Topics in Prediction and Learning

Lecture 1:
Optimal Universal Prediction—Quadratic Loss

Peter Bartlett

Computer Science and Statistics
University of California at Berkeley

Mathematical Sciences
Queensland University of Technology

27 February-9 March, 2017
CREST, ENSAE



Online Prediction as a Zero-Sum Game

A repeated game:
At round t:




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ). G




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:
© Player chooses prediction a; € A. I
@ Adversary chooses outcome y; € ). G

© Player incurs loss £(ay, yt).

g(atvyt) = Hat - ,Vt”2‘



Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss £(ay, yt).




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss £(ay, yt).




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss £(ay, yt).




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss £(ay, yt).




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss £(ay, yt).




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss £(ay, yt).




Online Prediction as a Zero-Sum Game

A repeated game: YD
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret:

T

-
Z Uar, yt) — ;2; Z (a, yt).
t=1

t=1




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player's aim

Minimize regret wrt comparison C:

.
Zﬁ(at,yt inf Zz(gt,yt).




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

o A = simplex
o calibration




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

o A = simplex
e calibration
e prediction with expert
advice




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

o A = simplex
o calibration
e prediction with expert
advice ( linear)




Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

o A = simplex

o calibration

e prediction with expert
advice ( linear)

e portfolio optimization




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player's aim

Minimize regret wrt comparison C:

.
Zﬁ(at,yt inf Zz(gt,yt).

@ C = linear model




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

@ C = linear model

@ linear regression




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

@ C = smooth sequences




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

@ C = smooth sequences
e tracking




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

@ C = smooth sequences

e tracking
@ nonparametric regression




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.
@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player's aim

Minimize regret wrt comparison C:

.
Zﬁ(at,yt inf Zz(gt,yt).

@ C = probability model




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

@ C = probability model
o density estimation




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).

Player’s aim:

Minimize regret wrt comparison C:

@ C = option trades,
A = asset trades




Online Prediction as a Zero-Sum Game

A repeated game:
At round t:

© Player chooses prediction a; € A.

@ Adversary chooses outcome y; € ).

© Player incurs loss 4(ay, yt).
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Universal prediction:
very weak assumptions on process generating the data.

Deterministic heart of a decision problem.
Can demonstrate robustness of statistical methods.

Typically streaming, so very scalable.

Focus in this lecture: Minimax optimal strategies.
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Computing minimax optimal strategies

To play the minimax strategy: after seeing yi,..., Vi_1,
@ Compute V,

@ Choose a; as the minimizer of

max (L(at, yt) + V(y1,-- -5 ¥1))

Difficult!

{(y1,---,ye)} is large.
V' might be complex.

Efficient minimax optimal strategies

When is V' a simple function of (statistics of) the history y1,...,y:?




@ Computing minimax optimal strategies.
o Part 1: Euclidean loss.

e Y = ball

o Y = simplex

o Closed, bounded )

e Hilbert space

o Y = ellipsoid

@ Part 2: Linear regression.
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Online prediction with quadratic loss

Euclidean loss

Strategy chooses y, € RY.

t=1

Regret = Zﬁ(f/t,yt) — ienﬂgdzg(a,)/t)- J
!

(Takimoto, Warmuth, 2000), (Koolen, Malek, B., 2014)
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The smallest ball containing Y is By = {y € R? : ||y — ¢|| < r}, with
center ¢ = arg minc max,cy ||y — c||, radius r = minc max,cy ||y — c||.

@ For closed, bounded ) c RY,
minimax strategy is empirical
minimizer, shrunk towards c:

aj 1 = tagy1ye + (1 — tagyr)c.
P2
@ Optimal regret: 2;%;

2
O = O q + Apt1.

1
047':?7
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@ Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

e YV = ball

o Y = simplex

o Closed, bounded )

e Hilbert space

o Y = ellipsoid

@ Part 2: Linear regression.
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The ball case: Y ={y :|ly — c|| < r}

Maintain statistics: s, = Y ¢_; (vt — ¢), o2 =571 lye — ¢l

Minimax strategy: affine
Value-to-go: quadratic

n—1
- a::choznZ(yt—c).
1 t=1
5 (anusnu2 —oh+rr > at) = (=) anga_1+(1—(n—1)an)c

t=n+1 .. .. .
Maximin distribution: same mean.

Minimax regret for ball
1 ) 1 T
aT T Qp = Qpi1 + Qpg1 S n V(J)):%Zat.
y t=1
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Online prediction with quadratic loss on the ball

Proof idea
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V(Yl»---a)/T = _mlnzg a yt
V(yi, ..oy ye-1) = r'rytn myatx(f(at,yt) +V(y,-.y 1)) -

,yT) is a (convex) quadratic in the state: wlog, ¢ = 0.

-
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Online prediction with quadratic loss on the ball

Proof idea
V(Yl»---a)/T = _mlnzg a yt
V(yi, ..oy ye-1) = rr;m T2 (Z(at,yt) +V(y,-.y 1)) -
t t
The final V(y1,...,y7) is a (convex) quadratic in the state: wlog, ¢ = 0.
1 T
V(s syr) = —min o Z la=yell? = =3 > 17 = el
t=1
1/1
: —*Z I - elP = 5 (sri? - o3).
. 1
ie., V(st,0%,T)= 5 (ozT||sT||2 - 027) .
15/82




Online prediction with quadratic loss on the ball

V(}’L D 7yt—1) — nlin max(é(atayt) T V(y17 oo 7yt))

Yt
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1 .
= 5 min max (las — Vel + aellse—1 + yell
t

— o071 — llyel® + 2 Z a,,)

n=t+1
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V(}’L D 7_yt—1) — nlin my?X(f(ata}’t) T V(y17 oo 7yt))

1 .
= 5 min max (las — Vel + aellse—1 + yell
t

— o071 — llyel® + 2 Z a,,)

n=t+1

1
= 5 minmax ae]|? + 2 (@ese—1 — ar) "y + aellye]l?
at Yt

-
+ agl|se_1||2 — 02 +r? Z an>

n=t+1
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Online prediction with quadratic loss on the ball

V(}’L D 7_yt—1) — nlin max(é(atayt) T V(y17 oo 7yt))

Yt

I?

1 . 2
=- n;ltn max (Hat — + ail|se—1 + il

PR Y )

n=t+1

1
= 5 minmax ae]|? + 2 (@ese—1 — ar) "y + aellye]l?
at Yt

-
+ agl|se_1||2 — 02 +r? Z an>

n=t+1

Optimization of y;: maximize a convex function over the ball.
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Online prediction with quadratic loss on the ball

V(}’L D 7_yt—1) — nlin max(é(atayt) T V(y17 oo 7yt))

Yt

I?

1 . 2
=- n;ltn max (Hat — + ail|se—1 + il

PR Y )

n=t+1

1
= 5 minmax ae]|? + 2 (@ese—1 — ar) "y + aellye]l?
at Yt

-
+ agl|se_1||2 — 02 +r? Z an>

n=t+1

Optimization of y;: maximize a convex function over the ball.
But the solution is easy: choose y; on the sphere, aligned with
QpSt—1 — dt. 16 /82



Online prediction with quadratic loss on the ball

1.
V(yi,. - ¥e-1) = 5 min max laell® + 2 (arse—1 — at) " ye + aellyell?

-
+ oyl|se_1]|? — 02 + 12 Z an>

n=t+1
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V(yi,. - ¥e-1) = 5 min max laell® + 2 (arse—1 — at) " ye + aellyell?

-
+ oyl|se_1]|? — 02 + 12 Z an>

n=t+1

1 .
=5 min ||a,;||2 + 2r ||oese—1 — at|
at

T
+ al|se_1]|2 — 02 +r? Zan>

n=t
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1.
V(yi,. - ¥e-1) = 5 min max laell® + 2 (arse—1 — at) " ye + aellyell?

-
+ oyl|se_1]|? — 02 + 12 Z an>

n=t+1

1 .
=5 min ||a,;||2 + 2r ||oese—1 — at|
at

T
+ al|se_1]|2 — 02 +r? Zan>

n=t

(a] = aese—1)
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Online prediction with quadratic loss on the ball

1.
V(yi,. - ¥e-1) = 5 min max laell® + 2 (arse—1 — at) " ye + aellyell?

-
+ oyl|se_1]|? — 02 + 12 Z an>

n=t+1

1 .
=5 min ||a,;||2 + 2r ||oese—1 — at|
at

-
+ al|se_1]|2 — 02 +r? Zan>

n=t

T
1
(a) = cvest—1) = § <(Y§H5t—1H2 + Oét||5t_1H2 — 0'?71 + r2 Zan> o
v

n=t
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Online prediction with quadratic loss on the ball

1.
V(yi,. - ¥e-1) = 5 min max laell® + 2 (arse—1 — at) " ye + aellyell?

-
+ oyl|se_1]|? — 02 + 12 Z an>

n=t+1

1 .
=5 min ||a,;||2 + 2r ||oese—1 — at|
at

-
+ al|se_1]|2 — 02 +r? Zan>

n=t

T
1
(a) = cvest—1) = § <(Y§H5t—1H2 + Oét||5t_1H2 — 0'?71 + r2 Zan> o
v

n=t

Principle of indifference: Any ||y:|| = r is a best response. 17/82



Online prediction with quadratic loss on the ball

The ball case: Y ={y :|ly — c|| < r}

Maintain statistics: s, = Y ¢_; (vt — ¢), o2 =571 lye — ¢l

Minimax strategy: affine in state
Value-to-go: quadratic in state

S
|
-

t=n+1

.
1
> <anusnu2—a§+r2 > at).

*
n

c+ ap Z(yt —0).

1
aT = —,

2
T Qp = Qpyq + apg1 <

1

n

t=1
3: = (n_l)an)_/n—l"’_(l_(n_l)an)c

Maximin distribution: same mean.

Minimax regret for ball

T
r2

v

407

.
2
t=1

18 /82



@ Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

e Y = ball

o Y = simplex

o Closed, bounded )

e Hilbert space

o Y = ellipsoid

@ Part 2: Linear regression.

19/82



Online prediction with quadratic loss

The simplex case

Suppose )V is a set of d + 1 affinely independent points in RY, all lying on
the surface of the smallest ball.
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The simplex case

Suppose )V is a set of d + 1 affinely independent points in RY, all lying on
the surface of the smallest ball.
Maintain statistics: s, = > ¢_; (vt — ¢), o2 =571 lye — ¢l

Minimax strategy: affine in state

Value-to-go: quadratic in state

n—1

1( T ) a::c+anZ(Yt—c).
5 ) t=1

ay = (n—1)apyn-1+(1—(n—1)an)c

2
Gp = Qpig + Gyt
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Online prediction with quadratic loss

The simplex case

Suppose )V is a set of d + 1 affinely independent points in RY, all lying on
the surface of the smallest ball.
Maintain statistics: s, = > ¢_; (vt — ¢), o2 =571 lye — ¢l

Minimax strategy: affine in state

Value-to-go: quadratic in state

n—1

1( T ) a::c+anZ(Yt—c).
5 ) t=1

ay = (n—1)apyn-1+(1—(n—1)an)c

2
Qp = Q1+ Qpt1 <

1
n

20 /82



Online prediction with quadratic loss

The simplex case

Suppose )V is a set of d + 1 affinely independent points in RY, all lying on
the surface of the smallest ball.
Maintain statistics: s, = > ¢_; (vt — ¢), o2 =571 lye — ¢l

Minimax strategy: affine in state

Value-to-go: quadratic in state

n—1
1( i ) h=ctand (e=e)
- . t=1
2

ay = (n—1)apyn-1+(1—(n—1)an)c

Maximin distribution: same mean.

1

2
Qp = Qpyq + Qpp1 < e

20 /82



Online prediction with quadratic loss on the simplex
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Online prediction with quadratic loss on the simplex

T
V(.yla o0 7}/T) == mainzg(%ﬂ)y
t=1

V(yi, .- ye-1) i= n;ltn myet)x (U(as,yt) + Vv, .-y p)) -

21 /82



Online prediction with quadratic loss on the simplex

-
V(.yla o0 7}/T) == mainzg(%ﬂ)y
t=1
V(yi, .- ye-1) i= n;ltn myet)x (U(as,yt) + Vv, .-y p)) -

The final V(y1,...,y7) is a (convex) quadratic in the state:
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Online prediction with quadratic loss on the simplex

T
V(.ylu"' 7}/T) = _mainzg(a7yt)7

V(yi, .- ye-1) i= n;ltn myet)x (U(as,yt) + Vv, .-y p)) -

The final V(y1,...,y7)is a (convex) quadratic in the state:
1 T
Vi, y7) —mmfz la=yel? =5 3 Iy~ yel?
t=1

1 ST
= *iz ||7 +c—yel?
t=1

ie, V(st,0%,T)=

—

5 (erlstl* = o7).

21 /82



Online prediction with quadratic loss on the simplex

V(yi,...,ye—1) == minmax (¢(as, yt) + V(y1,. .-, yt))

at Yt

22 /82



Online prediction with quadratic loss on the simplex

V(yi, . . Ye-1) i= n;itn T (U(ae,ye) + V(yi,---y1))

= min mpaxIEytht (U(at, yt) + V(yi, - y))
t

at
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Online prediction with quadratic loss on the simplex

V(yi, . . Ye-1) i= n;itn T (U(ae,ye) + V(yi,---y1))

= min mpaxIEytht (U(at, yt) + V(yi, - y))
t

at

= mp;?x n;ltn Eynp (Uat, yt) + V(y1,---,¥t))
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Online prediction with quadratic loss on the simplex

V(yi, ..o yee1) == min myax (U(ae, ye) + V(viy .-y yt))

= min mpaxIEytht (U(at, yt) + V(yi, - y))
t

at

= max n;ltn Eynp (Uat, yt) + V(y1,---,¥t))

1
=5 max ”;'t” Eyenpe | 13e = yell® + eellse—1 + y: — c|?

— 071 — llye —cll*+ 7 Z a,,)

n=t+1
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Online prediction with quadratic loss on the simplex

V(yi, ..o yee1) == min myax (U(ae, ye) + V(viy .-y yt))

= min mpaxIEytNPt (U(at, yt) + V(yi, - y))
t

at

= max n;ltn Eynp (Uat, yt) + V(y1,---,¥t))

1
=5 max ”;'t” Eyenpe | 13e = yell® + eellse—1 + y: — c|?

— 071 — llye —cll*+ 7 Z a,,)

n=t+1
d+1

fmaXZpt (I1Zp: = zilI* + G)

where Z = [z - - - zg11] contains the simplex vertices. e



Online prediction with quadratic loss on the simplex

d+1
V(yt, . ye-1) *maXZPt( ) (I1Zps — zi|* + G))
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Online prediction with quadratic loss on the simplex

d+1
V(yt, . ye-1) *maXZPt( ) (I1Zps — zi|* + G))

1
= 5 max (—ptTZTZpt + linear(p;) + constant) .
Pt
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Online prediction with quadratic loss on the simplex

d+1
V(yt, . ye-1) *maXZPt( ) (I1Zps — zi|* + G))

1
= 5 max (—ptTZTZpt + linear(p;) + constant) .
Pt

It's clear that, at each step, the unconstrained maximizer in
{p € R91 : 1T p =1} keeps the value-to-go a quadratic function.
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Online prediction with quadratic loss on the simplex

Proof idea

d+1
V(yt, . ye-1) *maXZPt( ) (I1Zps — zi|* + G))

1
= 5 max (—ptTZTZpt + linear(p;) + constant) .
Pt

It's clear that, at each step, the unconstrained maximizer in

{p € R91 : 1T p =1} keeps the value-to-go a quadratic function.

It turns out that when the simplex points z; are on the surface of the
smallest ball, the maximizer is a probability distribution.

23 /82



Online prediction with quadratic loss on the simplex

@ Solving this quadratic minimization gives:
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o the value function,
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o the optimal aj.
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Online prediction with quadratic loss on the simplex

@ Solving this quadratic minimization gives:
o the value function,
@ hence the recurrence relation determining the «; sequence, and
o the optimal aj.

@ It's clear from the proof that the maximin distribution is concentrated
on the vertices of the simplex, and that aj is its expectation.

24 /82



Online prediction with quadratic loss

The simplex case

Suppose )V is a set of d + 1 affinely independent points in RY, all lying on
the surface of the smallest ball.
Maintain statistics: s, = > ¢_; (vt — ¢), o2 =571 lye —cll

Minimax strategy: affine in state

Value-to-go: quadratic in state

n—1
1( i ) h=ctend (e=o)
- . t=1
2

ay = (n—1)apyn—1+(1—(n—1)an)c

Maximin distribution: same mean.

1

2
Oén :an+1+an+1 S ;

25 /82



@ Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

e YV = ball

o Y = simplex

e Closed, bounded Y

e Hilbert space

o Y = ellipsoid

@ Part 2: Linear regression.
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Online prediction with quadratic loss

The general case: closed, bounded Y C R?
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of these contact points, with |S| < d + 1.
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Online prediction with quadratic loss

The general case: closed, bounded Y C R?

Recall: the smallest ball containing Vis By = {x € RY : |[x — | < r}.
A Lagrange dual argument shows that the optimal center is in the convex
hull of a set of contact points of ) at radius r.

From Carathéodory’s Theorem, there is an affinely independent subset S
of these contact points, with |S| < d + 1.

From below
YOS, so , T

V) 2 V(S)= 5 Y a

Y C By, so )
V(Y) < V(By) = % 3

i=1

27 /82



Main result: the role of the smallest ball

The smallest ball: By,

The smallest ball containing ) is
By ={y €R?: |y — c|| < r}, with
¢ = argminc maxyey |ly — ||,

r = minc max,cy ||y — ¢l

Main Theorem
For closed, bounded ) c R¢:

n

Minimax strategy is aj‘,H = na,,+1; Zyt + (1 — napt1)c.
t=1

N

-
Optimal regret is V() = % Za,,.
—1

28 /82



Online prediction with quadratic loss

Minimax regret
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Online prediction with quadratic loss

Minimax regret

—
= r? log log T
2; > (og oglog +O<—IogT >)
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Online prediction with quadratic loss

Minimax regret

T 2
r r loglog T
V() E}joztzg(logT—loglogno(;‘f}g—gT».
t=1

regret

50

100 150 200
T
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@ Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

e YV = ball

o Y = simplex

o Closed, bounded )

e Hilbert space

o Y = ellipsoid

@ Part 2: Linear regression.
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Online prediction in Hilbert space
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Online prediction in Hilbert space

. 1. 2
09,y) = 5 ly —ylI*.
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Online prediction in Hilbert space

Strategy chooses y, € H, a Hilbert space
(separable, complete, inner product space).

" 1., 5
1y —ylP=@ -y, 7—y). f(y,y)=§||y—y|| :
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Online prediction in Hilbert space

Constraints

Strategy chooses y, € H, a Hilbert space
(separable, complete, inner product space).

" 1., 5
1y —ylP=@ -y, 7—y). ﬁ(y,y)ZEIIy—yII :

Adversary chooses y, € V), where Y C H is a
closed, bounded, convex set.
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Online prediction in Hilbert space

Constraints

Strategy chooses y, € H, a Hilbert space
(separable, complete, inner product space).

N 1 . 5
1y —ylP=@ -y, 7—y). 09.y) =519 - yI*.

Adversary chooses y, € V), where Y C H is a
closed, bounded, convex set.

Regret = Zﬁ(yt,yt) — JQL 25(37)&)- J
t=1

t=1

31/82



Online prediction in Hilbert space

The smallest enclosing ball of a closed, bounded, convex ) is well-defined,
with a unique center and radius.
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Online prediction in Hilbert space

The smallest enclosing ball of a closed, bounded, convex ) is well-defined,
with a unique center and radius.

| A\

Recall
If Y lies in a finite-dimensional subset of 7, with smallest enclosing ball
B(c, r), the minimax strategy is

n—1

a, = c+a,,Z(yt —c).

t=1
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Online prediction in Hilbert space

For any d € H, the strategy

n—1

a,,:d+oz,,2(yt—c)

t=1
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Online prediction in Hilbert space

For any d € H, the strategy

n—1

a,,:d+oz,,2(yt—c)

t=1

has regret

1 T
Rt = 2;0&”% —d|?
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Online prediction in Hilbert space

For any d € H, the strategy

n—1

a,,:d+oz,,2(yt—c)

t=1

has regret

1 T
Rt = 2;0&”% —d|?

1 T
< Zsupllz—d|*) .
2 zey ;
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Online prediction in Hilbert space

For any d € H, the strategy

n—1

a,,:d+oz,,2(yt—c)

t=1

has regret

1 T
Rt = 2;0&”% - dH2

1 T
< Zsupllz—d|*) .
2 zey ;

Proof: a straightforward calculation.
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Online prediction in Hilbert space

(By setting d = ¢.)
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Online prediction in Hilbert space

For a closed, bounded, convex )

r2 T
Vi) =% > ar

t=1
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Online prediction in Hilbert space

Lower bound proof idea

We construct a sequence of finite sets Gy, G, ... C ) so that
r(C,-) Z 1— g.’
r() i

where r(G;) is the radius of the smallest ball containing C;.
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where r(G;) is the radius of the smallest ball containing C;.
Since V7 (C;) < V7 (Y), this gives the result.
To construct the G;:
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Online prediction in Hilbert space

Lower bound proof idea

We construct a sequence of finite sets Gy, G, ... C ) so that
r(C,-) Z 1— g.’
r() i

where r(G;) is the radius of the smallest ball containing C;.
Since V7 (C;) < V7 (Y), this gives the result.
To construct the G;:

Q Start with G = {y1}.

@ Set Cip1 = G U{yit1}, where ||c — yit1]| > r(Y), for ¢ the center of
the smallest enclosing ball for V.

v

36 /82



Online prediction in Hilbert space

Lower bound proof idea

r?(C;) = minmax ||y — c||?
¢ i
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= maxmin E p-llz = c|?.
p c
ze(C;

(We can apply the min-max theorem because C; is finite.)
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Online prediction in Hilbert space

Lower bound proof idea

r?(C;) = minmax ||y — c||?
¢ i

= maxmin E p-llz = c|?.
p c
ze(C;

(We can apply the min-max theorem because C; is finite.)
Now, consider a distribution g on Cj11 = C; U {y;11}, with

1—-A)p(z) forze G,
o(z) = (1 =XN)p(2)
A for z = yii1.
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Online prediction in Hilbert space

Lower bound proof idea

r?(C;) = minmax ||y — c||?
¢ i

= maxmin E p-llz = c|?.
p c
ze(C;

(We can apply the min-max theorem because C; is finite.)
Now, consider a distribution g on Cj11 = C; U {y;11}, with

(1=XN)p(z) forze G,
q(z) =
A for z = yii1.

Evaluating r(Cit1) and optimizing over \ gives the result.

37/82



Online prediction in Hilbert space

For a closed, bounded, convex )

r2 T
VT(y) = ?Zata

t=1
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Online prediction in Hilbert space

For a closed, bounded, convex )

2

r T

and this is achieved by the minimax optimal strategy

n—1

aZ:c—f-oz,,Z(yt—c)

t=1
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@ Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

e Y = ball

o Y = simplex

o Closed, bounded )

e Hilbert space

o Y = ellipsoid

@ Part 2: Linear regression.
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Online prediction with quadratic loss on an ellipsoid

Ellipsoid:

Y={y:(y—-c) ' Wiy-c)<1}

Here, W = 0.
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Here, W > 0. Without loss of generality, W is symmetric.

d
Write W = ZV,'V,'V,-T, with vy > > - > vy > 0.
i=1
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Online prediction with quadratic loss on an ellipsoid

Ellipsoid: Y ={y : (y —¢c)"W=i(y —c) <1}
Maintain statistics: s, = > 1_;(y: — ¢), o2 =571 lye — <l
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Online prediction with quadratic loss on an ellipsoid

Ellipsoid: Y ={y : (y —¢c)"W=i(y —c) <1}
Maintain statistics: s, = > 1_;(y: — ¢), o2 =571 lye — <l

Value-to-go: quadratic in state.
1 T
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Proof idea

T
V(y17 000 aYT) = mainzlg(aayt)a
t=
V(}/l, 000 ?ytfl) = n;in myax(ﬁ(at,yt) + V(yl? 500 ,)/t)) :
t t

The final V/(y1,...,y7) is a (convex) quadratic in the state, as before:

1
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P 3 )

t=n+1

@ At each step, the inner maximum is of a (convex) quadratic criterion
with a single quadratic constraint.

@ This is a rare example of a nonconvex problem where strong duality
holds.

o Evaluating the dual gives the recurrence for the value-to-go.

43 /82



Online prediction with quadratic loss on an ellipsoid

Minimax strategy:
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It's easy to see that W determines the eigenspace of A,,, so we can write
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Ap = Z )\En)v,-v,-T.
i=1
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ay—c= (Wt +1—Asp1) " Anpa Z(Yt —¢)
Apy1= )\max(An—I—l)a V1 = )\max(W)

1 _
Ar==I,  Ap= A1 (@r1aW ™+ 1 = An1) " Anpa + A,

T

d d
W= ZV;VI'V,-T, V1 > > 2> 1y, An = ZA(-")V;V-T-
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How do the eigenvalues evolve?
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-1
aﬁ—c:(an+1V1W +1-A n+1 n+1ZYt—C

Opt1= )\maX(AnJrl)a V1 = Amax(W)

1 _ =1
Ar=—l Av=An (@ W1 = A1) Apgt + Ania,

AL e L

(n+1)\2 | (n+1)
T 1+ A fyy — AT <)\i ) A

e o, = )\gn) > )\g ) > > )\E, ); the gap increases with n for smaller v;.
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Online prediction with quadratic loss on an ellipsoid

Eigenvalues of A,
NG EENO 1

) 1

(n+1)\2 | (n+1)
1 —i—)\(nH)V Jvi — )\("H) <)\i ) A '

ap = )\(”) > )\(”) > 000 > )\g")
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@ The «ay, sequence determines the shrinkage in the ellipsoid’s major
axis, as for the case of the ball.
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d )\(n)

@ ai —c= E

-1 1+ )\gn)’/l/’/:‘ - )‘En)
@ The «ay, sequence determines the shrinkage in the ellipsoid’s major
axis, as for the case of the ball.

T
Vi Snf]_ V,'.

@ There is more shrinkage in the other directions: smaller v; implies
more shrinkage in the v; direction.
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Online prediction with quadratic loss on an ellipsoid

Optimal strategy
@ The ay, sequence determines the shrinkage in the ellipsoid’s major
axis, as for the case of the ball.

@ There is more shrinkage in the other directions: smaller v; implies
more shrinkage in the v; direction.
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Online prediction with quadratic loss

Subgame optimality

What if the adversary is not optimal?

For )V = an ellipsoid, or ) = a simplex that touches its smallest
enclosing ball, we have explicit expressions for the value to go and for
the optimal prediction for any sequence of adversary choices,
including suboptimal ones.

For other ), an optimal adversary should play only in the intersection
of Y and the surface of the smallest ball.

If it does not, the ball strategy (or an enclosing ellipsoid strategy)
might be suboptimal.

Consider, for example, playing as if ) is the smallest ball when it is an
ellipsoid. If the adversary plays only on the major axis, the optimal
strategies are identical. If the adversary is suboptimal, the smallest
ball strategy will under-regularize.

48 /82



@ Computing minimax optimal strategies.
@ Part 1: Euclidean loss.
e Y = ball
e YV = simplex
o Closed, bounded )
o Hilbert space
o Y = ellipsoid
o Part 2: Linear regression.
o Fixed design.
e Minimax strategy is regularized least squares.
e Box and ellipsoid constraints.
o Adversarial covariates.
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Given: T; x1,...,xT € RP; YT cRT.
Fort=1,2,...,T:

@ Learner predicts y; € R
o Adversary reveals y; € R (y{ € Y7)

: . 2
o Learner incurs loss (9 — yt)°.

T T
2
Regret = 3 (9 = 0" = min 3= (875 — ) -

t=1 t=1

(B., Koolen, Malek, Takimoto, Warmuth, 2015)
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and for a subsequent x € RP, predict
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v

A sequential version of OLS?
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Ordinary least squares (linear model, uncorrelated errors)

Given (x1,¥1), -, (Xn, ¥n) € RP X R, choose
n -1 n
B= (Z XtXtT> th_yta
t=1 t=1
and for a subsequent x € RP, predict

n -1 n

~ TAh T T

y=x B=x E Xt X¢ E XtYt,
=1 i=Il

v
A sequential version of ridge regression

n -1 5
Vnt1 = x,,TH <Z XeXp 4 )\I) thyt.
t=1 t=1
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Online fixed design linear regression

Sufficient statistics

Fix x1,...,x7 € RP. VT ={(y,-.,y7) : lyel < B}

. . 9 o X n 2 n 2
Maintain statistics: s, = > ;_; VeXt, o5 =)+ 1 Yf
WelleHie-3eF QUeriEie Minimax* strategy: linear

T
o T
S,—l,—P,,S,, — O'% -+ Z B?X;—PtXt. y:+1 = Xn+1Pn—|—15n-
t=n+1

Maximin distribution:

1 T Ppi1s,
B,. Pr(£Bps1) == + X417 n+150

x,;r Ppx:
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P
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1
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Linear regression: Proof idea

Offline optimal:

T

2
= — min (BTxt — yt)
1

2 a7
—oT + Brst

Bt = Prst,

—
Py = <Z XX

t=1

T
ST = E YitXt,
t=1

-1
T)
t 9
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Linear regression: Proof idea
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2 T T
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Offline optimal:

V(st,0%,T)

T

= — min X —
SeRp £ (5 t )/t)
= —0% + BrsT

T
= —O'gr +5TPTST.

Bt = Prst,

T 1
—
[P = thxt )
t=1
-

ST = ZYtXn

t=1
T

o =) i

t=1
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Linear regression: Proof idea

Value to go

2 T T
V(5t7 Ot t) =S5 (Pt+1Xt+1Xt+1 Piy1 + Pt+1) St

2 2T
— 0 + 71 + B X1 PryaXesa.

v

Optimal predictions

n

~ T
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Suppose we wish to estimate a mean, and the covariate is a fixed scalar,
say x, = 1.
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Optimal predictions

n
~ T
Yn+1 = Xn+1Pn+15n7 Sn = g YiXt,
t=1
- 1
Pr = ; P, = TP P
T = Xt Xt , n = Fn+1Xn+1Xp41Fn+1 + Pny1-
i=ll

Suppose we wish to estimate a mean, and the covariate is a fixed scalar,
say x, = 1.
Then P+ =1/T and P, evolves as «, in the ball game.
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Linear regression: Proof idea

An alternative recurrence

Xt PtXt T
XX + —— XX, .
DI z S

@ The result is true for n= T:

T
= E XtXt.T.
t=1
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Linear regression: Proof idea

@ If it's true for n, we apply the Sherman-Morrison formula:

A luvTAL

—1
AtwT) =at- L C
( e 1+ vTA-Ly’

which implies
P;_ll = (P,, + P,,x,,x,—,r P,,)i
1 XpX]

n
n

1+ x,] P,,x,,

5% Ptxt T %
= XeXy + XeXp — ——=———
Z e Z 1+XtTPtXt t 1+XnTPan

XtPtXt T
= Xe X, + XXy .
Sl + 3 2




Linear regression: Regret

T
Regret = Z BtzxtTPtXt'
t=1

v

T

T
XIﬂa;( legrPtXt <p (1+2|n (14_5)) '

T
t
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o Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

@ Part 2: Linear regression.

o Fixed design.

e Minimax strategy is regularized least squares.
e Box and ellipsoid constraints.

o Adversarial covariates.
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Ellipsoid constraints (weighted 2-norm)

:
VI = {m,...,m 3y P < R}.

t=1

Minimax strategy: linear

Ak

Minimax regret = R. ) 9% =X PnSn_1 (M)
n n -

Equalizer property

For all Yi,-.- VT,
T T 2
. N 2 : T
Regret of (MM) := Z (Ve — ye)” — /Bne]{lgpz (ﬁ Xt — yt>
t=1 t=1
T
= nyxtTPtxt
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Linear regression: Alternative constraints

Equalizer property

For all y1,...,yT,

Regret of (MM) :=

H
||M~|
I

.
2
.
(9t — y1)* — ;;”;}EQPZ (6 Xe — }/t>

t=1

I
™~

2., T
YiXe Pexe.

-
[|

1

(Proof is by induction.)

64 /82



Linear regression: Alternative constraints

Equalizer property
For all y1,...,yT,

]~

2
Regetof (1) = 3 G0 in 3 (57 )

-
Il

2., T
YiXe Pexe.

I
M~

t=1

(Proof is by induction.)

Corollary

For every R, (MM) is minimax optimal on

-
y;—: {(Y1a---aYT) . ZyEX:PtXt < R}~

t=1
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o Computing minimax optimal strategies.
@ Part 1: Euclidean loss.

@ Part 2: Linear regression.

o Fixed design.

e Minimax strategy is regularized least squares.
e Box and ellipsoid constraints.

o Adversarial covariates.
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Linear regression: Adversarial covariates

Given: T: XT C (RP)T; YT cRT.
Fort=1,2,...,T:
o Adversary reveals x;, € RP (x;/ € XT)

@ Learner predicts y; € R
@ Adversary reveals y; € R (le € yT)

o Learner incurs loss (9 — y¢)°.

2
_ N 2 : T
Regret = Z (9t — ye)” — /8(’2}&2 (ﬁ Xt — }’t) :

t=1 t=1

(B., Malek, 2017)
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Linear regression: Adversarial covariates

A covariance budget

Recall:

-

—1 T

Pr = E XtX¢
t=1

T
[Pp = Pn+1Xn+1Xn+1Pn+1 + Pn+1-

67 /82



Linear regression: Adversarial covariates

A covariance budget

Recall:

T
-1 § T
= XtXt y

Pn = Pn+1Xn+1 mi1Pot1 + Pyt

Equivalently,

X PtXt

xtx - t xth.

t 14+ x. Prx: t
t=n+1 tht
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Linear regression: Adversarial covariates

A covariance budget

Recall:
-
-1 _ ZXtXtTa
Pn = Pn+1Xn+1 mi1Pot1 + Pyt
Equivalently,
X¢ PtXt T
xtxt + — = XtX; .
Z t_z;q 1+ xtTPtx
Define T
Xq PaXq T
= 0.
1 4k XTP 5, 1+ xT Poxg @%a =
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Linear regression

A reformulation

-
= XqXT = 0.

Xq quq

T q
+ X4 Pgxq
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Linear regression

A reformulation
-

dt T
Pt+1 = Pt—?PtXt+1Xt+1Pt,
t

oy Va2 +1—1
wher S
C Vab £ 141

2 T
bt = Xt+1PtXt+1-
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Linear regression

Fix Py, define P, by the forward iteration,

~ ~ ar ~ T 5
Piy1=P: — ?Ptxt+lxt+1pta
t
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Linear regression

Proof
Fix Py, define P, by the forward iteration,

~ ~ ar ~ T 5
Piy1=P: — ?Ptxt+lxt+1pta
t

then set Pt = IST and define P; by the backwards iteration,
Ptf]_:Pt—FPtXtXt—.rPt.

We'll show that Py = P, for t = T —1,...,1.
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Suppose Pyy1 = P;1. Then

- - T =
Pt = Pei1 + Pepixer1Xe 1 Pria
~ ar =~ T =

= Pt — b—%PtXH_lXH_lPt

+ <'5t b2 PtXt+1Xt+1Pt> Xt+1Xt+1 (Pt b2 PtXt+1Xt+1Pt)
t
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a
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Suppose Pyy1 = P;1. Then

P: = Pey1 + Peixer1x 1 P
= Pt = F%Ptxt+1xt+lpt

+ <'5t b2 PtXt+1Xt+1Pt> Xt+1Xt+1 (Pt b2 PtXt+1Xt+1Pt)
t

:ﬁt"‘lstXH_lX;llBt <— : —|—1—23t+af)

a
b?
~ ~ ~ a
= Pt + PtXt+1X;:_1Pt <(1 — at)2 . b;)

t
= Pt,

where we have used (1 — a;)% = 2.
t
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Linear regression

To see that (1 — a;)> = e
t

2
- = (1- Y
SRR
2

B 2b;

- <\/4b%+1+1>

_ VAbE+1-1
Va2 +1+1

= dt,

because

(,/413% +1-— 1) («/413% +1+ 1) = 4b2.



Linear regression

Legal covariate sequences

For any t > 0, any xg,
equivalent.

..., Xt and any P;, the following two conditions are

72 /82



Linear regression

Legal covariate sequences

For any t > 0, any x1,...,x: and any P;, the following two conditions are

equivalent.
© Thereisa T >t and a sequence X;41,...,x7 such that, under the
forward iteration, T
=1 __
Pr = ZXqu
q=1

72 /82



Linear regression

Legal covariate sequences

For any t > 0, any x1,...,x: and any P;, the following two conditions are

equivalent.
© Thereisa T >t and a sequence X;41,...,x7 such that, under the
forward iteration, T
=1 __
Pr = ZXqu
q=1

—1 t T

72 /82



Linear regression

Suppose that P; 1 — $¢ lquqT = 0.

q:

73 /82



Linear regression

Suppose that P; 1 — St quqT = 0. Write

qg=1
=il
i —qux Z)\v,,,
qg=1
with orthonormal vi,..., v, and A\; > --- > A, > 0.

73 /82



Linear regression

Suppose that P; 1 — St quqT = 0. Write
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Suppose that P; 1 — $¢ quqT = 0. Write

q=1
t m
=il T
i quxq = Z)\,v,v, ,
q:l i=1
with orthonormal vi,..., vy, and A1 > --- > X\, > 0. Then it's easy to

show that we can choose x;+1 = fvi (for some 5 > 0) such that

t+1

m—1
_ T
t+1 g xq = E AjViv; .

i=1

Actually we can choose (5 as any smaller value to ensure that the rank
does not drop in one step, so we can “complete the sequence” in any
number of steps, provided that it is at least m.
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Linear regression

To see the reverse implication, once we have computed the P;s by the
forward iteration, we can write the equivalent expression

X, Pex,
t "t T
E xtxt + E ——XtX;

=
t=n+1 1+ X, Pex:
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Legal covariate sequences
For any t > 0, any x1,...,x; and any P4, the following two conditions are
equivalent.

©Q Thereisa T >t and a sequence X;41,...,x7 such that, under the

forward iteration, T
=i __ T
Pr = g XqXq -

qg=1

il t T
QP = Zq:l XgXq -

| \

Adversarial covariates

Thus, each Py > 0 (a ‘covariance budget’) defines a set of sequences
2l 0009270

The same strategy is optimal for each of these sequences.
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@ Learner predicts y; € R
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Linear regression: Adversarial covariates; horizon-free

Given: Z C 751 (RP x R)T
For t =1,2,3,...

@ Adversary reveals x; € RP

@ Learner predicts y; € R

o Learner incurs loss (9 — y¢)°.

o Adversary reveals y; € R (x/,y{ € 2)

T

-
2

_ T
Regret = E (Ve — _52;12275 (5 Xt_yt> :

t=1 =l
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Linear regression

Constraints on y;s

© Box constraints: B(B) := {y{" : |y:| < B:}, for By, Ba,... > 0.
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Linear regression

Constraints on y;s

© Box constraints: B(B) := {y{" : |y:| < B:}, for By, Ba,... > 0.
@ Ellipsoidal constraints:

-
E(x/,R) = {le : ZytzxtTPtxt < R} .

t=1
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Linear regression

Constraints on x;s

@ Compatibility constraints:

X(B) = {XlT . B Ztil

xtT Pixs

Bs for2 <t < T}.

s=1
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Linear regression

Constraints on x;s

@ Compatibility constraints:

xtT Pixs

X(B) = {XlT . B Ztil

s=1

Bs for2 <t < T}.

@ Covariance constraints:;

F(x) = {x] :for Po,..., Pr defined by x, P* =}
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Linear regression

For all positive semidefinite ; By, By,... >0

the forward strategy s* is horizon-independent minimax optimal,
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Linear regression

For all positive semidefinite X; By, By, ... >0
the forward strategy s* is horizon-independent minimax optimal,

T xlTex \yf eyv(x) s yi €V(x)

sup sup < sup RT(s*,xlT,le) —min  sup RT(s,xlT,le)> =0.

with respect to the following (X', Y(x{)):

(X(B{ )N X(X),B(B)).
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For all positive semidefinite ; By, By,... > 0; and R > 0,
the forward strategy s* is horizon-independent minimax optimal,

sup sup sup RT(s*,xlT,le) —min  sup RT(s,xlT,le) =0.
T xlex \yJev() Sy eV()

with respect to the following (X', Y(x{)):
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Linear regression

For all positive semidefinite ; By, By,... > 0; and R > 0,
the forward strategy s* is horizon-independent minimax optimal,

sup sup sup RT(s*,xlT,le) —min  sup RT(s,xlT,le) =0.
T xlex \yJev() Sy eV()

with respect to the following (X', Y(x{)):

(X(B{)NX(X),B(B/)),  (X(X),E(x,R))-

That is, s* performs as well as the best strategy that sees the covariate
sequence.
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The minimax strategy as regularized least squares

The minimax strategy predicts y, = QA,TX,,, where GA,, is the solution to

n—1

- T N2 gT
meln;(H Xt —ye)"+0 Rn0,
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The minimax strategy as regularized least squares

The minimax strategy predicts y, = QA,TX,,, where GA,, is the solution to

n—1
m@in Z(HTxt — )2+ 0" R0,
t=1
T T
P
Rp = Z &xtx:.

T
M 1 —+ Xt PtXt
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The minimax strategy as regularized least squares

The minimax strategy predicts y, = GA,TX,,, where GA,, is the solution to

n—1
m@in Z(@Txt —y1)? +0 R0,
t=1
T T
X PtXt T
R, = Tt X,
t;l 1+ xt—r Pix; t

Indeed,

-1
n
i - (z ol + m)
t=1
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The minimax strategy as regularized least squares

The minimax strategy predicts y, = GA,TX,,, where GA,, is the solution to

n—1
m@in Z(@Txt —y1)? +0 R0,
t=1
T T
X PtXt T
R, = Tt X,
t;l 1+ xt—r Pix; t

Indeed,

-1
n

én = <Z XtXt:r + R,,) Sp_1 = Pn_lsnfl.
t=1
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Linear regression

Vi =X, Pnsn_1 ]

@ Minimax optimal for two families of label constraints:
box constraints and problem-weighted /> norm constraints.
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Linear regression

Vi =X, Pnsn_1 )

@ Minimax optimal for two families of label constraints:
box constraints and problem-weighted /> norm constraints.

@ Strategy does not need to know the constraints.

@ Regret is O(plog T).

@ Same strategy is optimal for covariate sequences consistent with some
‘covariance budget’ Py.
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@ Computing minimax optimal strategies.
o Part 1: Euclidean loss.

o Part 2: Linear regression.
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