, 1} is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on
their forecasts: we set A = (∆m){0,1}

m

, and the loss function at time t is
`t(a) = |a(ft)

>ft − yt |.

The comparison class C is the set of constant functions. (That is, a ∈ C
has p ∈ ∆m so that for all f ∈ {0, 1}m, a(f) = p.)

7 / 132

Binary Prediction with Expert Advice

Voting

The player votes for a mixture of experts:
we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) = |a>ft − yt |, where ft ∈ {0, 1}m are the
forecasts of the experts and yt ∈ {0, 1} is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on
their forecasts: we set A = (∆m){0,1}

m

, and the loss function at time t is
`t(a) = |a(ft)

>ft − yt |.
The comparison class C is the set of constant functions. (That is, a ∈ C
has p ∈ ∆m so that for all f ∈ {0, 1}m, a(f) = p.)

7 / 132

Binary Prediction with Expert Advice

Prediction allows the player to see how the experts’ predictions compare
before making a prediction.

We write `t(ei) ∈ {0, 1} for the loss incurred by expert i , where ei ∈ ∆m is
zero in all but the ith coordinate. and `t(ei) ∈ {0, 1} is the indicator for
expert i making an incorrect forecast at time t.
We can interpret any a ∈ ∆m equivalently as a prediction,
ŷt = a>ft ∈ [0, 1]. And we can view ŷt either as the expectation of a
random {0, 1}-valued prediction where the loss `t(at) is the probability of
a mistake, or as a real-valued prediction, where the loss is the absolute
difference between the prediction and the outcome.

8 / 132

Binary Prediction with Expert Advice

Prediction allows the player to see how the experts’ predictions compare
before making a prediction.
We write `t(ei) ∈ {0, 1} for the loss incurred by expert i , where ei ∈ ∆m is
zero in all but the ith coordinate. and `t(ei) ∈ {0, 1} is the indicator for
expert i making an incorrect forecast at time t.
We can interpret any a ∈ ∆m equivalently as a prediction,
ŷt = a>ft ∈ [0, 1]. And we can view ŷt either as the expectation of a
random {0, 1}-valued prediction where the loss `t(at) is the probability of
a mistake, or as a real-valued prediction, where the loss is the absolute
difference between the prediction and the outcome.

8 / 132

Prediction with Expert Advice

The minimax regret is the value of the game:

min
a1

max
`1

· · ·min
an

max
`n

(
n∑

t=1

`t(at)−min
a∈C

n∑
t=1

`t(a)

)
.

An easier game

Suppose that the adversary is constrained to choose the sequence `t so
that some expert incurs no loss, that is,

min
a∈C

n∑
t=1

`t(a) = 0.

How should we predict?

9 / 132

Prediction with Expert Advice

Halving Algorithm

Define the set of experts who have been correct so far:

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Choose
ŷt = at(ft)

>ft = majority ({ft(j) : j ∈ Ct})

Theorem

This strategy has regret no more than log2 m.

[Littlestone, 1988]

10 / 132

Prediction with Expert Advice

Halving Algorithm

Define the set of experts who have been correct so far:

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Choose
ŷt = at(ft)

>ft = majority ({ft(j) : j ∈ Ct})

Theorem

This strategy has regret no more than log2 m.

[Littlestone, 1988]

10 / 132

Prediction with Expert Advice

Halving Algorithm

Define the set of experts who have been correct so far:

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Choose
ŷt = at(ft)

>ft = majority ({ft(j) : j ∈ Ct})

Theorem

This strategy has regret no more than log2 m.

[Littlestone, 1988]

10 / 132

Prediction with Expert Advice

Halving Algorithm

Define the set of experts who have been correct so far:

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Choose
ŷt = at(ft)

>ft = majority ({ft(j) : j ∈ Ct})

Theorem

This strategy has regret no more than log2 m.

[Littlestone, 1988]

10 / 132

Prediction with Expert Advice

Proof

If the strategy makes a mistake (that is, `t(at) = 1), then the minority of
{ft(j) : j ∈ Ct} is correct, so at least half of the experts are eliminated:

|Ct+1| ≤
|Ct |

2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases). Thus,

n∑
t=1

`t(at) ≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.

11 / 132

Prediction with Expert Advice

Proof

If the strategy makes a mistake (that is, `t(at) = 1), then the minority of
{ft(j) : j ∈ Ct} is correct, so at least half of the experts are eliminated:

|Ct+1| ≤
|Ct |

2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases).

Thus,

n∑
t=1

`t(at) ≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.

11 / 132

Prediction with Expert Advice

Proof

If the strategy makes a mistake (that is, `t(at) = 1), then the minority of
{ft(j) : j ∈ Ct} is correct, so at least half of the experts are eliminated:

|Ct+1| ≤
|Ct |

2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases). Thus,

n∑
t=1

`t(at) ≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.

11 / 132

Prediction with Expert Advice

Proof

If the strategy makes a mistake (that is, `t(at) = 1), then the minority of
{ft(j) : j ∈ Ct} is correct, so at least half of the experts are eliminated:

|Ct+1| ≤
|Ct |

2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases). Thus,

n∑
t=1

`t(at) ≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1|

≤ log2 m.

11 / 132

Prediction with Expert Advice

Proof

If the strategy makes a mistake (that is, `t(at) = 1), then the minority of
{ft(j) : j ∈ Ct} is correct, so at least half of the experts are eliminated:

|Ct+1| ≤
|Ct |

2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases). Thus,

n∑
t=1

`t(at) ≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.

11 / 132

Prediction with Expert Advice

We can do better with a randomized voting strategy.

Random Leader

Choose at(ft) uniformly on

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Theorem

This strategy has regret no more than Hm − 1, where

Hm =
m∑
i=1

1

i
∈ (lnm, lnm + 1).

[Karlin and Peres, 2016]

12 / 132

Prediction with Expert Advice

We can do better with a randomized voting strategy.

Random Leader

Choose at(ft) uniformly on

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Theorem

This strategy has regret no more than Hm − 1, where

Hm =
m∑
i=1

1

i
∈ (lnm, lnm + 1).

[Karlin and Peres, 2016]

12 / 132

Prediction with Expert Advice

We can do better with a randomized voting strategy.

Random Leader

Choose at(ft) uniformly on

Ct = {i : `1(ei) = · · · = `t−1(ei) = 0} .

Theorem

This strategy has regret no more than Hm − 1, where

Hm =
m∑
i=1

1

i
∈ (lnm, lnm + 1).

[Karlin and Peres, 2016]

12 / 132

Prediction with Expert Advice

Proof

We show that, at time t, the strategy can make no more than H|Ct | − 1
mistakes from that time on.

This is clearly true when |Ct | = 1: the strategy never makes another
mistake.

Suppose it is true for |Ct+1| < k , suppose that |Ct | = k , and suppose
that j experts in Ct make a mistake at time t, where 1 ≤ j ≤ k − 1.

Then the expected number of mistakes made from time t onwards is
no more than

j

k
+ Hk−j − 1

≤ Hk − 1.

13 / 132

Prediction with Expert Advice

Proof

We show that, at time t, the strategy can make no more than H|Ct | − 1
mistakes from that time on.

This is clearly true when |Ct | = 1: the strategy never makes another
mistake.

Suppose it is true for |Ct+1| < k , suppose that |Ct | = k , and suppose
that j experts in Ct make a mistake at time t, where 1 ≤ j ≤ k − 1.

Then the expected number of mistakes made from time t onwards is
no more than

j

k
+ Hk−j − 1

≤ Hk − 1.

13 / 132

Prediction with Expert Advice

Proof

We show that, at time t, the strategy can make no more than H|Ct | − 1
mistakes from that time on.

This is clearly true when |Ct | = 1: the strategy never makes another
mistake.

Suppose it is true for |Ct+1| < k , suppose that |Ct | = k , and suppose
that j experts in Ct make a mistake at time t, where 1 ≤ j ≤ k − 1.

Then the expected number of mistakes made from time t onwards is
no more than

j

k
+ Hk−j − 1

≤ Hk − 1.

13 / 132

Prediction with Expert Advice

Proof

We show that, at time t, the strategy can make no more than H|Ct | − 1
mistakes from that time on.

This is clearly true when |Ct | = 1: the strategy never makes another
mistake.

Suppose it is true for |Ct+1| < k , suppose that |Ct | = k , and suppose
that j experts in Ct make a mistake at time t, where 1 ≤ j ≤ k − 1.
Then the expected number of mistakes made from time t onwards is
no more than

j

k
+ Hk−j − 1

≤ Hk − 1.

13 / 132

Prediction with Expert Advice

Proof

We show that, at time t, the strategy can make no more than H|Ct | − 1
mistakes from that time on.

This is clearly true when |Ct | = 1: the strategy never makes another
mistake.

Suppose it is true for |Ct+1| < k , suppose that |Ct | = k , and suppose
that j experts in Ct make a mistake at time t, where 1 ≤ j ≤ k − 1.
Then the expected number of mistakes made from time t onwards is
no more than

j

k
+ Hk−j − 1 ≤ Hk − 1.

13 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1.

Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1.

Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1. Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1. Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1. Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1. Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

[Karlin and Peres, 2016]

Lower bound

Set k = blog2 mc so that 2k ≤ m ≤ 2k+1. Consider the following
adversary strategy:

Choose C0 as the first k experts.

At round 1 ≤ t ≤ k , choose Ct+1 ⊂ Ct uniformly at random from
subsets of size |Ct |/2.

Choose yt ∈ {0, 1} uniformly at random.

Set

f it =

{
yt for i ∈ Ct+1,

1− yt otherwise.

14 / 132

Prediction with Expert Advice

Lower bound

Clearly, after k rounds there is still a perfect expert.

The expected
number of mistakes of any player strategy is

k

2

=
blog2 mc

2
≥ blog4 mc.

15 / 132

Prediction with Expert Advice

Lower bound

Clearly, after k rounds there is still a perfect expert. The expected
number of mistakes of any player strategy is

k

2

=
blog2 mc

2
≥ blog4 mc.

15 / 132

Prediction with Expert Advice

Lower bound

Clearly, after k rounds there is still a perfect expert. The expected
number of mistakes of any player strategy is

k

2
=
blog2 mc

2

≥ blog4 mc.

15 / 132

Prediction with Expert Advice

Lower bound

Clearly, after k rounds there is still a perfect expert. The expected
number of mistakes of any player strategy is

k

2
=
blog2 mc

2
≥ blog4 mc.

15 / 132

Prediction with Expert Advice

Minimax strategy

Set at(ft)
>ft = φ(pt)ŷ + (1− φ(pt))(1− ŷ), where

ŷ = majority ({ft(j) : j ∈ Ct}) ,

pt =
1

|Ct |

∣∣∣∣{i ∈ Ct : ft(i) = majority ({ft(j) : j ∈ Ct})
}∣∣∣∣ ,

φ(p) = 1 + log4 p.

That is, follow the majority with probability φ(pt).

(NB: φ(p) = 1 corresponds to the halving algorithm.
φ(p) = p corresponds to voting uniformly on Ct .)

16 / 132

Prediction with Expert Advice

Minimax strategy

Set at(ft)
>ft = φ(pt)ŷ + (1− φ(pt))(1− ŷ), where

ŷ = majority ({ft(j) : j ∈ Ct}) ,

pt =
1

|Ct |

∣∣∣∣{i ∈ Ct : ft(i) = majority ({ft(j) : j ∈ Ct})
}∣∣∣∣ ,

φ(p) = 1 + log4 p.

That is, follow the majority with probability φ(pt).

(NB: φ(p) = 1 corresponds to the halving algorithm.
φ(p) = p corresponds to voting uniformly on Ct .)

16 / 132

Prediction with Expert Advice

Minimax strategy

Set at(ft)
>ft = φ(pt)ŷ + (1− φ(pt))(1− ŷ), where

ŷ = majority ({ft(j) : j ∈ Ct}) ,

pt =
1

|Ct |

∣∣∣∣{i ∈ Ct : ft(i) = majority ({ft(j) : j ∈ Ct})
}∣∣∣∣ ,

φ(p) = 1 + log4 p.

That is, follow the majority with probability φ(pt).

(NB: φ(p) = 1 corresponds to the halving algorithm.
φ(p) = p corresponds to voting uniformly on Ct .)

16 / 132

Prediction with Expert Advice

Minimax strategy

Set at(ft)
>ft = φ(pt)ŷ + (1− φ(pt))(1− ŷ), where

ŷ = majority ({ft(j) : j ∈ Ct}) ,

pt =
1

|Ct |

∣∣∣∣{i ∈ Ct : ft(i) = majority ({ft(j) : j ∈ Ct})
}∣∣∣∣ ,

φ(p) = 1 + log4 p.

That is, follow the majority with probability φ(pt).

(NB: φ(p) = 1 corresponds to the halving algorithm.
φ(p) = p corresponds to voting uniformly on Ct .)

16 / 132

Prediction with Expert Advice

Minimax strategy

Set at(ft)
>ft = φ(pt)ŷ + (1− φ(pt))(1− ŷ), where

ŷ = majority ({ft(j) : j ∈ Ct}) ,

pt =
1

|Ct |

∣∣∣∣{i ∈ Ct : ft(i) = majority ({ft(j) : j ∈ Ct})
}∣∣∣∣ ,

φ(p) = 1 + log4 p.

That is, follow the majority with probability φ(pt).

(NB: φ(p) = 1 corresponds to the halving algorithm.
φ(p) = p corresponds to voting uniformly on Ct .)

16 / 132

Prediction with Expert Advice

Minimax strategy

Set at(ft)
>ft = φ(pt)ŷ + (1− φ(pt))(1− ŷ), where

ŷ = majority ({ft(j) : j ∈ Ct}) ,

pt =
1

|Ct |

∣∣∣∣{i ∈ Ct : ft(i) = majority ({ft(j) : j ∈ Ct})
}∣∣∣∣ ,

φ(p) = 1 + log4 p.

That is, follow the majority with probability φ(pt).

(NB: φ(p) = 1 corresponds to the halving algorithm.
φ(p) = p corresponds to voting uniformly on Ct .)

16 / 132

Prediction with Expert Advice

Proof

We’d like an upper bound on the expected number of mistakes of the form
loga m.

To make the inductive proof of this bound work, we need to
consider two cases. First, if the majority is correct (yt = ŷ), then we need

loga(ptm) + (1− φ(pt)) ≤ loga m.

Second, if the minority is correct, then we need

loga((1− pt)m) + φ(pt) ≤ loga m.

17 / 132

Prediction with Expert Advice

Proof

We’d like an upper bound on the expected number of mistakes of the form
loga m. To make the inductive proof of this bound work, we need to
consider two cases.

First, if the majority is correct (yt = ŷ), then we need

loga(ptm) + (1− φ(pt)) ≤ loga m.

Second, if the minority is correct, then we need

loga((1− pt)m) + φ(pt) ≤ loga m.

17 / 132

Prediction with Expert Advice

Proof

We’d like an upper bound on the expected number of mistakes of the form
loga m. To make the inductive proof of this bound work, we need to
consider two cases. First, if the majority is correct (yt = ŷ), then we need

loga(ptm) + (1− φ(pt)) ≤ loga m.

Second, if the minority is correct, then we need

loga((1− pt)m) + φ(pt) ≤ loga m.

17 / 132

Prediction with Expert Advice

Proof

We’d like an upper bound on the expected number of mistakes of the form
loga m. To make the inductive proof of this bound work, we need to
consider two cases. First, if the majority is correct (yt = ŷ), then we need

loga(ptm) + (1− φ(pt)) ≤ loga m.

Second, if the minority is correct, then we need

loga((1− pt)m) + φ(pt) ≤ loga m.

17 / 132

Prediction with Expert Advice

Proof

loga(ptm) + (1− φ(pt)) ≤ loga m,

loga((1− pt)m) + φ(pt) ≤ loga m.

Rearranging and combining, we need

1 + loga pt ≤ φ(pt) ≤ − loga(1− pt)

⇔ loga(apt) ≤ loga

(
1

1− pt

)
.

The largest a satisfying apt(1− pt) ≤ 1 is a = 4.
So any φ(pt) between 1 + log4 pt and − log4(1− pt) will suffice.

18 / 132

Prediction with Expert Advice

Proof

loga(ptm) + (1− φ(pt)) ≤ loga m,

loga((1− pt)m) + φ(pt) ≤ loga m.

Rearranging and combining, we need

1 + loga pt ≤ φ(pt) ≤ − loga(1− pt)

⇔ loga(apt) ≤ loga

(
1

1− pt

)
.

The largest a satisfying apt(1− pt) ≤ 1 is a = 4.
So any φ(pt) between 1 + log4 pt and − log4(1− pt) will suffice.

18 / 132

Prediction with Expert Advice

Proof

loga(ptm) + (1− φ(pt)) ≤ loga m,

loga((1− pt)m) + φ(pt) ≤ loga m.

Rearranging and combining, we need

1 + loga pt ≤ φ(pt) ≤ − loga(1− pt)

⇔ loga(apt) ≤ loga

(
1

1− pt

)
.

The largest a satisfying apt(1− pt) ≤ 1 is a = 4.
So any φ(pt) between 1 + log4 pt and − log4(1− pt) will suffice.

18 / 132

Prediction with Expert Advice

Proof

loga(ptm) + (1− φ(pt)) ≤ loga m,

loga((1− pt)m) + φ(pt) ≤ loga m.

Rearranging and combining, we need

1 + loga pt ≤ φ(pt) ≤ − loga(1− pt)

⇔ loga(apt) ≤ loga

(
1

1− pt

)
.

The largest a satisfying apt(1− pt) ≤ 1 is a = 4.

So any φ(pt) between 1 + log4 pt and − log4(1− pt) will suffice.

18 / 132

Prediction with Expert Advice

Proof

loga(ptm) + (1− φ(pt)) ≤ loga m,

loga((1− pt)m) + φ(pt) ≤ loga m.

Rearranging and combining, we need

1 + loga pt ≤ φ(pt) ≤ − loga(1− pt)

⇔ loga(apt) ≤ loga

(
1

1− pt

)
.

The largest a satisfying apt(1− pt) ≤ 1 is a = 4.
So any φ(pt) between 1 + log4 pt and − log4(1− pt) will suffice.

18 / 132

Prediction with Expert Advice

Theorem

The minimax regret is between blog4 mc and log4 m.

19 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

3 Minimax strategies

20 / 132

Prediction with Expert Advice

We return to the voting setting, and allow even the best expert to make
mistakes.

Voting

The player votes for a mixture of experts:
we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) =

∑m
i=1 ai`t(ei), where ei ∈ ∆m is zero in all

but the ith coordinate, and `t(ei) ∈ {0, 1} is the indicator for the ith
expert making an incorrect forecast at time t.

21 / 132

Prediction with Expert Advice

We return to the voting setting, and allow even the best expert to make
mistakes.

Voting

The player votes for a mixture of experts:
we set A = ∆m, the probability simplex on {1, . . . ,m}, and the loss
function at time t is `t(a) =

∑m
i=1 ai`t(ei), where ei ∈ ∆m is zero in all

but the ith coordinate, and `t(ei) ∈ {0, 1} is the indicator for the ith
expert making an incorrect forecast at time t.

21 / 132

Prediction with Expert Advice

Exponential Weights

Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t(ei)) .

Here, η > 0 is a parameter of the algorithm.

Choose at as the normalized vector,

at =
1∑m

i=1 w
i
t

wt .

[Littlestone and Warmuth, 1994]

22 / 132

Prediction with Expert Advice

Exponential Weights

Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t(ei)) .

Here, η > 0 is a parameter of the algorithm.

Choose at as the normalized vector,

at =
1∑m

i=1 w
i
t

wt .

[Littlestone and Warmuth, 1994]

22 / 132

Prediction with Expert Advice

Exponential Weights

Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t(ei)) .

Here, η > 0 is a parameter of the algorithm.

Choose at as the normalized vector,

at =
1∑m

i=1 w
i
t

wt .

[Littlestone and Warmuth, 1994]

22 / 132

Prediction with Expert Advice

Exponential Weights

Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t(ei)) .

Here, η > 0 is a parameter of the algorithm.

Choose at as the normalized vector,

at =
1∑m

i=1 w
i
t

wt .

[Littlestone and Warmuth, 1994]

22 / 132

Prediction with Expert Advice

Exponential Weights

Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t(ei)) .

Here, η > 0 is a parameter of the algorithm.

Choose at as the normalized vector,

at =
1∑m

i=1 w
i
t

wt .

[Littlestone and Warmuth, 1994]

22 / 132

Prediction with Expert Advice

Exponential Weights

Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t(ei)) .

Here, η > 0 is a parameter of the algorithm.

Choose at as the normalized vector,

at =
1∑m

i=1 w
i
t

wt .

[Littlestone and Warmuth, 1994]

22 / 132

Prediction with Expert Advice

Theorem

The exponential weights strategy with parameter

η =

√
8 lnm

n

has regret satisfying

Rn ≤
√

n lnm

2
.

[Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997]

23 / 132

Prediction with Expert Advice

Proof Idea

We use a measure of progress:

Wt =
m∑
i=1

w i
t .

1 Wn grows at least as

exp

(
−ηmin

i

n∑
t=1

`t(ei)

)
.

2 Wn grows no faster than

exp

(
−η

n∑
t=1

`t(at)

)
.

24 / 132

Prediction with Expert Advice

Proof Idea

We use a measure of progress:

Wt =
m∑
i=1

w i
t .

1 Wn grows at least as

exp

(
−ηmin

i

n∑
t=1

`t(ei)

)
.

2 Wn grows no faster than

exp

(
−η

n∑
t=1

`t(at)

)
.

24 / 132

Prediction with Expert Advice

Proof Idea

We use a measure of progress:

Wt =
m∑
i=1

w i
t .

1 Wn grows at least as

exp

(
−ηmin

i

n∑
t=1

`t(ei)

)
.

2 Wn grows no faster than

exp

(
−η

n∑
t=1

`t(at)

)
.

24 / 132

Prediction with Expert Advice

Proof idea:

ln
Wn+1

W1

= ln

(
m∑
i=1

w i
n+1

)
− lnm

= ln

(
m∑
i=1

exp

(
−η
∑
t

`t(ei)

))
− lnm

≥ ln

(
max

i
exp

(
−η
∑
t

`t(ei)

))
− lnm

= −ηmin
i

(∑
t

`t(ei)

)
− lnm

= −η inf
a∈Rd

n∑
t=1

`t(a)− lnm.

25 / 132

Prediction with Expert Advice

Proof idea:

ln
Wn+1

W1
= ln

(
m∑
i=1

w i
n+1

)
− lnm

= ln

(
m∑
i=1

exp

(
−η
∑
t

`t(ei)

))
− lnm

≥ ln

(
max

i
exp

(
−η
∑
t

`t(ei)

))
− lnm

= −ηmin
i

(∑
t

`t(ei)

)
− lnm

= −η inf
a∈Rd

n∑
t=1

`t(a)− lnm.

25 / 132

Prediction with Expert Advice

Proof idea:

ln
Wn+1

W1
= ln

(
m∑
i=1

w i
n+1

)
− lnm

= ln

(
m∑
i=1

exp

(
−η
∑
t

`t(ei)

))
− lnm

≥ ln

(
max

i
exp

(
−η
∑
t

`t(ei)

))
− lnm

= −ηmin
i

(∑
t

`t(ei)

)
− lnm

= −η inf
a∈Rd

n∑
t=1

`t(a)− lnm.

25 / 132

Prediction with Expert Advice

Proof idea:

ln
Wn+1

W1
= ln

(
m∑
i=1

w i
n+1

)
− lnm

= ln

(
m∑
i=1

exp

(
−η
∑
t

`t(ei)

))
− lnm

≥ ln

(
max

i
exp

(
−η
∑
t

`t(ei)

))
− lnm

= −ηmin
i

(∑
t

`t(ei)

)
− lnm

= −η inf
a∈Rd

n∑
t=1

`t(a)− lnm.

25 / 132

Prediction with Expert Advice

Proof idea:

ln
Wn+1

W1
= ln

(
m∑
i=1

w i
n+1

)
− lnm

= ln

(
m∑
i=1

exp

(
−η
∑
t

`t(ei)

))
− lnm

≥ ln

(
max

i
exp

(
−η
∑
t

`t(ei)

))
− lnm

= −ηmin
i

(∑
t

`t(ei)

)
− lnm

= −η inf
a∈Rd

n∑
t=1

`t(a)− lnm.

25 / 132

Prediction with Expert Advice

Proof idea:

ln
Wn+1

W1
= ln

(
m∑
i=1

w i
n+1

)
− lnm

= ln

(
m∑
i=1

exp

(
−η
∑
t

`t(ei)

))
− lnm

≥ ln

(
max

i
exp

(
−η
∑
t

`t(ei)

))
− lnm

= −ηmin
i

(∑
t

`t(ei)

)
− lnm

= −η inf
a∈Rd

n∑
t=1

`t(a)− lnm.

25 / 132

Prediction with Expert Advice

Proof idea:

ln
Wt+1

Wt

= ln

(∑m
i=1 exp(−η`t(ei))w i

t∑
i w

i
t

)
≤ −η

∑
i `t(ei)w

i
t∑

i w
i
t

+
η2

8

= −η`t(at) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a, b] and λ ∈ R,

ln
(
EeλX

)
≤ λEX +

λ2(b − a)2

8
.

26 / 132

Prediction with Expert Advice

Proof idea:

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t(ei))w i

t∑
i w

i
t

)

≤ −η
∑

i `t(ei)w
i
t∑

i w
i
t

+
η2

8

= −η`t(at) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a, b] and λ ∈ R,

ln
(
EeλX

)
≤ λEX +

λ2(b − a)2

8
.

26 / 132

Prediction with Expert Advice

Proof idea:

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t(ei))w i

t∑
i w

i
t

)
≤ −η

∑
i `t(ei)w

i
t∑

i w
i
t

+
η2

8

= −η`t(at) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a, b] and λ ∈ R,

ln
(
EeλX

)
≤ λEX +

λ2(b − a)2

8
.

26 / 132

Prediction with Expert Advice

Proof idea:

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t(ei))w i

t∑
i w

i
t

)
≤ −η

∑
i `t(ei)w

i
t∑

i w
i
t

+
η2

8

= −η`t(at) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a, b] and λ ∈ R,

ln
(
EeλX

)
≤ λEX +

λ2(b − a)2

8
.

26 / 132

Prediction with Expert Advice

Proof idea:

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t(ei))w i

t∑
i w

i
t

)
≤ −η

∑
i `t(ei)w

i
t∑

i w
i
t

+
η2

8

= −η`t(at) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a, b] and λ ∈ R,

ln
(
EeλX

)
≤ λEX +

λ2(b − a)2

8
.

26 / 132

Prediction with Expert Advice

Proof idea:

−η inf
a∈Rd

n∑
t=1

`t(a)− lnm ≤ ln
Wn+1

W1
≤ −η

n∑
t=1

`t(at) +
nη2

8
.

Thus,

Rn ≤
lnm

η
+
ηn

8
.

Choosing the optimal η gives the result:

Theorem

The exponential weights strategy with parameter η =
√

8 lnm/n has

regret no more than
√

n lnm
2 .

27 / 132

Prediction with Expert Advice

Proof idea:

−η inf
a∈Rd

n∑
t=1

`t(a)− lnm ≤ ln
Wn+1

W1
≤ −η

n∑
t=1

`t(at) +
nη2

8
.

Thus,

Rn ≤
lnm

η
+
ηn

8
.

Choosing the optimal η gives the result:

Theorem

The exponential weights strategy with parameter η =
√

8 lnm/n has

regret no more than
√

n lnm
2 .

27 / 132

Prediction with Expert Advice

Proof idea:

−η inf
a∈Rd

n∑
t=1

`t(a)− lnm ≤ ln
Wn+1

W1
≤ −η

n∑
t=1

`t(at) +
nη2

8
.

Thus,

Rn ≤
lnm

η
+
ηn

8
.

Choosing the optimal η gives the result:

Theorem

The exponential weights strategy with parameter η =
√

8 lnm/n has

regret no more than
√

n lnm
2 .

27 / 132

Prediction with Expert Advice

Proof idea:

−η inf
a∈Rd

n∑
t=1

`t(a)− lnm ≤ ln
Wn+1

W1
≤ −η

n∑
t=1

`t(at) +
nη2

8
.

Thus,

Rn ≤
lnm

η
+
ηn

8
.

Choosing the optimal η gives the result:

Theorem

The exponential weights strategy with parameter η =
√

8 lnm/n has

regret no more than
√

n lnm
2 .

27 / 132

Prediction with Expert Advice

Key Points

For a finite set of actions (experts):

If one action is perfect (i.e., has zero loss), the minimax strategy
gives per round regret of

log4 m

n
.

Exponential weights gives per round regret of√
lnm

2n
.

28 / 132

Prediction with Expert Advice

Key Points

For a finite set of actions (experts):

If one action is perfect (i.e., has zero loss), the minimax strategy
gives per round regret of

log4 m

n
.

Exponential weights gives per round regret of√
lnm

2n
.

28 / 132

Prediction with Expert Advice

Key Points

For a finite set of actions (experts):

If one action is perfect (i.e., has zero loss), the minimax strategy
gives per round regret of

log4 m

n
.

Exponential weights gives per round regret of√
lnm

2n
.

28 / 132

Prediction with Expert Advice

In the proof, the only properties of `t that we used were

1 boundedness: `t(ei) ∈ [0, 1] (for Hoeffding’s inequality), and

2 linearity,

`t(at) =
∑
i

`t(ei)w
i
t .

For linearity, an inequality would have sufficed,

`t(at) ≤
∑
i

`t(ei)w
i
t ,

which corresponds to convexity of `t .

29 / 132

Prediction with Expert Advice

In the proof, the only properties of `t that we used were

1 boundedness: `t(ei) ∈ [0, 1] (for Hoeffding’s inequality), and

2 linearity,

`t(at) =
∑
i

`t(ei)w
i
t .

For linearity, an inequality would have sufficed,

`t(at) ≤
∑
i

`t(ei)w
i
t ,

which corresponds to convexity of `t .

29 / 132

Prediction with Expert Advice

In the proof, the only properties of `t that we used were

1 boundedness: `t(ei) ∈ [0, 1] (for Hoeffding’s inequality), and

2 linearity,

`t(at) =
∑
i

`t(ei)w
i
t .

For linearity, an inequality would have sufficed,

`t(at) ≤
∑
i

`t(ei)w
i
t ,

which corresponds to convexity of `t .

29 / 132

Prediction with Expert Advice

In the proof, the only properties of `t that we used were

1 boundedness: `t(ei) ∈ [0, 1] (for Hoeffding’s inequality), and

2 linearity,

`t(at) =
∑
i

`t(ei)w
i
t .

For linearity, an inequality would have sufficed,

`t(at) ≤
∑
i

`t(ei)w
i
t ,

which corresponds to convexity of `t .

29 / 132

Prediction with Expert Advice

In the proof, the only properties of `t that we used were

1 boundedness: `t(ei) ∈ [0, 1] (for Hoeffding’s inequality), and

2 linearity,

`t(at) =
∑
i

`t(ei)w
i
t .

For linearity, an inequality would have sufficed,

`t(at) ≤
∑
i

`t(ei)w
i
t ,

which corresponds to convexity of `t .

29 / 132

Online convex optimization

1 Binary prediction

With (perfect) expert advice
Minimax strategy
With imperfect experts: exponential weights

2 General online convex

Empirical minimization fails
Gradient algorithm.
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

30 / 132

Online convex optimization

The problem

A = convex subset of Rd .

L = set of convex real-valued functions on A.

Minimax regret

min
a1

max
`1

· · ·min
an

max
`n

(
n∑

t=1

`t(at)−min
a∈A

n∑
t=1

`t(a)

)
.

31 / 132

Online convex optimization

The problem

A = convex subset of Rd .

L = set of convex real-valued functions on A.

Minimax regret

min
a1

max
`1

· · ·min
an

max
`n

(
n∑

t=1

`t(at)−min
a∈A

n∑
t=1

`t(a)

)
.

31 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0,

a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.

Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0,

a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0,

a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a,

`2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0,

a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a,

`2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1,

a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a,

`3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1,

a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a,

`3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1, a3 = 1,

a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a,

`4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1, a3 = 1,

a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a,

`4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1, a3 = 1, a4 = −1,

a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a,

`5(a) = a,

a1 = 0, a2 = −1, a3 = 1, a4 = −1,

a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a,

`5(a) = a,

a1 = 0, a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Empirical minimization fails

Choosing at to minimize past losses, at = arg mina∈A
∑t−1

s=1 `s(a), can fail.
(‘fictitious play,’ ‘follow the leader’)

Suppose A = [−1, 1], L = {a 7→ v · a : |v | ≤ 1}.
Consider the following sequence of losses:

`1(a) =
1

2
a, `2(a) = −a, `3(a) = a, `4(a) = −a, `5(a) = a,

a1 = 0, a2 = −1, a3 = 1, a4 = −1, a5 = 1,

a∗ = 0 shows mina∈Rd

∑n
t=1 `t(a) ≤ 0, but

∑n
t=1 `t(at) = n − 1.

32 / 132

Online convex optimization

Choosing at to minimize past losses can fail.

The strategy must avoid overfitting, just as in probabilistic settings.

Similar approaches (regularization; Bayesian inference) are applicable
in the online setting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
improvement.

33 / 132

Online convex optimization

Choosing at to minimize past losses can fail.

The strategy must avoid overfitting, just as in probabilistic settings.

Similar approaches (regularization; Bayesian inference) are applicable
in the online setting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
improvement.

33 / 132

Online convex optimization

Choosing at to minimize past losses can fail.

The strategy must avoid overfitting, just as in probabilistic settings.

Similar approaches (regularization; Bayesian inference) are applicable
in the online setting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
improvement.

33 / 132

Online convex optimization

Choosing at to minimize past losses can fail.

The strategy must avoid overfitting, just as in probabilistic settings.

Similar approaches (regularization; Bayesian inference) are applicable
in the online setting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
improvement.

33 / 132

Online convex optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm.
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

34 / 132

Online convex optimization: Gradient Method

a1 ∈ A,

at+1 =

ΠA

(at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),

the gradient strategy with η = D/(G
√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 =

ΠA

(at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),

the gradient strategy with η = D/(G
√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 = ΠA (at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),

the gradient strategy with η = D/(G
√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 = ΠA (at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),

the gradient strategy with η = D/(G
√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 = ΠA (at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),

the gradient strategy with η = D/(G
√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 = ΠA (at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖

and D = diam(A),

the gradient strategy with η = D/(G
√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 = ΠA (at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),
the gradient strategy with η = D/(G

√
n)

has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

a1 ∈ A, at+1 = ΠA (at − η∇`t(at)) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem

For G = maxt ‖∇`t(at)‖ and D = diam(A),
the gradient strategy with η = D/(G

√
n) has regret satisfying

Rn ≤ GD
√
n.

[Zinkevich, 2003]

35 / 132

Online convex optimization: Gradient Method

Example

A = {a ∈ Rd : ‖a‖ ≤ 1},

L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√
n) is optimal.)

36 / 132

Online convex optimization: Gradient Method

Example

A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.

D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√
n) is optimal.)

36 / 132

Online convex optimization: Gradient Method

Example

A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2,

G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√
n) is optimal.)

36 / 132

Online convex optimization: Gradient Method

Example

A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.

Regret is no more than 2
√
n.

(And O(
√
n) is optimal.)

36 / 132

Online convex optimization: Gradient Method

Example

A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√
n) is optimal.)

36 / 132

Online convex optimization: Gradient Method

Example

A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√
n) is optimal.)

36 / 132

Online convex optimization: Gradient Method

Example

A = ∆m,

L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D =

√
2, G ≤

√
m.

Regret is no more than
√

2mn.

Since competing with the whole simplex is equivalent to competing with
the vertices for linear losses, this is worse than exponential weights (

√
m

versus logm).

37 / 132

Online convex optimization: Gradient Method

Example

A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.

D =
√

2, G ≤
√
m.

Regret is no more than
√

2mn.

Since competing with the whole simplex is equivalent to competing with
the vertices for linear losses, this is worse than exponential weights (

√
m

versus logm).

37 / 132

Online convex optimization: Gradient Method

Example

A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D =

√
2,

G ≤
√
m.

Regret is no more than
√

2mn.

Since competing with the whole simplex is equivalent to competing with
the vertices for linear losses, this is worse than exponential weights (

√
m

versus logm).

37 / 132

Online convex optimization: Gradient Method

Example

A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D =

√
2, G ≤

√
m.

Regret is no more than
√

2mn.

Since competing with the whole simplex is equivalent to competing with
the vertices for linear losses, this is worse than exponential weights (

√
m

versus logm).

37 / 132

Online convex optimization: Gradient Method

Example

A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D =

√
2, G ≤

√
m.

Regret is no more than
√

2mn.

Since competing with the whole simplex is equivalent to competing with
the vertices for linear losses, this is worse than exponential weights (

√
m

versus logm).

37 / 132

Online convex optimization: Gradient Method

Example

A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D =

√
2, G ≤

√
m.

Regret is no more than
√

2mn.

Since competing with the whole simplex is equivalent to competing with
the vertices for linear losses, this is worse than exponential weights (

√
m

versus logm).

37 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),

at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2

≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),
at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2

≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),
at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A

and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2

≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),
at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2

≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),
at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2

≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),
at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

Proof:

Define ãt+1 = at − η∇`t(at),
at+1 = ΠA(ãt+1).

Fix a comparator a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t(at)‖2 − 2η∇t(at) · (at − a).

38 / 132

Online convex optimization: Gradient Method

By convexity,

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

∇`t(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t(at)‖2

≤ D2

2η
+
ηG 2n

2
.

39 / 132

Online convex optimization: Gradient Method

By convexity,

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

∇`t(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t(at)‖2

≤ D2

2η
+
ηG 2n

2
.

39 / 132

Online convex optimization: Gradient Method

By convexity,

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

∇`t(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t(at)‖2

≤ D2

2η
+
ηG 2n

2
.

39 / 132

Online convex optimization: Gradient Method

By convexity,

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

∇`t(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t(at)‖2

≤ D2

2η
+
ηG 2n

2
.

39 / 132

Online Convex Optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

40 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s = at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s = at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s = at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s = at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s = at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s

= at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s

= at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

Suppose `t is linear: `t(a) = gt · a.

Suppose A = Rd .

Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1

2
‖a‖2

)
corresponds to the gradient step at+1 = at − η∇`t(at).

Indeed, setting the derivative to zero gives

at+1 = −η
t∑

s=1

∇`s = at − η∇`t .

at = −η
t−1∑
s=1

∇`s .

41 / 132

Online Convex Optimization: Regularization

Definition: Regularized minimization

Consider the family of strategies of the form:

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

Assume: The regularizer R : Rd → R is strictly convex and differentiable.

42 / 132

Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

R keeps the sequence of ats stable: it diminishes `t ’s influence.

We can view the choice of at+1 as trading off two competing forces:
making `t(at+1) small, and keeping at+1 close to at .

This is a perspective that motivated many algorithms in the literature.
We’ll investigate why regularized minimization can be viewed this way.

43 / 132

Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

R keeps the sequence of ats stable: it diminishes `t ’s influence.

We can view the choice of at+1 as trading off two competing forces:
making `t(at+1) small, and keeping at+1 close to at .

This is a perspective that motivated many algorithms in the literature.
We’ll investigate why regularized minimization can be viewed this way.

43 / 132

Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

R keeps the sequence of ats stable: it diminishes `t ’s influence.

We can view the choice of at+1 as trading off two competing forces:
making `t(at+1) small, and keeping at+1 close to at .

This is a perspective that motivated many algorithms in the literature.
We’ll investigate why regularized minimization can be viewed this way.

43 / 132

Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

R keeps the sequence of ats stable: it diminishes `t ’s influence.

We can view the choice of at+1 as trading off two competing forces:
making `t(at+1) small, and keeping at+1 close to at .

This is a perspective that motivated many algorithms in the literature.
We’ll investigate why regularized minimization can be viewed this way.

43 / 132

Online Convex Optimization: Regularization

In the unconstrained case (A = Rd), regularized minimization is equivalent
to minimizing the latest loss and the distance to the previous decision.

The appropriate notion of distance is the Bregman divergence DΦt−1 :

Definition

Φ0 = R,

Φt = Φt−1 + η`t ,

So

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt(a).

44 / 132

Online Convex Optimization: Regularization

In the unconstrained case (A = Rd), regularized minimization is equivalent
to minimizing the latest loss and the distance to the previous decision.
The appropriate notion of distance is the Bregman divergence DΦt−1 :

Definition

Φ0 = R,

Φt = Φt−1 + η`t ,

So

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt(a).

44 / 132

Online Convex Optimization: Regularization

In the unconstrained case (A = Rd), regularized minimization is equivalent
to minimizing the latest loss and the distance to the previous decision.
The appropriate notion of distance is the Bregman divergence DΦt−1 :

Definition

Φ0 = R,

Φt = Φt−1 + η`t ,

So

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt(a).

44 / 132

Online Convex Optimization: Regularization

In the unconstrained case (A = Rd), regularized minimization is equivalent
to minimizing the latest loss and the distance to the previous decision.
The appropriate notion of distance is the Bregman divergence DΦt−1 :

Definition

Φ0 = R,

Φt = Φt−1 + η`t ,

So

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt(a).

44 / 132

Online Convex Optimization: Regularization

Definition: Bregman Divergence

For a strictly convex, differentiable Φ : Rd → R, the Bregman divergence
wrt Φ is defined, for a, b ∈ Rd , as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a, b) is the difference between Φ(a) and the value at a of the linear
approximation of Φ about b.

[Bregman, 1967]

45 / 132

Online Convex Optimization: Regularization

Definition: Bregman Divergence

For a strictly convex, differentiable Φ : Rd → R, the Bregman divergence
wrt Φ is defined, for a, b ∈ Rd , as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a, b) is the difference between Φ(a) and the value at a of the linear
approximation of Φ about b. [Bregman, 1967]

45 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ Rd , the squared euclidean norm, Φ(a) = 1
2‖a‖

2, has

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)
=

1

2
‖a− b‖2,

the squared euclidean norm.

46 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ Rd , the squared euclidean norm, Φ(a) = 1
2‖a‖

2, has

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)

=
1

2
‖a− b‖2,

the squared euclidean norm.

46 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ Rd , the squared euclidean norm, Φ(a) = 1
2‖a‖

2, has

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)
=

1

2
‖a− b‖2,

the squared euclidean norm.

46 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ Rd , the squared euclidean norm, Φ(a) = 1
2‖a‖

2, has

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)
=

1

2
‖a− b‖2,

the squared euclidean norm.

46 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a, b) =
∑
i

(ai (ln ai − 1)− bi (ln bi − 1)− ln bi (ai − bi))

=
∑
i

(
ai ln

ai
bi

+ bi − ai

)
,

the unnormalized KL divergence.

Thus, for a ∈ ∆d , Φ(a) =
∑

i ai ln ai has Dφ(a, b) =
∑
i

ai ln
ai
bi

.

47 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a, b) =
∑
i

(ai (ln ai − 1)− bi (ln bi − 1)− ln bi (ai − bi))

=
∑
i

(
ai ln

ai
bi

+ bi − ai

)
,

the unnormalized KL divergence.

Thus, for a ∈ ∆d , Φ(a) =
∑

i ai ln ai has Dφ(a, b) =
∑
i

ai ln
ai
bi

.

47 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a, b) =
∑
i

(ai (ln ai − 1)− bi (ln bi − 1)− ln bi (ai − bi))

=
∑
i

(
ai ln

ai
bi

+ bi − ai

)
,

the unnormalized KL divergence.

Thus, for a ∈ ∆d , Φ(a) =
∑

i ai ln ai has Dφ(a, b) =
∑
i

ai ln
ai
bi

.

47 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a, b) =
∑
i

(ai (ln ai − 1)− bi (ln bi − 1)− ln bi (ai − bi))

=
∑
i

(
ai ln

ai
bi

+ bi − ai

)
,

the unnormalized KL divergence.

Thus, for a ∈ ∆d , Φ(a) =
∑

i ai ln ai has Dφ(a, b) =
∑
i

ai ln
ai
bi

.

47 / 132

Bregman Divergence

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example

For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a, b) =
∑
i

(ai (ln ai − 1)− bi (ln bi − 1)− ln bi (ai − bi))

=
∑
i

(
ai ln

ai
bi

+ bi − ai

)
,

the unnormalized KL divergence.

Thus, for a ∈ ∆d , Φ(a) =
∑

i ai ln ai has Dφ(a, b) =
∑
i

ai ln
ai
bi

.

47 / 132

Bregman Divergence

When the domain of Φ is A ⊂ Rd , in addition to differentiability and strict
convexity, we make two more assumptions:

The interior of A is convex,

For a sequence approaching the boundary of A, ‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.

48 / 132

Bregman Divergence

When the domain of Φ is A ⊂ Rd , in addition to differentiability and strict
convexity, we make two more assumptions:

The interior of A is convex,

For a sequence approaching the boundary of A, ‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.

48 / 132

Bregman Divergence

When the domain of Φ is A ⊂ Rd , in addition to differentiability and strict
convexity, we make two more assumptions:

The interior of A is convex,

For a sequence approaching the boundary of A, ‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.

48 / 132

Bregman Divergence

When the domain of Φ is A ⊂ Rd , in addition to differentiability and strict
convexity, we make two more assumptions:

The interior of A is convex,

For a sequence approaching the boundary of A, ‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.

48 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0

, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0

, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

1 DΦ ≥ 0, DΦ(a, a) = 0.

2 DA+B = DA + DB .

3 Bregman projection, ΠΦ
A(b) = arg mina∈ADΦ(a, b) is uniquely defined

for closed, convex A.

4 Generalized Pythagorus: for closed, convex A, a∗ = ΠΦ
A(b), a ∈ A:

DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).

5 ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

49 / 132

Bregman Divergence

Properties

6 For ` affine, DΦ+` = DΦ.

7 For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

50 / 132

Bregman Divergence

Properties

6 For ` affine, DΦ+` = DΦ.

7 For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

50 / 132

Bregman Divergence

Properties

6 For ` affine, DΦ+` = DΦ.

7 For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

50 / 132

Bregman Divergence

Properties

6 For ` affine, DΦ+` = DΦ.

7 For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

50 / 132

Bregman Divergence

Definition: Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

Φ∗ is Legendre.

dom(Φ∗) = ∇Φ(int dom Φ).

∇Φ∗ = (∇Φ)−1.

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

Φ∗∗ = Φ.

51 / 132

Bregman Divergence

Definition: Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

Φ∗ is Legendre.

dom(Φ∗) = ∇Φ(int dom Φ).

∇Φ∗ = (∇Φ)−1.

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

Φ∗∗ = Φ.

51 / 132

Bregman Divergence

Definition: Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

Φ∗ is Legendre.

dom(Φ∗) = ∇Φ(int dom Φ).

∇Φ∗ = (∇Φ)−1.

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

Φ∗∗ = Φ.

51 / 132

Bregman Divergence

Definition: Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

Φ∗ is Legendre.

dom(Φ∗) = ∇Φ(int dom Φ).

∇Φ∗ = (∇Φ)−1.

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

Φ∗∗ = Φ.

51 / 132

Bregman Divergence

Definition: Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

Φ∗ is Legendre.

dom(Φ∗) = ∇Φ(int dom Φ).

∇Φ∗ = (∇Φ)−1.

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

Φ∗∗ = Φ.

51 / 132

Bregman Divergence

Definition: Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

Φ∗ is Legendre.

dom(Φ∗) = ∇Φ(int dom Φ).

∇Φ∗ = (∇Φ)−1.

DΦ(a, b) = DΦ∗(∇φ(b),∇φ(a)).

Φ∗∗ = Φ.

51 / 132

Bregman Divergence

Example

For Φ = 1
2‖ · ‖

2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where 1/p + 1/q = 1.

Example

For Φ(a) =
∑d

i=1 e
ai ,

∇Φ(a) = (ea1 , . . . , ead)′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud)′,

and Φ∗(u) =
∑

i ui (ln ui − 1).

52 / 132

Bregman Divergence

Example

For Φ = 1
2‖ · ‖

2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where 1/p + 1/q = 1.

Example

For Φ(a) =
∑d

i=1 e
ai ,

∇Φ(a) = (ea1 , . . . , ead)′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud)′,

and Φ∗(u) =
∑

i ui (ln ui − 1).

52 / 132

Bregman Divergence

Example

For Φ = 1
2‖ · ‖

2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where 1/p + 1/q = 1.

Example

For Φ(a) =
∑d

i=1 e
ai ,

∇Φ(a) = (ea1 , . . . , ead)′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud)′,

and Φ∗(u) =
∑

i ui (ln ui − 1).

52 / 132

Bregman Divergence

Example

For Φ = 1
2‖ · ‖

2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where 1/p + 1/q = 1.

Example

For Φ(a) =
∑d

i=1 e
ai ,

∇Φ(a) = (ea1 , . . . , ead)′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud)′,

and Φ∗(u) =
∑

i ui (ln ui − 1).

52 / 132

Online Convex Optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

53 / 132

Properties of Regularization Methods

In the unconstrained case (A = Rd), regularized minimization is equivalent
to minimizing the latest loss plus the distance (Bregman divergence) to
the previous decision.

Theorem

Define ã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(
η`t(a) + DΦt−1(a, ãt)

)
.

Then

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

`s(a) + R(a)

)
.

54 / 132

Properties of Regularization Methods

In the unconstrained case (A = Rd), regularized minimization is equivalent
to minimizing the latest loss plus the distance (Bregman divergence) to
the previous decision.

Theorem

Define ã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(
η`t(a) + DΦt−1(a, ãt)

)
.

Then

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

`s(a) + R(a)

)
.

54 / 132

Properties of Regularization Methods

Proof:

By the definition of Φt ,
(
Φt(a) := η

∑t
s=1 `s(a) + R(a)

)
η`t(a) + DΦt−1(a, ãt) = Φt(a)− Φt−1(a) + DΦt−1(a, ãt).

The derivative wrt a is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .

55 / 132

Properties of Regularization Methods

Proof:

By the definition of Φt ,
(
Φt(a) := η

∑t
s=1 `s(a) + R(a)

)
η`t(a) + DΦt−1(a, ãt) = Φt(a)− Φt−1(a) + DΦt−1(a, ãt).

The derivative wrt a is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .

55 / 132

Properties of Regularization Methods

Proof:

By the definition of Φt ,
(
Φt(a) := η

∑t
s=1 `s(a) + R(a)

)
η`t(a) + DΦt−1(a, ãt) = Φt(a)− Φt−1(a) + DΦt−1(a, ãt).

The derivative wrt a is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .

55 / 132

Properties of Regularization Methods

Proof:

By the definition of Φt ,
(
Φt(a) := η

∑t
s=1 `s(a) + R(a)

)
η`t(a) + DΦt−1(a, ãt) = Φt(a)− Φt−1(a) + DΦt−1(a, ãt).

The derivative wrt a is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .

55 / 132

Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,
followed by Bregman projection:

Theorem

For

at+1 = arg min
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt
A (ãt+1).

56 / 132

Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,
followed by Bregman projection:

Theorem

For

at+1 = arg min
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt
A (ãt+1).

56 / 132

Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,
followed by Bregman projection:

Theorem

For

at+1 = arg min
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt
A (ãt+1).

56 / 132

Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,
followed by Bregman projection:

Theorem

For

at+1 = arg min
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt
A (ãt+1).

56 / 132

Properties of Regularization Methods

Proof:

Let a′t+1 denote ΠΦt
A (ãt+1).

First, by definition of at+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,
DΦt (a

′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt (a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus, Φt(a
′
t+1) ≤ Φt(at+1).

57 / 132

Properties of Regularization Methods

Proof:

Let a′t+1 denote ΠΦt
A (ãt+1). First, by definition of at+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,
DΦt (a

′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt (a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus, Φt(a
′
t+1) ≤ Φt(at+1).

57 / 132

Properties of Regularization Methods

Proof:

Let a′t+1 denote ΠΦt
A (ãt+1). First, by definition of at+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,
DΦt (a

′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt (a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus, Φt(a
′
t+1) ≤ Φt(at+1).

57 / 132

Properties of Regularization Methods

Proof:

Let a′t+1 denote ΠΦt
A (ãt+1). First, by definition of at+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,
DΦt (a

′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt (a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus, Φt(a
′
t+1) ≤ Φt(at+1).

57 / 132

Properties of Regularization Methods

Proof:

Let a′t+1 denote ΠΦt
A (ãt+1). First, by definition of at+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,
DΦt (a

′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt (a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus, Φt(a
′
t+1) ≤ Φt(at+1).

57 / 132

Properties of Regularization Methods

Example

For linear `t , regularized minimization is equivalent to minimizing the last
loss plus the Bregman divergence wrt R to the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t(a) + DR(a, ãt))

)
,

because adding a linear function to Φ does not change DΦ.

(e.g., R squared Euclidean norm)

58 / 132

Properties of Regularization Methods

Example

For linear `t , regularized minimization is equivalent to minimizing the last
loss plus the Bregman divergence wrt R to the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t(a) + DR(a, ãt))

)
,

because adding a linear function to Φ does not change DΦ.

(e.g., R squared Euclidean norm)

58 / 132

Properties of Regularization Methods

Example

For linear `t , regularized minimization is equivalent to minimizing the last
loss plus the Bregman divergence wrt R to the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t(a) + DR(a, ãt))

)
,

because adding a linear function to Φ does not change DΦ.

(e.g., R squared Euclidean norm)

58 / 132

Properties of Regularization Methods

Example

For linear `t , regularized minimization is equivalent to minimizing the last
loss plus the Bregman divergence wrt R to the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t(a) + DR(a, ãt))

)
,

because adding a linear function to Φ does not change DΦ.

(e.g., R squared Euclidean norm)

58 / 132

Online Convex Optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

59 / 132

Properties of Regularization Methods: Linear loss

We can replace `t by ∇`t(at), and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . , gn)

can be used to construct a strategy for online convex optimization, with
regret

n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof:

Convexity implies `t(at)− `t(a) ≤ ∇`t(at) · (at − a).

60 / 132

Properties of Regularization Methods: Linear loss

We can replace `t by ∇`t(at), and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . , gn)

can be used to construct a strategy for online convex optimization, with
regret

n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof:

Convexity implies `t(at)− `t(a) ≤ ∇`t(at) · (at − a).

60 / 132

Properties of Regularization Methods: Linear loss

We can replace `t by ∇`t(at), and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . , gn)

can be used to construct a strategy for online convex optimization, with
regret

n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof:

Convexity implies `t(at)− `t(a) ≤ ∇`t(at) · (at − a).

60 / 132

Properties of Regularization Methods: Linear loss

We can replace `t by ∇`t(at), and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . , gn)

can be used to construct a strategy for online convex optimization, with
regret

n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof:

Convexity implies `t(at)− `t(a) ≤ ∇`t(at) · (at − a).
60 / 132

Properties of Regularization Methods

Key Point:

We can replace `t by ∇`t(at), and this leads to an upper bound on regret.

Thus, we can work with linear `t .

61 / 132

Properties of Regularization Methods

Key Point:

We can replace `t by ∇`t(at), and this leads to an upper bound on regret.
Thus, we can work with linear `t .

61 / 132

Online convex optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

62 / 132

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror
descent—taking a gradient step in a dual space:

Theorem

The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)

can be written
ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from ãt through ∇R, then taking a step
in the direction −gt , then mapping back through (∇R)−1 = ∇R∗ to ãt+1.

see [Nemirovsky and Yudin, 1983]

63 / 132

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror
descent—taking a gradient step in a dual space:

Theorem

The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)

can be written
ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from ãt through ∇R, then taking a step
in the direction −gt , then mapping back through (∇R)−1 = ∇R∗ to ãt+1.

see [Nemirovsky and Yudin, 1983]

63 / 132

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror
descent—taking a gradient step in a dual space:

Theorem

The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)
can be written

ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from ãt through ∇R, then taking a step
in the direction −gt , then mapping back through (∇R)−1 = ∇R∗ to ãt+1.

see [Nemirovsky and Yudin, 1983]

63 / 132

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror
descent—taking a gradient step in a dual space:

Theorem

The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)
can be written

ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from ãt through ∇R, then taking a step
in the direction −gt , then mapping back through (∇R)−1 = ∇R∗ to ãt+1.

see [Nemirovsky and Yudin, 1983]

63 / 132

Regularization Methods: Mirror Descent

Proof:

For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs ,

∇R(ãt) = −η
t−1∑
s=1

gs ,

so ∇R(ãt+1) = ∇R(ãt)− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .

64 / 132

Regularization Methods: Mirror Descent

Proof:

For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs ,

∇R(ãt) = −η
t−1∑
s=1

gs ,

so ∇R(ãt+1) = ∇R(ãt)− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .

64 / 132

Regularization Methods: Mirror Descent

Proof:

For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs ,

∇R(ãt) = −η
t−1∑
s=1

gs ,

so ∇R(ãt+1) = ∇R(ãt)− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .

64 / 132

Regularization Methods: Mirror Descent

Proof:

For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs ,

∇R(ãt) = −η
t−1∑
s=1

gs ,

so ∇R(ãt+1) = ∇R(ãt)− ηgt ,

which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .

64 / 132

Regularization Methods: Mirror Descent

Proof:

For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs ,

∇R(ãt) = −η
t−1∑
s=1

gs ,

so ∇R(ãt+1) = ∇R(ãt)− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .

64 / 132

Online Convex Optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

65 / 132

Regularization methods: Regret bounds

Recall: Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.

66 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret against any a ∈ A of

n∑
t=1

`t(at)−
n∑

t=1

`t(a)

=
DR(a, a1)− DΦn(a, an+1)

η
+

1

η

n∑
t=1

DΦt (at , at+1),

and thus

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

So the sizes of the steps DΦt (at , at+1) determine the regret bound.

67 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret against any a ∈ A of

n∑
t=1

`t(at)−
n∑

t=1

`t(a)

=
DR(a, a1)− DΦn(a, an+1)

η
+

1

η

n∑
t=1

DΦt (at , at+1),

and thus

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

So the sizes of the steps DΦt (at , at+1) determine the regret bound.

67 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret against any a ∈ A of

n∑
t=1

`t(at)−
n∑

t=1

`t(a)

=
DR(a, a1)− DΦn(a, an+1)

η
+

1

η

n∑
t=1

DΦt (at , at+1),

and thus

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

So the sizes of the steps DΦt (at , at+1) determine the regret bound.

67 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

Notice that, because at+1 is the unconstrained minimizer of Φt ,

DΦt (at , at+1) = DΦ∗
t
(∇Φt(at+1),∇Φt(at))

= DΦ∗
t
(0,∇Φt−1(at) + η∇`t(at))

= DΦ∗
t
(0, η∇`t(at)).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t(at)), that determines

the regret.

68 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

Notice that, because at+1 is the unconstrained minimizer of Φt ,

DΦt (at , at+1) = DΦ∗
t
(∇Φt(at+1),∇Φt(at))

= DΦ∗
t
(0,∇Φt−1(at) + η∇`t(at))

= DΦ∗
t
(0, η∇`t(at)).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t(at)), that determines

the regret.

68 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

Notice that, because at+1 is the unconstrained minimizer of Φt ,

DΦt (at , at+1) = DΦ∗
t
(∇Φt(at+1),∇Φt(at))

= DΦ∗
t
(0,∇Φt−1(at) + η∇`t(at))

= DΦ∗
t
(0, η∇`t(at)).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t(at)), that determines

the regret.

68 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

Notice that, because at+1 is the unconstrained minimizer of Φt ,

DΦt (at , at+1) = DΦ∗
t
(∇Φt(at+1),∇Φt(at))

= DΦ∗
t
(0,∇Φt−1(at) + η∇`t(at))

= DΦ∗
t
(0, η∇`t(at)).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t(at)), that determines

the regret.

68 / 132

Regularization methods: Regret

Theorem

For A = Rd , regularized minimization suffers regret

n∑
t=1

`t(at) ≤ inf
a∈Rd

(
n∑

t=1

`t(a) +
DR(a, a1)

η

)
+

1

η

n∑
t=1

DΦt (at , at+1).

Notice that, because at+1 is the unconstrained minimizer of Φt ,

DΦt (at , at+1) = DΦ∗
t
(∇Φt(at+1),∇Φt(at))

= DΦ∗
t
(0,∇Φt−1(at) + η∇`t(at))

= DΦ∗
t
(0, η∇`t(at)).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t(at)), that determines

the regret.

68 / 132

Regularization methods: Regret

Example

Suppose R = 1
2‖ · ‖

2.

Then we have

n∑
t=1

`t(at) ≤ inf
a∈Rd

n∑
t=1

`t(a) +
‖a∗ − a1‖2

2η
+
η

2

n∑
t=1

‖gt‖2.

And if ‖gt‖ ≤ G and ‖a∗ − a1‖ ≤ D, choosing η appropriately gives
regret ≤ DG

√
n.

69 / 132

Regularization methods: Regret

Example

Suppose R = 1
2‖ · ‖

2. Then we have

n∑
t=1

`t(at) ≤ inf
a∈Rd

n∑
t=1

`t(a) +
‖a∗ − a1‖2

2η
+
η

2

n∑
t=1

‖gt‖2.

And if ‖gt‖ ≤ G and ‖a∗ − a1‖ ≤ D, choosing η appropriately gives
regret ≤ DG

√
n.

69 / 132

Regularization methods: Regret

Example

Suppose R = 1
2‖ · ‖

2. Then we have

n∑
t=1

`t(at) ≤ inf
a∈Rd

n∑
t=1

`t(a) +
‖a∗ − a1‖2

2η
+
η

2

n∑
t=1

‖gt‖2.

And if ‖gt‖ ≤ G and ‖a∗ − a1‖ ≤ D, choosing η appropriately gives
regret ≤ DG

√
n.

69 / 132

Regularization methods: Regret

Seeing the future gives small regret

For regularized minimization, that is,

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
,

for all a ∈ A,

n∑
t=1

`t(at+1)−
n∑

t=1

`t(a) ≤ 1

η
(R(a)− R(a1)).

(NB: This is cheating!)

see also [Kalai and Vempala, 2005]

70 / 132

Regularization methods: Regret

Seeing the future gives small regret

For regularized minimization, that is,

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
,

for all a ∈ A,

n∑
t=1

`t(at+1)−
n∑

t=1

`t(a) ≤ 1

η
(R(a)− R(a1)).

(NB: This is cheating!)

see also [Kalai and Vempala, 2005]

70 / 132

Regularization methods: Regret

Seeing the future gives small regret

For regularized minimization, that is,

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
,

for all a ∈ A,

n∑
t=1

`t(at+1)−
n∑

t=1

`t(a) ≤ 1

η
(R(a)− R(a1)).

(NB: This is cheating!) see also [Kalai and Vempala, 2005]

70 / 132

Regularization methods: Regret

Proof:

Since at+1 minimizes Φt ,

and at minimizes Φt−1,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t(at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t(at+1) + η
t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

71 / 132

Regularization methods: Regret

Proof:

Since at+1 minimizes Φt ,

and at minimizes Φt−1,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t(at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t(at+1) + η
t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

71 / 132

Regularization methods: Regret

Proof:

Since at+1 minimizes Φt ,

and at minimizes Φt−1,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t(at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t(at+1) + η
t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

71 / 132

Regularization methods: Regret

Proof:

Since at+1 minimizes Φt ,

and at minimizes Φt−1,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t(at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t(at+1) + η
t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

71 / 132

Regularization methods: Regret

Proof:

Since at+1 minimizes Φt , and at minimizes Φt−1,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t(at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t(at+1) + η

t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

71 / 132

Regularization methods: Regret

Proof:

Since at+1 minimizes Φt , and at minimizes Φt−1,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t(at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t(at+1) + η

t−1∑
s=1

`s(at) + R(at)

...

≥ η
t∑

s=1

`s(as+1) + R(a1).

71 / 132

Regularization methods: Regret

Theorem

For all a ∈ A,

n∑
t=1

`t(at+1)−
n∑

t=1

`t(a) ≤ 1

η
(R(a)− R(a1)).

Thus, if at and at+1 are close, then regret is small:

Corollary

For all a ∈ A,

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(`t(at)− `t(at+1)) +
1

η
(R(a)− R(a1)) .

So how can we control the increments `t(at)− `t(at+1)?

72 / 132

Regularization methods: Regret

Theorem

For all a ∈ A,

n∑
t=1

`t(at+1)−
n∑

t=1

`t(a) ≤ 1

η
(R(a)− R(a1)).

Thus, if at and at+1 are close, then regret is small:

Corollary

For all a ∈ A,

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(`t(at)− `t(at+1)) +
1

η
(R(a)− R(a1)) .

So how can we control the increments `t(at)− `t(at+1)?

72 / 132

Regularization methods: Regret

Theorem

For all a ∈ A,

n∑
t=1

`t(at+1)−
n∑

t=1

`t(a) ≤ 1

η
(R(a)− R(a1)).

Thus, if at and at+1 are close, then regret is small:

Corollary

For all a ∈ A,

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(`t(at)− `t(at+1)) +
1

η
(R(a)− R(a1)) .

So how can we control the increments `t(at)− `t(at+1)?
72 / 132

Regularization methods: Regret

Definition

We say R is strongly convex wrt a norm ‖ · ‖ if, for all a, b,

R(a) ≥ R(b) +∇R(b) · (a− b) +
1

2
‖a− b‖2.

73 / 132

Regularization methods: Regret

For linear losses and strongly convex regularizers, the dual norm of the
gradient is small.

Theorem

If R is strongly convex wrt a norm ‖ · ‖, and `t(a) = gt · a, then

‖at − at+1‖ ≤ η‖gt‖∗,

where at+1 minimizes Φt and ‖ · ‖∗ is the dual norm to ‖ · ‖:

‖v‖∗ = sup{v · a : ‖a‖ ≤ 1}.

Note that the definition implies a generalization of the Cauchy-Schwarz
inequality: for ‖a‖ > 0,

v · a

‖a‖
≤ ‖v‖∗.

74 / 132

Regularization methods: Regret

For linear losses and strongly convex regularizers, the dual norm of the
gradient is small.

Theorem

If R is strongly convex wrt a norm ‖ · ‖, and `t(a) = gt · a, then

‖at − at+1‖ ≤ η‖gt‖∗,

where at+1 minimizes Φt and ‖ · ‖∗ is the dual norm to ‖ · ‖:

‖v‖∗ = sup{v · a : ‖a‖ ≤ 1}.

Note that the definition implies a generalization of the Cauchy-Schwarz
inequality: for ‖a‖ > 0,

v · a

‖a‖
≤ ‖v‖∗.

74 / 132

Regularization methods: Regret

For linear losses and strongly convex regularizers, the dual norm of the
gradient is small.

Theorem

If R is strongly convex wrt a norm ‖ · ‖, and `t(a) = gt · a, then

‖at − at+1‖ ≤ η‖gt‖∗,

where at+1 minimizes Φt and ‖ · ‖∗ is the dual norm to ‖ · ‖:

‖v‖∗ = sup{v · a : ‖a‖ ≤ 1}.

Note that the definition implies a generalization of the Cauchy-Schwarz
inequality: for ‖a‖ > 0,

v · a

‖a‖
≤ ‖v‖∗.

74 / 132

Regularization methods: Regret

Proof:

R(at) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1

2
‖at − at+1‖2,

R(at+1) ≥ R(at) +∇R(at) · (at+1 − at) +
1

2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at)−∇R(at+1)) · (at − at+1)

Hence,
‖at − at+1‖ ≤ ‖∇R(at)−∇R(at+1)‖∗ = ‖ηgt‖∗.

75 / 132

Regularization methods: Regret

Proof:

R(at) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1

2
‖at − at+1‖2,

R(at+1) ≥ R(at) +∇R(at) · (at+1 − at) +
1

2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at)−∇R(at+1)) · (at − at+1)

Hence,
‖at − at+1‖ ≤ ‖∇R(at)−∇R(at+1)‖∗ = ‖ηgt‖∗.

75 / 132

Regularization methods: Regret

Proof:

R(at) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1

2
‖at − at+1‖2,

R(at+1) ≥ R(at) +∇R(at) · (at+1 − at) +
1

2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at)−∇R(at+1)) · (at − at+1)

Hence,
‖at − at+1‖ ≤ ‖∇R(at)−∇R(at+1)‖∗ = ‖ηgt‖∗.

75 / 132

Regularization methods: Regret

Proof:

R(at) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1

2
‖at − at+1‖2,

R(at+1) ≥ R(at) +∇R(at) · (at+1 − at) +
1

2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at)−∇R(at+1)) · (at − at+1)

Hence,
‖at − at+1‖ ≤ ‖∇R(at)−∇R(at+1)‖∗ = ‖ηgt‖∗.

75 / 132

Regularization methods: Regret

This leads to the regret bound:

Corollary

For linear losses, if R is strongly convex wrt ‖ · ‖, then for all a ∈ A,

n∑
t=1

(`t(at)− `t(a)) ≤ η
n∑

t=1

‖gt‖2
∗ +

1

η
(R(a)− R(a1)) .

Thus, for ‖gt‖∗ ≤ G and R(a)− R(a1) ≤ D2, choosing η appropriately
gives regret no more than 2GD

√
n.

76 / 132

Regularization methods: Regret

This leads to the regret bound:

Corollary

For linear losses, if R is strongly convex wrt ‖ · ‖, then for all a ∈ A,

n∑
t=1

(`t(at)− `t(a)) ≤ η
n∑

t=1

‖gt‖2
∗ +

1

η
(R(a)− R(a1)) .

Thus, for ‖gt‖∗ ≤ G and R(a)− R(a1) ≤ D2, choosing η appropriately
gives regret no more than 2GD

√
n.

76 / 132

Regularization methods: Regret

Example

Consider R(a) = 1
2‖a‖

2, a1 = 0, and A contained in a Euclidean ball of
diameter D.

Then R is strongly convex wrt ‖ · ‖ and ‖ · ‖∗ = ‖ · ‖. And the mapping
between primal and dual spaces is the identity.
So if supa∈A ‖∇`t(a)‖ ≤ G , then regret is no more than 2GD

√
n.

77 / 132

Regularization methods: Regret

Example

Consider R(a) = 1
2‖a‖

2, a1 = 0, and A contained in a Euclidean ball of
diameter D.
Then R is strongly convex wrt ‖ · ‖ and ‖ · ‖∗ = ‖ · ‖. And the mapping
between primal and dual spaces is the identity.

So if supa∈A ‖∇`t(a)‖ ≤ G , then regret is no more than 2GD
√
n.

77 / 132

Regularization methods: Regret

Example

Consider R(a) = 1
2‖a‖

2, a1 = 0, and A contained in a Euclidean ball of
diameter D.
Then R is strongly convex wrt ‖ · ‖ and ‖ · ‖∗ = ‖ · ‖. And the mapping
between primal and dual spaces is the identity.
So if supa∈A ‖∇`t(a)‖ ≤ G , then regret is no more than 2GD

√
n.

77 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai .

Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise). And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1. Also, R(a)− R(a1) ≤ lnm.
Suppose that ‖gt‖∞ ≤ 1. Then the regret is no more than 2

√
n lnm.

78 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai . Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise).

And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1. Also, R(a)− R(a1) ≤ lnm.
Suppose that ‖gt‖∞ ≤ 1. Then the regret is no more than 2

√
n lnm.

78 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai . Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise). And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1. Also, R(a)− R(a1) ≤ lnm.
Suppose that ‖gt‖∞ ≤ 1. Then the regret is no more than 2

√
n lnm.

78 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai . Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise). And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1.

Also, R(a)− R(a1) ≤ lnm.
Suppose that ‖gt‖∞ ≤ 1. Then the regret is no more than 2

√
n lnm.

78 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai . Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise). And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1. Also, R(a)− R(a1) ≤ lnm.

Suppose that ‖gt‖∞ ≤ 1. Then the regret is no more than 2
√
n lnm.

78 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai . Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise). And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1. Also, R(a)− R(a1) ≤ lnm.
Suppose that ‖gt‖∞ ≤ 1.

Then the regret is no more than 2
√
n lnm.

78 / 132

Regularization methods: Regret

Example

Consider A = ∆m, R(a) =
∑

i ai ln ai . Then the mapping between primal
and dual spaces is ∇R(a) = ln(a) (component-wise). And the divergence
is the KL divergence,

DR(a, b) =
∑
i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1. Also, R(a)− R(a1) ≤ lnm.
Suppose that ‖gt‖∞ ≤ 1. Then the regret is no more than 2

√
n lnm.

78 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .

What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.

This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.

It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Example

A = ∆m, R(a) =
∑

i ai ln ai .
What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt)− ηgt))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt)))

= ΠR
A(ãt exp(−ηgt)),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to normalization,
ΠR
A(ã) = ã/‖ã‖1.

79 / 132

Regularization methods: Regret

Notice that when the losses are linear, exponentiated gradient is exactly
the exponential weights strategy we discussed for a finite comparison class.

Compare R(a) =
∑

i ai ln ai with R(a) = 1
2‖a‖

2,
for ‖gt‖∞ ≤ 1, A = ∆m:

O(
√
n lnm) versus O(

√
mn).

80 / 132

Regularization methods: Regret

Notice that when the losses are linear, exponentiated gradient is exactly
the exponential weights strategy we discussed for a finite comparison class.
Compare R(a) =

∑
i ai ln ai with R(a) = 1

2‖a‖
2,

for ‖gt‖∞ ≤ 1, A = ∆m:

O(
√
n lnm) versus O(

√
mn).

80 / 132

Regularization methods: Extensions

Instead of
at+1 = arg min

a∈A

(
η`t(a) + DΦt−1(a, ãt)

)
,

we can use

at+1 = arg min
a∈A

(
η`t(a) + DΦt−1(a, at)

)
.

And analogous results apply. For instance, this is the approach used
by the first gradient method we considered.

81 / 132

Regularization methods: Extensions

Instead of
at+1 = arg min

a∈A

(
η`t(a) + DΦt−1(a, ãt)

)
,

we can use

at+1 = arg min
a∈A

(
η`t(a) + DΦt−1(a, at)

)
.

And analogous results apply. For instance, this is the approach used
by the first gradient method we considered.

81 / 132

Regularization methods: Extensions

Instead of
at+1 = arg min

a∈A

(
η`t(a) + DΦt−1(a, ãt)

)
,

we can use

at+1 = arg min
a∈A

(
η`t(a) + DΦt−1(a, at)

)
.

And analogous results apply. For instance, this is the approach used
by the first gradient method we considered.

81 / 132

Online convex optimization

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

82 / 132

Regularization methods: Strongly convex losses

Key Point:

When the loss is strongly convex wrt the regularizer, the regret rate can be
faster; in the case of quadratic `t , it is O(log n), versus O(

√
n).

83 / 132

Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

Φt(a) =
t∑

s=1

ηs`s(a) + R(a), at+1 = arg min
a∈Rd

Φt(a).

For any a ∈ Rd ,
n∑

t=1

(`t(at)− `t(a)) =
n∑

t=1

1

ηt

(
DΦt (at , at+1) + DΦt−1(a, at)− DΦt (a, at+1)

)
.

(Easy to check. Use ∇Φt(at+1) = ∇Φt−1(at) = 0.)
What keeps the last two terms small? If we linearize the `t , we have

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
(DR(at , at+1) + DR(a, at)− DR(a, at+1)) ,

which requires ηt ≈ constant. But what if `t are strongly convex?

84 / 132

Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

Φt(a) =
t∑

s=1

ηs`s(a) + R(a), at+1 = arg min
a∈Rd

Φt(a).

For any a ∈ Rd ,
n∑

t=1

(`t(at)− `t(a)) =
n∑

t=1

1

ηt

(
DΦt (at , at+1) + DΦt−1(a, at)− DΦt (a, at+1)

)
.

(Easy to check. Use ∇Φt(at+1) = ∇Φt−1(at) = 0.)
What keeps the last two terms small? If we linearize the `t , we have

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
(DR(at , at+1) + DR(a, at)− DR(a, at+1)) ,

which requires ηt ≈ constant. But what if `t are strongly convex?

84 / 132

Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

Φt(a) =
t∑

s=1

ηs`s(a) + R(a), at+1 = arg min
a∈Rd

Φt(a).

For any a ∈ Rd ,
n∑

t=1

(`t(at)− `t(a)) =
n∑

t=1

1

ηt

(
DΦt (at , at+1) + DΦt−1(a, at)− DΦt (a, at+1)

)
.

(Easy to check. Use ∇Φt(at+1) = ∇Φt−1(at) = 0.)

What keeps the last two terms small? If we linearize the `t , we have

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
(DR(at , at+1) + DR(a, at)− DR(a, at+1)) ,

which requires ηt ≈ constant. But what if `t are strongly convex?

84 / 132

Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

Φt(a) =
t∑

s=1

ηs`s(a) + R(a), at+1 = arg min
a∈Rd

Φt(a).

For any a ∈ Rd ,
n∑

t=1

(`t(at)− `t(a)) =
n∑

t=1

1

ηt

(
DΦt (at , at+1) + DΦt−1(a, at)− DΦt (a, at+1)

)
.

(Easy to check. Use ∇Φt(at+1) = ∇Φt−1(at) = 0.)
What keeps the last two terms small?

If we linearize the `t , we have

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
(DR(at , at+1) + DR(a, at)− DR(a, at+1)) ,

which requires ηt ≈ constant. But what if `t are strongly convex?

84 / 132

Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

Φt(a) =
t∑

s=1

ηs`s(a) + R(a), at+1 = arg min
a∈Rd

Φt(a).

For any a ∈ Rd ,
n∑

t=1

(`t(at)− `t(a)) =
n∑

t=1

1

ηt

(
DΦt (at , at+1) + DΦt−1(a, at)− DΦt (a, at+1)

)
.

(Easy to check. Use ∇Φt(at+1) = ∇Φt−1(at) = 0.)
What keeps the last two terms small? If we linearize the `t , we have

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
(DR(at , at+1) + DR(a, at)− DR(a, at+1)) ,

which requires ηt ≈ constant. But what if `t are strongly convex?

84 / 132

Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

Φt(a) =
t∑

s=1

ηs`s(a) + R(a), at+1 = arg min
a∈Rd

Φt(a).

For any a ∈ Rd ,
n∑

t=1

(`t(at)− `t(a)) =
n∑

t=1

1

ηt

(
DΦt (at , at+1) + DΦt−1(a, at)− DΦt (a, at+1)

)
.

(Easy to check. Use ∇Φt(at+1) = ∇Φt−1(at) = 0.)
What keeps the last two terms small? If we linearize the `t , we have

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
(DR(at , at+1) + DR(a, at)− DR(a, at+1)) ,

which requires ηt ≈ constant. But what if `t are strongly convex?
84 / 132

Regularization methods: Strongly convex losses

Theorem

If `t is σ-strongly convex wrt R, that is, for all a, b ∈ Rd ,

`t(a) ≥ `t(b) +∇`t(b) · (a− b) +
σ

2
DR(a, b),

and R is strongly convex wrt ‖ · ‖, then for any a ∈ A, mirror descent,

at+1 = ΠR
A
(
(∇R)−1 (∇R(at)− ηt∇`t(at))

)
with ηt ≥ 2

tσ has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
DR(at , ãt+1) ≤

n∑
t=1

ηt‖∇`t(at)‖2
∗.

[B., Hazan, Rakhlin, 2007]

85 / 132

Regularization methods: Strongly convex losses

Theorem

If `t is σ-strongly convex wrt R, that is, for all a, b ∈ Rd ,

`t(a) ≥ `t(b) +∇`t(b) · (a− b) +
σ

2
DR(a, b),

and R is strongly convex wrt ‖ · ‖,

then for any a ∈ A, mirror descent,

at+1 = ΠR
A
(
(∇R)−1 (∇R(at)− ηt∇`t(at))

)
with ηt ≥ 2

tσ has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
DR(at , ãt+1) ≤

n∑
t=1

ηt‖∇`t(at)‖2
∗.

[B., Hazan, Rakhlin, 2007]

85 / 132

Regularization methods: Strongly convex losses

Theorem

If `t is σ-strongly convex wrt R, that is, for all a, b ∈ Rd ,

`t(a) ≥ `t(b) +∇`t(b) · (a− b) +
σ

2
DR(a, b),

and R is strongly convex wrt ‖ · ‖, then for any a ∈ A, mirror descent,

at+1 = ΠR
A
(
(∇R)−1 (∇R(at)− ηt∇`t(at))

)
with ηt ≥ 2

tσ has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
DR(at , ãt+1) ≤

n∑
t=1

ηt‖∇`t(at)‖2
∗.

[B., Hazan, Rakhlin, 2007]

85 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
.

Define: ãt+1 so that at+1 = ΠR
A (ãt+1):

ãt+1 := ∇R−1 (∇R(at)− ηt∇`t(at)) ,

and hence

∇R−1 (ãt+1) := ∇R(at)− ηt∇`t(at).

86 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
.

Define: ãt+1 so that at+1 = ΠR
A (ãt+1):

ãt+1 := ∇R−1 (∇R(at)− ηt∇`t(at)) ,

and hence

∇R−1 (ãt+1) := ∇R(at)− ηt∇`t(at).

86 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
.

Define: ãt+1 so that at+1 = ΠR
A (ãt+1):

ãt+1 := ∇R−1 (∇R(at)− ηt∇`t(at)) ,

and hence

∇R−1 (ãt+1) := ∇R(at)− ηt∇`t(at).

86 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a)) ≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
.

Define: ãt+1 so that at+1 = ΠR
A (ãt+1):

ãt+1 := ∇R−1 (∇R(at)− ηt∇`t(at)) ,

and hence

∇R−1 (ãt+1) := ∇R(at)− ηt∇`t(at).

86 / 132

Regularization methods: Strongly convex losses

Proof

∇`t(at) · (at − a)

=
1

ηt
(∇R(at)−∇R(ãt+1)) · (at − a)

=
1

ηt
(DR(a, at)− DR(a, ãt+1) + DR(at , ãt+1))

≤ 1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1)) ,

where the first equality follows from the definition of ãt+1,
the second follows from the definition of Bregman divergence,
and the inequality follows from the Pythagorean Theorem for DR (for
a∗ = ΠΦ

A(b) and a ∈ A, DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).)

87 / 132

Regularization methods: Strongly convex losses

Proof

∇`t(at) · (at − a)

=
1

ηt
(∇R(at)−∇R(ãt+1)) · (at − a)

=
1

ηt
(DR(a, at)− DR(a, ãt+1) + DR(at , ãt+1))

≤ 1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1)) ,

where the first equality follows from the definition of ãt+1,

the second follows from the definition of Bregman divergence,
and the inequality follows from the Pythagorean Theorem for DR (for
a∗ = ΠΦ

A(b) and a ∈ A, DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).)

87 / 132

Regularization methods: Strongly convex losses

Proof

∇`t(at) · (at − a)

=
1

ηt
(∇R(at)−∇R(ãt+1)) · (at − a)

=
1

ηt
(DR(a, at)− DR(a, ãt+1) + DR(at , ãt+1))

≤ 1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1)) ,

where the first equality follows from the definition of ãt+1,

the second follows from the definition of Bregman divergence,
and the inequality follows from the Pythagorean Theorem for DR (for
a∗ = ΠΦ

A(b) and a ∈ A, DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).)

87 / 132

Regularization methods: Strongly convex losses

Proof

∇`t(at) · (at − a)

=
1

ηt
(∇R(at)−∇R(ãt+1)) · (at − a)

=
1

ηt
(DR(a, at)− DR(a, ãt+1) + DR(at , ãt+1))

≤ 1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1)) ,

where the first equality follows from the definition of ãt+1,
the second follows from the definition of Bregman divergence,

and the inequality follows from the Pythagorean Theorem for DR (for
a∗ = ΠΦ

A(b) and a ∈ A, DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).)

87 / 132

Regularization methods: Strongly convex losses

Proof

∇`t(at) · (at − a)

=
1

ηt
(∇R(at)−∇R(ãt+1)) · (at − a)

=
1

ηt
(DR(a, at)− DR(a, ãt+1) + DR(at , ãt+1))

≤ 1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1)) ,

where the first equality follows from the definition of ãt+1,
the second follows from the definition of Bregman divergence,

and the inequality follows from the Pythagorean Theorem for DR (for
a∗ = ΠΦ

A(b) and a ∈ A, DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).)

87 / 132

Regularization methods: Strongly convex losses

Proof

∇`t(at) · (at − a)

=
1

ηt
(∇R(at)−∇R(ãt+1)) · (at − a)

=
1

ηt
(DR(a, at)− DR(a, ãt+1) + DR(at , ãt+1))

≤ 1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1)) ,

where the first equality follows from the definition of ãt+1,
the second follows from the definition of Bregman divergence,
and the inequality follows from the Pythagorean Theorem for DR (for
a∗ = ΠΦ

A(b) and a ∈ A, DΦ(a, b) ≥ DΦ(a, a∗) + DΦ(a∗, b).)

87 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)

≤
n∑

t=1

(
1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1))− σ

2
DR(a, at)

)

=
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(
1

ηt
− 1

ηt−1
− σ

2

)
DR(a, at)

+

(
1

η1
− σ

2

)
DR(a, a1).

And choosing ηt = c/t for c ≥ 2/σ eliminates the second and third terms.

88 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
≤

n∑
t=1

(
1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1))− σ

2
DR(a, at)

)

=
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(
1

ηt
− 1

ηt−1
− σ

2

)
DR(a, at)

+

(
1

η1
− σ

2

)
DR(a, a1).

And choosing ηt = c/t for c ≥ 2/σ eliminates the second and third terms.

88 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
≤

n∑
t=1

(
1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1))− σ

2
DR(a, at)

)

=
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(
1

ηt
− 1

ηt−1
− σ

2

)
DR(a, at)

+

(
1

η1
− σ

2

)
DR(a, a1).

And choosing ηt = c/t for c ≥ 2/σ eliminates the second and third terms.

88 / 132

Regularization methods: Strongly convex losses

Proof

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

(
∇`t(at) · (at − a)− σ

2
DR(a, at)

)
≤

n∑
t=1

(
1

ηt
(DR(a, at)− DR(a, at+1) + DR(at , ãt+1))− σ

2
DR(a, at)

)

=
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(
1

ηt
− 1

ηt−1
− σ

2

)
DR(a, at)

+

(
1

η1
− σ

2

)
DR(a, a1).

And choosing ηt = c/t for c ≥ 2/σ eliminates the second and third terms.
88 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗
= η2

t ‖∇`t(at)‖2
∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗
= η2

t ‖∇`t(at)‖2
∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗
= η2

t ‖∇`t(at)‖2
∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗
= η2

t ‖∇`t(at)‖2
∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖

≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗
= η2

t ‖∇`t(at)‖2
∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗

= η2
t ‖∇`t(at)‖2

∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗

= η2
t ‖∇`t(at)‖2

∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Proof

Also,

DR(at , ãt+1) ≤ DR(at , ãt+1) + DR(ãt+1, at)

= (∇R(at)−∇R(ãt+1)) · (at − ãt+1)

= ηt∇`t(at) · (at − ãt+1)

≤ ηt‖∇`t(at)‖∗‖at − ãt+1‖
≤ ηt‖∇`t(at)‖∗‖∇R(at)−∇R(ãt+1)‖∗
= η2

t ‖∇`t(at)‖2
∗,

where the second equality is from the definition of ãt+1

and the second inequality follows from the strong convexity of R wrt ‖ · ‖.

89 / 132

Regularization methods: Strongly convex losses

Theorem

If `t is σ-strongly convex wrt R and R is strongly convex wrt ‖ · ‖, then for
any a ∈ A, mirror descent, at+1 = ΠR

A
(
(∇R)−1 (∇R(at)− ηt∇`t(at))

)
with ηt ≥ 2

tσ has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

ηt‖∇`t(at)‖2
∗.

Example

For R(a) = 1
2‖a‖

2
2, we have

n∑
t=1

`t(at)− inf
a∈Rd

n∑
t=1

`t(a) ≤
n∑

t=1

ηt‖∇`t‖2
∗

= O

(
G 2

σ
log n

)
.

90 / 132

Regularization methods: Strongly convex losses

Theorem

If `t is σ-strongly convex wrt R and R is strongly convex wrt ‖ · ‖, then for
any a ∈ A, mirror descent, at+1 = ΠR

A
(
(∇R)−1 (∇R(at)− ηt∇`t(at))

)
with ηt ≥ 2

tσ has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

ηt‖∇`t(at)‖2
∗.

Example

For R(a) = 1
2‖a‖

2
2, we have

n∑
t=1

`t(at)− inf
a∈Rd

n∑
t=1

`t(a) ≤
n∑

t=1

ηt‖∇`t‖2
∗ = O

(
G 2

σ
log n

)
.

90 / 132

Brief digression: Linear Losses

Also, even if σ = 0, this proof shows that we can choose ηt = c/
√
t to get

a regret bound of the form

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(√
t

c
−
√
t − 1

c

)
DR(a, at) +

1

c
DR(a, a1)

≤
n∑

t=1

ηt‖∇`t(at)‖2
∗ +

D2

c

n∑
t=1

(√
t −
√
t − 1

)
≤
(
cG 2 +

D2

c

)√
n

= O(DG
√
n).

91 / 132

Brief digression: Linear Losses

Also, even if σ = 0, this proof shows that we can choose ηt = c/
√
t to get

a regret bound of the form

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(√
t

c
−
√
t − 1

c

)
DR(a, at) +

1

c
DR(a, a1)

≤
n∑

t=1

ηt‖∇`t(at)‖2
∗ +

D2

c

n∑
t=1

(√
t −
√
t − 1

)

≤
(
cG 2 +

D2

c

)√
n

= O(DG
√
n).

91 / 132

Brief digression: Linear Losses

Also, even if σ = 0, this proof shows that we can choose ηt = c/
√
t to get

a regret bound of the form

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(√
t

c
−
√
t − 1

c

)
DR(a, at) +

1

c
DR(a, a1)

≤
n∑

t=1

ηt‖∇`t(at)‖2
∗ +

D2

c

n∑
t=1

(√
t −
√
t − 1

)
≤
(
cG 2 +

D2

c

)√
n

= O(DG
√
n).

91 / 132

Brief digression: Linear Losses

Also, even if σ = 0, this proof shows that we can choose ηt = c/
√
t to get

a regret bound of the form

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(√
t

c
−
√
t − 1

c

)
DR(a, at) +

1

c
DR(a, a1)

≤
n∑

t=1

ηt‖∇`t(at)‖2
∗ +

D2

c

n∑
t=1

(√
t −
√
t − 1

)
≤
(
cG 2 +

D2

c

)√
n

= O(DG
√
n).

91 / 132

Regularization methods: Convexity and Strong Convexity

`t ηt Rn

convex
1√
t

O(
√
n)

σ-strongly convex
1

σt
O

(
1

σ
log n

)

All that changes is the step-size.
What if we don’t know σ?
Can we adapt our step-size to give the right rate?

92 / 132

Regularization methods: Convexity and Strong Convexity

`t ηt Rn

convex
1√
t

O(
√
n)

σ-strongly convex
1

σt
O

(
1

σ
log n

)

All that changes is the step-size.

What if we don’t know σ?
Can we adapt our step-size to give the right rate?

92 / 132

Regularization methods: Convexity and Strong Convexity

`t ηt Rn

convex
1√
t

O(
√
n)

σ-strongly convex
1

σt
O

(
1

σ
log n

)

All that changes is the step-size.
What if we don’t know σ?
Can we adapt our step-size to give the right rate?

92 / 132

Outline

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

Strong convexity (Adaptive Gradient)
Diagonal regularizers (AdaGrad)

3 Minimax strategies

93 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).
This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).
This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).
This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).
This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).
This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).

This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace `t(·) with ˜̀
t(·) := `t(·) + λtg(·),

where g is strongly convex wrt R.

Rn =
n∑

t=1

(`t(at)− `t(a))

=
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a) + λt(g(a)− g(at))
)

≤ D2
n∑

t=1

λt +
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)
,

where we’ve defined D2 := supa,at (g(a)− g(at)).
This is an approximation error term, plus the regret for the regularized
losses ˜̀

t .

94 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts?

(We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

(Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts?

(We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

(Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts?

(We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

(Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts? (We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

(Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts? (We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

(Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts? (We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t? (Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts? (We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t? (Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms?

(Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

This is similar to a model selection problem.

1 How does R̃n depend on the λts? (We’ll give a bound.)

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t? (Yes.)

3 Can we choose λt online to obtain the best trade-off between these
two terms? (Yes.)

95 / 132

Regularization methods: adapting to strong convexity

Theorem

If `t is σt-strongly convex wrt R, that is, for all a, b ∈ Rd ,

`t(a) ≥ `t(b) +∇`t(b) · (a− b) +
σt
2
DR(a, b),

and R is strongly convex wrt ‖ · ‖,

then for any a ∈ Rd , mirror descent
with ηt = 2/

∑t
s=1 σs has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
DR(at , ãt+1) ≤ 2

n∑
t=1

‖∇`t(at)‖2
∗∑t

s=1 σs
.

Notice: ηt is used to update at to at+1, so it uses only past information.

see, e.g., [B., Hazan, Rakhlin, 2007]

96 / 132

Regularization methods: adapting to strong convexity

Theorem

If `t is σt-strongly convex wrt R, that is, for all a, b ∈ Rd ,

`t(a) ≥ `t(b) +∇`t(b) · (a− b) +
σt
2
DR(a, b),

and R is strongly convex wrt ‖ · ‖, then for any a ∈ Rd , mirror descent
with ηt = 2/

∑t
s=1 σs has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
DR(at , ãt+1) ≤ 2

n∑
t=1

‖∇`t(at)‖2
∗∑t

s=1 σs
.

Notice: ηt is used to update at to at+1, so it uses only past information.

see, e.g., [B., Hazan, Rakhlin, 2007]

96 / 132

Regularization methods: adapting to strong convexity

Theorem

If `t is σt-strongly convex wrt R, that is, for all a, b ∈ Rd ,

`t(a) ≥ `t(b) +∇`t(b) · (a− b) +
σt
2
DR(a, b),

and R is strongly convex wrt ‖ · ‖, then for any a ∈ Rd , mirror descent
with ηt = 2/

∑t
s=1 σs has regret

n∑
t=1

`t(at)−
n∑

t=1

`t(a) ≤
n∑

t=1

1

ηt
DR(at , ãt+1) ≤ 2

n∑
t=1

‖∇`t(at)‖2
∗∑t

s=1 σs
.

Notice: ηt is used to update at to at+1, so it uses only past information.
see, e.g., [B., Hazan, Rakhlin, 2007]

96 / 132

Regularization methods: adapting to strong convexity

Proof idea

As before (when σt was constant), we have

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(
1

ηt
− 1

ηt−1
− σt

2

)
DR(a, at)

+

(
1

η1
− σ1

2

)
DR(a, a1).

And the choice of ηt eliminates the second and third terms.

97 / 132

Regularization methods: adapting to strong convexity

Proof idea

As before (when σt was constant), we have

n∑
t=1

(`t(at)− `t(a))

≤
n∑

t=1

1

ηt
DR(at , ãt+1) +

n∑
t=2

(
1

ηt
− 1

ηt−1
− σt

2

)
DR(a, at)

+

(
1

η1
− σ1

2

)
DR(a, a1).

And the choice of ηt eliminates the second and third terms.

97 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Work with ˜̀
t(·) := `t(·) + λtg(·) (where g is strongly convex wrt R).

If the `t are σt-strongly convex wrt R, then ˜̀
t are (σt + λt)-strongly

convex.

Using mirror descent for the ˜̀
ts, we choose steps

ηt =
2∑t

s=1(σs + λs)
.

98 / 132

Regularization methods: adapting to strong convexity

Adaptive regularization

Work with ˜̀
t(·) := `t(·) + λtg(·) (where g is strongly convex wrt R).

If the `t are σt-strongly convex wrt R, then ˜̀
t are (σt + λt)-strongly

convex. Using mirror descent for the ˜̀
ts, we choose steps

ηt =
2∑t

s=1(σs + λs)
.

98 / 132

Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

n∑
t=1

`t(at)− inf
a∈Rd

n∑
t=1

`t(a) ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

‖∇˜̀
t(at)‖2

∗∑t
s=1(σs + λs)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

,

where ‖∇`t(at)‖∗ ≤ Gt and ‖∇g(at)‖∗ ≤ B.

99 / 132

Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

n∑
t=1

`t(at)− inf
a∈Rd

n∑
t=1

`t(a) ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

‖∇˜̀
t(at)‖2

∗∑t
s=1(σs + λs)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

,

where ‖∇`t(at)‖∗ ≤ Gt and ‖∇g(at)‖∗ ≤ B.

99 / 132

Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

n∑
t=1

`t(at)− inf
a∈Rd

n∑
t=1

`t(a) ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

‖∇˜̀
t(at)‖2

∗∑t
s=1(σs + λs)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

,

where ‖∇`t(at)‖∗ ≤ Gt and ‖∇g(at)‖∗ ≤ B.

99 / 132

Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

n∑
t=1

`t(at)− inf
a∈Rd

n∑
t=1

`t(a) ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(
˜̀
t(at)− ˜̀

t(a)
)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

‖∇˜̀
t(at)‖2

∗∑t
s=1(σs + λs)

≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

,

where ‖∇`t(at)‖∗ ≤ Gt and ‖∇g(at)‖∗ ≤ B.

99 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

1 How does R̃n depend on the λts?

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

3 Can we choose λt online to obtain the best trade-off between these
two terms?

100 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

1 How does R̃n depend on the λts?

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

3 Can we choose λt online to obtain the best trade-off between these
two terms?

100 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

1 How does R̃n depend on the λts?

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

3 Can we choose λt online to obtain the best trade-off between these
two terms?

100 / 132

Regularization methods: adapting to strong convexity

And the best choice of λ1, . . . , λn is good here in the convex case:

Example

Assume σt ≥ 0. Choose

λ1 =

√∑n
t=1 G

2
t

B2 + D2

and λ2 = · · · = λn = 0.

Then the bound gives

Rn ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

= O

√√√√(B2 + D2)
n∑

t=1

G 2
t

 .

If Gt ≤ G , this is Rn = O
(√

B2 + D2G
√
n
)

.

101 / 132

Regularization methods: adapting to strong convexity

And the best choice of λ1, . . . , λn is good here in the convex case:

Example

Assume σt ≥ 0. Choose

λ1 =

√∑n
t=1 G

2
t

B2 + D2

and λ2 = · · · = λn = 0. Then the bound gives

Rn ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

= O

√√√√(B2 + D2)
n∑

t=1

G 2
t

 .

If Gt ≤ G , this is Rn = O
(√

B2 + D2G
√
n
)

.

101 / 132

Regularization methods: adapting to strong convexity

And the best choice of λ1, . . . , λn is good here in the convex case:

Example

Assume σt ≥ 0. Choose

λ1 =

√∑n
t=1 G

2
t

B2 + D2

and λ2 = · · · = λn = 0. Then the bound gives

Rn ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

= O

√√√√(B2 + D2)
n∑

t=1

G 2
t

 .

If Gt ≤ G , this is Rn = O
(√

B2 + D2G
√
n
)

.
101 / 132

Regularization methods: adapting to strong convexity

And the best choice of λ1, . . . , λn is good here in the strongly convex case:

Example

Assume σt ≥ σ and Gt ≤ G . Choose λ1 = · · · = λn = 0.

Then the
bound gives

Rn ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

= O

(
G 2

σ
log n

)
.

102 / 132

Regularization methods: adapting to strong convexity

And the best choice of λ1, . . . , λn is good here in the strongly convex case:

Example

Assume σt ≥ σ and Gt ≤ G . Choose λ1 = · · · = λn = 0. Then the
bound gives

Rn ≤ D2
n∑

t=1

λt + 2
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

= O

(
G 2

σ
log n

)
.

102 / 132

Regularization methods: adapting to strong convexity

We can also obtain a spectrum of rates with the best choice of λ1, . . . , λn:

Example

Suppose σt = t−α and Gt ≤ G . Then the bound gives

Rn =

O(log n) if α = 0,

O(nα) if 0 < α ≤ 1/2,

O(
√
n) if α > 1/2.

(Choose λ1 = nα and λ2 = · · ·λn = 0.)

103 / 132

Regularization methods: adapting to strong convexity

We can also obtain a spectrum of rates with the best choice of λ1, . . . , λn:

Example

Suppose σt = t−α and Gt ≤ G . Then the bound gives

Rn =

O(log n) if α = 0,

O(nα) if 0 < α ≤ 1/2,

O(
√
n) if α > 1/2.

(Choose λ1 = nα and λ2 = · · ·λn = 0.)

103 / 132

Regularization methods: adapting to strong convexity

We can also obtain a spectrum of rates with the best choice of λ1, . . . , λn:

Example

Suppose σt = t−α and Gt ≤ G . Then the bound gives

Rn =

O(log n) if α = 0,

O(nα) if 0 < α ≤ 1/2,

O(
√
n) if α > 1/2.

(Choose λ1 = nα and λ2 = · · ·λn = 0.)

103 / 132

Regularization methods: adapting to strong convexity

Rn ≤ D2
n∑

t=1

λt + R̃n(λ1, . . . , λn).

1 How does R̃n depend on the λts?

2 Does the best trade-off between the two terms above ensure the
optimal rates for convex and strongly convex `t?

3 Can we choose λt online to obtain the best trade-off between these
two terms?

104 / 132

Regularization methods: adapting to strong convexity

Theorem

Choosing

λt =
1

2

√√√√(t−1∑

s=1

(σs + λs) + σt

)2

+
16G 2

t

D2 + B2
−

(
t−1∑
s=1

(σs + λs) + σt

)
with this regularized mirror descent strategy

gives regret

Rn = O

(
inf

λ1,...,λn

(
(D2 + B2)

n∑
t=1

λt +
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

))
.

[B., Hazan, Rakhlin, 2007]

105 / 132

Regularization methods: adapting to strong convexity

Theorem

Choosing

λt =
1

2

√√√√(t−1∑

s=1

(σs + λs) + σt

)2

+
16G 2

t

D2 + B2
−

(
t−1∑
s=1

(σs + λs) + σt

)
with this regularized mirror descent strategy gives regret

Rn = O

(
inf

λ1,...,λn

(
(D2 + B2)

n∑
t=1

λt +
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

))
.

[B., Hazan, Rakhlin, 2007]

105 / 132

Regularization methods: adapting to strong convexity

Notice that we’re using information about each `t only after we see it.

Compare this to the simple gradient method that we saw earlier,
which chooses η = D/(G

√
n). Here, we don’t need to know the

upper bound G (or n): we choose λt as a function of information
about past losses, and we can compete with the optimal bounds.

For instance, for the case of convex functions that satisfy a gradient
dual norm bound G ,

Rn = O
(√

B2 + D2G
√
n
)
.

(And similarly for the stronger version that replaces G by the rms
dual norm of the gradients.)

106 / 132

Regularization methods: adapting to strong convexity

Notice that we’re using information about each `t only after we see it.

Compare this to the simple gradient method that we saw earlier,
which chooses η = D/(G

√
n). Here, we don’t need to know the

upper bound G (or n): we choose λt as a function of information
about past losses, and we can compete with the optimal bounds.

For instance, for the case of convex functions that satisfy a gradient
dual norm bound G ,

Rn = O
(√

B2 + D2G
√
n
)
.

(And similarly for the stronger version that replaces G by the rms
dual norm of the gradients.)

106 / 132

Regularization methods: adapting to strong convexity

Notice that we’re using information about each `t only after we see it.

Compare this to the simple gradient method that we saw earlier,
which chooses η = D/(G

√
n). Here, we don’t need to know the

upper bound G (or n): we choose λt as a function of information
about past losses, and we can compete with the optimal bounds.

For instance, for the case of convex functions that satisfy a gradient
dual norm bound G ,

Rn = O
(√

B2 + D2G
√
n
)
.

(And similarly for the stronger version that replaces G by the rms
dual norm of the gradients.)

106 / 132

Regularization methods: adapting to strong convexity

Proof Idea

We prove that balancing the two terms is near-optimal: Consider

Hn({λt}) :=
n∑

t=1

λt +
n∑

t=1

Ct∑t
s=1(σs + λs)

.

Then choosing λt to solve the quadratic equation

λt =
Ct∑t

s=1(σs + λs)

ensures that

Hn({λt}) ≤ 2 inf
{λ∗t }

Hn({λ∗t }).

107 / 132

Regularization methods: adapting to strong convexity

Proof Idea

There is an inductive proof of this balancing result, which considers
separately the cases

t∑
s=1

λs <

t∑
s=1

λ∗s

and
t∑

s=1

λs >
t∑

s=1

λ∗s ,

and exploits the fact that the two terms of Ht are monotonic in
∑t

s=1 λs .
And the choice of λt in the theorem is the positive solution to the
appropriate quadratic equation.

108 / 132

Regularization methods: adapting to strong convexity

Theorem

Choosing

λt =
1

2

√√√√(t−1∑

s=1

(σs + λs) + σt

)2

+
16G 2

t

D2 + B2
−

(
t−1∑
s=1

(σs + λs) + σt

)
with this regularized mirror descent strategy gives regret

Rn = O

(
inf

λ1,...,λn

(
(D2 + B2)

n∑
t=1

λt +
n∑

t=1

(Gt + λtB)2∑t
s=1(σs + λs)

))
.

109 / 132

Outline

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

Strong convexity (Adaptive Gradient)
Diagonal regularizers (AdaGrad)

3 Minimax strategies

110 / 132

Regularization methods: Adaptive regularization

We considered mirror descent where we added an adaptively chosen
component of a regularizer g that is strongly convex wrt R. To simplify,
assume g = R.

We can view this in two ways:

at+1 = arg min
a∈A

(
t∑

s=1

ηs∇(`s + λsR)(as) · (a− at) + R(a)

)
= arg min

a∈A
(ηt∇(`t + λtR)(at) · (a− at) + DR(a, ãt)) .

Rather than minimizing the sum of the linearization of `t + λtR plus the
regularizer R, we could instead minimize the linearization of `t plus the
regularizer (1 + λt)R:

at+1 = arg min
a∈A

(
ηt∇`t(at) · (a− at) + D(1+λt)R(a, ãt)

)
.

111 / 132

Regularization methods: Adaptive regularization

We considered mirror descent where we added an adaptively chosen
component of a regularizer g that is strongly convex wrt R. To simplify,
assume g = R. We can view this in two ways:

at+1 = arg min
a∈A

(
t∑

s=1

ηs∇(`s + λsR)(as) · (a− at) + R(a)

)

= arg min
a∈A

(ηt∇(`t + λtR)(at) · (a− at) + DR(a, ãt)) .

Rather than minimizing the sum of the linearization of `t + λtR plus the
regularizer R, we could instead minimize the linearization of `t plus the
regularizer (1 + λt)R:

at+1 = arg min
a∈A

(
ηt∇`t(at) · (a− at) + D(1+λt)R(a, ãt)

)
.

111 / 132

Regularization methods: Adaptive regularization

We considered mirror descent where we added an adaptively chosen
component of a regularizer g that is strongly convex wrt R. To simplify,
assume g = R. We can view this in two ways:

at+1 = arg min
a∈A

(
t∑

s=1

ηs∇(`s + λsR)(as) · (a− at) + R(a)

)
= arg min

a∈A
(ηt∇(`t + λtR)(at) · (a− at) + DR(a, ãt)) .

Rather than minimizing the sum of the linearization of `t + λtR plus the
regularizer R, we could instead minimize the linearization of `t plus the
regularizer (1 + λt)R:

at+1 = arg min
a∈A

(
ηt∇`t(at) · (a− at) + D(1+λt)R(a, ãt)

)
.

111 / 132

Regularization methods: Adaptive regularization

We considered mirror descent where we added an adaptively chosen
component of a regularizer g that is strongly convex wrt R. To simplify,
assume g = R. We can view this in two ways:

at+1 = arg min
a∈A

(
t∑

s=1

ηs∇(`s + λsR)(as) · (a− at) + R(a)

)
= arg min

a∈A
(ηt∇(`t + λtR)(at) · (a− at) + DR(a, ãt)) .

Rather than minimizing the sum of the linearization of `t + λtR plus the
regularizer R, we could instead minimize the linearization of `t plus the
regularizer (1 + λt)R:

at+1 = arg min
a∈A

(
ηt∇`t(at) · (a− at) + D(1+λt)R(a, ãt)

)
.

111 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),

with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or

with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Adaptive regularization: Rt(a) = (1 + λt)R(a).

We could be more ambitious, and consider more than a single
parameter (λt).

For example, generalizing the gradient case (where R(a) = ‖a‖2
2), we

could consider
Rt(a) = a>Mta,

with Mt = (1 + λt)I (as before),
with Mt a positive diagonal matrix, or
with Mt � 0 (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.

112 / 132

Regularization methods: Adaptive regularization

Consider the following version of mirror descent (also called ‘proximal
gradient’: stay close to at instead of ãt):

at+1 = arg min
a∈A

(η∇`t(at) · a + DRt (a, at)) .

Similar arguments give the following theorem.

Theorem

For Rt strongly-convex wrt some norm ‖ · ‖Rt ,

Rn ≤
1

η
DR1(a∗, a1) +

1

η

n−1∑
t=1

(
DRt+1(a, at+1)− DRt (a, at+1)

)
+
η

2

n∑
t=1

‖∇`t(at)‖2
Rt ,∗ .

113 / 132

Regularization methods: Adaptive regularization

Consider the following version of mirror descent (also called ‘proximal
gradient’: stay close to at instead of ãt):

at+1 = arg min
a∈A

(η∇`t(at) · a + DRt (a, at)) .

Similar arguments give the following theorem.

Theorem

For Rt strongly-convex wrt some norm ‖ · ‖Rt ,

Rn ≤
1

η
DR1(a∗, a1) +

1

η

n−1∑
t=1

(
DRt+1(a, at+1)− DRt (a, at+1)

)
+
η

2

n∑
t=1

‖∇`t(at)‖2
Rt ,∗ .

113 / 132

Regularization methods: Adaptive regularization

Example

For Rt(a) = a>Mta with Mt a positive diagonal matrix, say,
Mt = diag(st), we have

DRt (a, b) = (a− b)>Mt(a− b) =
∑
i

(ai − bi)
2st,i .

And DRt is strongly convex wrt the norm ‖a‖2
Rt

= 2a>Mta. Also

‖g‖2
Rt ,∗ =

1

2
g>M−1

t g . =
1

2

∑
i

g2
i

st,i
.

114 / 132

Regularization methods: Adaptive regularization

Example

For Rt(a) = a>Mta with Mt a positive diagonal matrix, say,
Mt = diag(st), we have

DRt (a, b) = (a− b)>Mt(a− b) =
∑
i

(ai − bi)
2st,i .

And DRt is strongly convex wrt the norm ‖a‖2
Rt

= 2a>Mta.

Also

‖g‖2
Rt ,∗ =

1

2
g>M−1

t g . =
1

2

∑
i

g2
i

st,i
.

114 / 132

Regularization methods: Adaptive regularization

Example

For Rt(a) = a>Mta with Mt a positive diagonal matrix, say,
Mt = diag(st), we have

DRt (a, b) = (a− b)>Mt(a− b) =
∑
i

(ai − bi)
2st,i .

And DRt is strongly convex wrt the norm ‖a‖2
Rt

= 2a>Mta. Also

‖g‖2
Rt ,∗ =

1

2
g>M−1

t g . =
1

2

∑
i

g2
i

st,i
.

114 / 132

Regularization methods: Adaptive regularization

Example

Applying the theorem, the regret satisfies

Rn ≤
1

η
DR1(a∗, a1) +

1

η

n−1∑
t=1

(
DRt+1(a, at+1)− DRt (a, at+1)

)
+
η

2

n∑
t=1

‖∇`t(at)‖2
Rt ,∗

≤ 1

η
DR1(a∗, a1) +

1

η

n−1∑
t=1

max
i

(a∗i − at+1,i)
2‖st+1 − st‖1

+
η

4

n∑
t=1

∇`t(at)> diag(st)
−1∇`t(at).

115 / 132

Regularization methods: Adaptive regularization

Example

Applying the theorem, the regret satisfies

Rn ≤
1

η
DR1(a∗, a1) +

1

η

n−1∑
t=1

(
DRt+1(a, at+1)− DRt (a, at+1)

)
+
η

2

n∑
t=1

‖∇`t(at)‖2
Rt ,∗

≤ 1

η
DR1(a∗, a1) +

1

η

n−1∑
t=1

max
i

(a∗i − at+1,i)
2‖st+1 − st‖1

+
η

4

n∑
t=1

∇`t(at)> diag(st)
−1∇`t(at).

115 / 132

Regularization methods: Adaptive regularization

Adagrad [Duchi, Hazan, Singer, 2011]

If we insist that the regularization increases (that is, the components of st
are monotonically non-decreasing with t), we can choose

st,i =

√√√√ t∑
s=1

∇`t(at)2
i ,

η = D∞ := sup
a∗,at
‖a∗ − at‖∞,

to give an adaptivity result (versus constant s):

Rn ≤ c min
η,s

(
D2
∞
η

s>1 + η

n∑
t=1

∇`t(at)> diag(s)−1∇`t(at)

)

= O

D∞

d∑
i=1

√√√√ n∑
t=1

∇`t(at)2
i

 .

116 / 132

Regularization methods: Adaptive regularization

Adagrad [Duchi, Hazan, Singer, 2011]

If we insist that the regularization increases (that is, the components of st
are monotonically non-decreasing with t), we can choose

st,i =

√√√√ t∑
s=1

∇`t(at)2
i ,

η = D∞ := sup
a∗,at
‖a∗ − at‖∞,

to give an adaptivity result (versus constant s):

Rn ≤ c min
η,s

(
D2
∞
η

s>1 + η

n∑
t=1

∇`t(at)> diag(s)−1∇`t(at)

)

= O

D∞

d∑
i=1

√√√√ n∑
t=1

∇`t(at)2
i

 .

116 / 132

Regularization methods: Adaptive regularization

Adagrad [Duchi, Hazan, Singer, 2011]

If we insist that the regularization increases (that is, the components of st
are monotonically non-decreasing with t), we can choose

st,i =

√√√√ t∑
s=1

∇`t(at)2
i ,

η = D∞ := sup
a∗,at
‖a∗ − at‖∞,

to give an adaptivity result (versus constant s):

Rn ≤ c min
η,s

(
D2
∞
η

s>1 + η

n∑
t=1

∇`t(at)> diag(s)−1∇`t(at)

)

= O

D∞

d∑
i=1

√√√√ n∑
t=1

∇`t(at)2
i

 .

116 / 132

Regularization methods: Adaptive regularization

Adagrad [Duchi, Hazan, Singer, 2011]

If we insist that the regularization increases (that is, the components of st
are monotonically non-decreasing with t), we can choose

st,i =

√√√√ t∑
s=1

∇`t(at)2
i ,

η = D∞ := sup
a∗,at
‖a∗ − at‖∞,

to give an adaptivity result (versus constant s):

Rn ≤ c min
η,s

(
D2
∞
η

s>1 + η

n∑
t=1

∇`t(at)> diag(s)−1∇`t(at)

)

= O

D∞

d∑
i=1

√√√√ n∑
t=1

∇`t(at)2
i

 .

116 / 132

Regularization methods: Adaptive regularization

Adagrad

The gradient term might be much smaller than
√
nd .

For instance, if the gradients are sparse and bounded (for instance, for
logistic regression with sparse {0, 1}-valued features), then we expect
the gradient terms to be much smaller.
For features that appear more frequently, the st,i will be larger
(learning rate slower in those directions).

More generally, for coordinate directions with large gradients, we can
make the corresponding component of s large (to keep things more
stable in those directions), and for coordinate directions with small
gradients, we can use less regularization.

117 / 132

Regularization methods: Adaptive regularization

Adagrad

The gradient term might be much smaller than
√
nd .

For instance, if the gradients are sparse and bounded (for instance, for
logistic regression with sparse {0, 1}-valued features), then we expect
the gradient terms to be much smaller.
For features that appear more frequently, the st,i will be larger
(learning rate slower in those directions).

More generally, for coordinate directions with large gradients, we can
make the corresponding component of s large (to keep things more
stable in those directions), and for coordinate directions with small
gradients, we can use less regularization.

117 / 132

Regularization methods: Adaptive regularization

Adagrad

The gradient term might be much smaller than
√
nd .

For instance, if the gradients are sparse and bounded (for instance, for
logistic regression with sparse {0, 1}-valued features), then we expect
the gradient terms to be much smaller.
For features that appear more frequently, the st,i will be larger
(learning rate slower in those directions).

More generally, for coordinate directions with large gradients, we can
make the corresponding component of s large (to keep things more
stable in those directions), and for coordinate directions with small
gradients, we can use less regularization.

117 / 132

Regularization methods: Adaptive regularization

Adagrad

The gradient term might be much smaller than
√
nd .

For instance, if the gradients are sparse and bounded (for instance, for
logistic regression with sparse {0, 1}-valued features), then we expect
the gradient terms to be much smaller.
For features that appear more frequently, the st,i will be larger
(learning rate slower in those directions).

More generally, for coordinate directions with large gradients, we can
make the corresponding component of s large (to keep things more
stable in those directions), and for coordinate directions with small
gradients, we can use less regularization.

117 / 132

Regularization methods: Adaptive regularization

Adagrad

A similar approach can be applied to matrices, with

Mt =

(∑t
s=1∇`t(at)∇`t(at)>

)1/2

tr
(∑t

s=1∇`t(at)∇`t(at)>
)1/2

playing the role of st .

118 / 132

Outline

1 Binary prediction
2 General online convex

Empirical minimization fails
Gradient algorithm
A regularization viewpoint
Bregman divergence
Properties of regularization
Linearization
Mirror descent
Regret bounds
Strongly convex losses
Adaptive regularization

3 Minimax strategies

119 / 132

Outline

1 Binary prediction

2 General online convex
3 Minimax strategies

Convex and strongly convex losses
The linear game

120 / 132

Convex and strongly convex losses

The convex and linear games

For a convex set A ⊂ Rd and a sequence G1, . . . ,Gn ≥ 0, define
Gconv (A, {Gt}) as the online convex optimization game with constraints
at ∈ A and

`t ∈ {` : ‖∇`(at)‖ ≤ Gt , ` convex} .

Define Glin (A, {Gt}) as the online convex optimization game with
constraints at ∈ A and

`t ∈
{
` : `(a) = v>(a− at) + c , v ∈ Rd , c ∈ R, ‖v‖ ≤ Gt

}
.

The adversary’s constraints depend on the player’s choices.

121 / 132

Convex and strongly convex losses

The convex and linear games

For a convex set A ⊂ Rd and a sequence G1, . . . ,Gn ≥ 0, define
Gconv (A, {Gt}) as the online convex optimization game with constraints
at ∈ A and

`t ∈ {` : ‖∇`(at)‖ ≤ Gt , ` convex} .

Define Glin (A, {Gt}) as the online convex optimization game with
constraints at ∈ A and

`t ∈
{
` : `(a) = v>(a− at) + c , v ∈ Rd , c ∈ R, ‖v‖ ≤ Gt

}
.

The adversary’s constraints depend on the player’s choices.

121 / 132

Convex and strongly convex losses

The convex and linear games

For a convex set A ⊂ Rd and a sequence G1, . . . ,Gn ≥ 0, define
Gconv (A, {Gt}) as the online convex optimization game with constraints
at ∈ A and

`t ∈ {` : ‖∇`(at)‖ ≤ Gt , ` convex} .

Define Glin (A, {Gt}) as the online convex optimization game with
constraints at ∈ A and

`t ∈
{
` : `(a) = v>(a− at) + c , v ∈ Rd , c ∈ R, ‖v‖ ≤ Gt

}
.

The adversary’s constraints depend on the player’s choices.

121 / 132

Convex and strongly convex losses

The strongly convex and quadratic games

For a convex set A ⊂ Rd and sequences G1, . . . ,Gn ≥ 0 and
σ1, . . . , σn ≥ 0, define Gst−conv (A, {Gt}, {σt}) as the online convex
optimization game with constraints at ∈ A and

`t ∈
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

Define Gquad (A, {Gt}, {σt}) as the online convex optimization game with
constraints at ∈ A and

`t ∈
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , v ∈ Rd , c ∈ R, ‖v‖ ≤ Gt

}
.

Again, the adversary’s constraints depend on the player’s choices.

122 / 132

Convex and strongly convex losses

The strongly convex and quadratic games

For a convex set A ⊂ Rd and sequences G1, . . . ,Gn ≥ 0 and
σ1, . . . , σn ≥ 0, define Gst−conv (A, {Gt}, {σt}) as the online convex
optimization game with constraints at ∈ A and

`t ∈
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

Define Gquad (A, {Gt}, {σt}) as the online convex optimization game with
constraints at ∈ A and

`t ∈
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , v ∈ Rd , c ∈ R, ‖v‖ ≤ Gt

}
.

Again, the adversary’s constraints depend on the player’s choices.

122 / 132

Convex and strongly convex losses

The strongly convex and quadratic games

For a convex set A ⊂ Rd and sequences G1, . . . ,Gn ≥ 0 and
σ1, . . . , σn ≥ 0, define Gst−conv (A, {Gt}, {σt}) as the online convex
optimization game with constraints at ∈ A and

`t ∈
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

Define Gquad (A, {Gt}, {σt}) as the online convex optimization game with
constraints at ∈ A and

`t ∈
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , v ∈ Rd , c ∈ R, ‖v‖ ≤ Gt

}
.

Again, the adversary’s constraints depend on the player’s choices.

122 / 132

Convex and strongly convex losses

Theorem

For fixed A, {Gt} and {σt}, we have

Vn (Gst−conv (A, {Gt}, {σt})) = Vn (Gquad (A, {Gt}, {σt})) ,

Vn (Gconv (A, {Gt})) = Vn (Glin (A, {Gt})) .

[Abernethy, B., Rakhlin, Tewari, 2008]

123 / 132

Convex and strongly convex losses

Theorem

For fixed A, {Gt} and {σt}, we have

Vn (Gst−conv (A, {Gt}, {σt})) = Vn (Gquad (A, {Gt}, {σt})) ,

Vn (Gconv (A, {Gt})) = Vn (Glin (A, {Gt})) .

[Abernethy, B., Rakhlin, Tewari, 2008]

123 / 132

Convex and strongly convex losses

Lemma

Fix sets N1, . . . ,Nn and M ⊆ Nt .
Suppose that for all `t ∈ Nt and at ∈ A there is an `∗t ∈ M such that
for all a1, `1, . . . , at−1, `t−1, and at+1, `t+1, . . . , an, `n,

Rn(a1, `1, . . . , at , `t , . . . , an, `n) ≤ Rn(a1, `1, . . . , at , `
∗
t , . . . , an, `n).

Then

inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈Nt

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n)

= inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈M

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n).

(Because M ⊂ Nt , and it contains `∗t that’s always at least as good as `t .)

124 / 132

Convex and strongly convex losses

Lemma

Fix sets N1, . . . ,Nn and M ⊆ Nt .
Suppose that for all `t ∈ Nt and at ∈ A there is an `∗t ∈ M such that
for all a1, `1, . . . , at−1, `t−1, and at+1, `t+1, . . . , an, `n,

Rn(a1, `1, . . . , at , `t , . . . , an, `n) ≤ Rn(a1, `1, . . . , at , `
∗
t , . . . , an, `n).

Then

inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈Nt

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n)

= inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈M

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n).

(Because M ⊂ Nt , and it contains `∗t that’s always at least as good as `t .)

124 / 132

Convex and strongly convex losses

Lemma

Fix sets N1, . . . ,Nn and M ⊆ Nt .
Suppose that for all `t ∈ Nt and at ∈ A there is an `∗t ∈ M such that
for all a1, `1, . . . , at−1, `t−1, and at+1, `t+1, . . . , an, `n,

Rn(a1, `1, . . . , at , `t , . . . , an, `n) ≤ Rn(a1, `1, . . . , at , `
∗
t , . . . , an, `n).

Then

inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈Nt

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n)

= inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈M

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n).

(Because M ⊂ Nt , and it contains `∗t that’s always at least as good as `t .)

124 / 132

Convex and strongly convex losses

Lemma

Fix sets N1, . . . ,Nn and M ⊆ Nt .
Suppose that for all `t ∈ Nt and at ∈ A there is an `∗t ∈ M such that
for all a1, `1, . . . , at−1, `t−1, and at+1, `t+1, . . . , an, `n,

Rn(a1, `1, . . . , at , `t , . . . , an, `n) ≤ Rn(a1, `1, . . . , at , `
∗
t , . . . , an, `n).

Then

inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈Nt

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n)

= inf
a1∈A

sup
`1∈N1

· · · inf
at∈A

sup
`t∈M

· · · inf
an∈A

sup
`n∈Nn

Rn(a1, `1, . . . , an, `n).

(Because M ⊂ Nt , and it contains `∗t that’s always at least as good as `t .)

124 / 132

Convex and strongly convex losses

Proof idea

For the strongly convex case, define

M :=
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , ‖v‖ ≤ Gt

}
,

and notice that

M ⊆ Nt :=
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

For `t ∈ Nt , define `∗t as

`∗t (a) = `t(at) +∇`t(at)>(a− at) +
σt
2
‖a− at‖2.

Notice that `∗t ∈ M, since `∗t (at) = `t(at) and ∇`t(at) = ∇`∗t (at). Also,
`t(a) ≥ `∗t (a) for all a, so M and Nt satisfy the conditions of the lemma.
The convex/linear case uses a similar argument.

125 / 132

Convex and strongly convex losses

Proof idea

For the strongly convex case, define

M :=
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , ‖v‖ ≤ Gt

}
,

and notice that

M ⊆ Nt :=
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

For `t ∈ Nt , define `∗t as

`∗t (a) = `t(at) +∇`t(at)>(a− at) +
σt
2
‖a− at‖2.

Notice that `∗t ∈ M, since `∗t (at) = `t(at) and ∇`t(at) = ∇`∗t (at). Also,
`t(a) ≥ `∗t (a) for all a, so M and Nt satisfy the conditions of the lemma.
The convex/linear case uses a similar argument.

125 / 132

Convex and strongly convex losses

Proof idea

For the strongly convex case, define

M :=
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , ‖v‖ ≤ Gt

}
,

and notice that

M ⊆ Nt :=
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

For `t ∈ Nt , define `∗t as

`∗t (a) = `t(at) +∇`t(at)>(a− at) +
σt
2
‖a− at‖2.

Notice that `∗t ∈ M, since `∗t (at) = `t(at) and ∇`t(at) = ∇`∗t (at). Also,
`t(a) ≥ `∗t (a) for all a, so M and Nt satisfy the conditions of the lemma.
The convex/linear case uses a similar argument.

125 / 132

Convex and strongly convex losses

Proof idea

For the strongly convex case, define

M :=
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , ‖v‖ ≤ Gt

}
,

and notice that

M ⊆ Nt :=
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

For `t ∈ Nt , define `∗t as

`∗t (a) = `t(at) +∇`t(at)>(a− at) +
σt
2
‖a− at‖2.

Notice that `∗t ∈ M, since `∗t (at) = `t(at) and ∇`t(at) = ∇`∗t (at).

Also,
`t(a) ≥ `∗t (a) for all a, so M and Nt satisfy the conditions of the lemma.
The convex/linear case uses a similar argument.

125 / 132

Convex and strongly convex losses

Proof idea

For the strongly convex case, define

M :=
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , ‖v‖ ≤ Gt

}
,

and notice that

M ⊆ Nt :=
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

For `t ∈ Nt , define `∗t as

`∗t (a) = `t(at) +∇`t(at)>(a− at) +
σt
2
‖a− at‖2.

Notice that `∗t ∈ M, since `∗t (at) = `t(at) and ∇`t(at) = ∇`∗t (at). Also,
`t(a) ≥ `∗t (a) for all a, so M and Nt satisfy the conditions of the lemma.

The convex/linear case uses a similar argument.

125 / 132

Convex and strongly convex losses

Proof idea

For the strongly convex case, define

M :=
{
` : `(a) = v>(a− at) +

σt
2
‖a− at‖2 + c , ‖v‖ ≤ Gt

}
,

and notice that

M ⊆ Nt :=
{
` : ‖∇`(at)‖ ≤ Gt , ∇2` � σt I

}
.

For `t ∈ Nt , define `∗t as

`∗t (a) = `t(at) +∇`t(at)>(a− at) +
σt
2
‖a− at‖2.

Notice that `∗t ∈ M, since `∗t (at) = `t(at) and ∇`t(at) = ∇`∗t (at). Also,
`t(a) ≥ `∗t (a) for all a, so M and Nt satisfy the conditions of the lemma.
The convex/linear case uses a similar argument.

125 / 132

Outline

1 Binary prediction

2 General online convex
3 Minimax strategies

Convex and strongly convex losses
The linear game

126 / 132

The linear game

Theorem

For A = {a ∈ Rd : ‖a‖ ≤ r} with d ≥ 3, and a fixed sequence {Gt},

Vn (Gconv (A, {Gt})) = Vn (Glin (A, {Gt}))

= r

√√√√ n∑
t=1

G 2
t .

[Abernethy, B., Rakhlin, Tewari, 2008]

127 / 132

The linear game

Proof

1 Wlog, we can assume r = 1 and `t(a) = w>a with ‖w‖ ≤ Gt .

2 Writing Wt :=
∑t

s=1 ws ,

min
a∈A

n∑
t=1

`t(a) = −‖Wn‖.

128 / 132

The linear game

Proof

1 Wlog, we can assume r = 1 and `t(a) = w>a with ‖w‖ ≤ Gt .

2 Writing Wt :=
∑t

s=1 ws ,

min
a∈A

n∑
t=1

`t(a) = −‖Wn‖.

128 / 132

The linear game

Proof
3 The adversary can ensure

Rn ≥

√√√√ n∑
t=1

G 2
t ,

by playing wt satisfying

w>t at = 0, w>t Wt−1 = 0, ‖wt‖ = Gt .

To see this, notice that this choice ensures
∑n

t=1 `t(at) = 0 and so
Rn = ‖Wn‖. But

‖Wt‖ = ‖Wt−1 + wt‖ =
√
‖Wt−1‖2 + ‖wt‖2 =

√√√√ t∑
s=1

G 2
s .

129 / 132

The linear game

Proof
4 The adversary can ensure

Rn ≥

√√√√ n∑
t=1

G 2
t ,

by playing wt satisfying

w>t at = 0, w>t Wt−1 = 0, ‖wt‖ = Gt .

To see this, notice that this choice ensures
∑n

t=1 `t(at) = 0 and so
Rn = ‖Wn‖.

But

‖Wt‖ = ‖Wt−1 + wt‖ =
√
‖Wt−1‖2 + ‖wt‖2 =

√√√√ t∑
s=1

G 2
s .

129 / 132

The linear game

Proof
5 The adversary can ensure

Rn ≥

√√√√ n∑
t=1

G 2
t ,

by playing wt satisfying

w>t at = 0, w>t Wt−1 = 0, ‖wt‖ = Gt .

To see this, notice that this choice ensures
∑n

t=1 `t(at) = 0 and so
Rn = ‖Wn‖. But

‖Wt‖ = ‖Wt−1 + wt‖ =
√
‖Wt−1‖2 + ‖wt‖2 =

√√√√ t∑
s=1

G 2
s .

129 / 132

The linear game

Proof
6 If the player defines W0 = 0 and chooses

at =
−Wt−1√

‖Wt−1‖2 +
∑n

s=t G
2
s

,

then

Rn ≤

√√√√ n∑
t=1

G 2
t .

130 / 132

The linear game

Proof

This is equivalent to showing that, for this at , no matter what choices of
wt the adversary makes,

n∑
t=1

w>t at + ‖Wn‖ ≤

√√√√ n∑
t=1

G 2
t .

The proof is by a backward induction, and involves a 2-dimensional
geometric argument (since at is aligned with Wt−1, we need only consider
the role of wt).

131 / 132

The linear game

Proof

This is equivalent to showing that, for this at , no matter what choices of
wt the adversary makes,

n∑
t=1

w>t at + ‖Wn‖ ≤

√√√√ n∑
t=1

G 2
t .

The proof is by a backward induction, and involves a 2-dimensional
geometric argument (since at is aligned with Wt−1, we need only consider
the role of wt).

131 / 132

Outline

1 Binary prediction

2 General online convex
3 Minimax strategies

Convex and strongly convex losses
The linear game

132 / 132

