Joint work with Mikhail Traskin.

UC Berkeley
Department of Statistics and Division of Computer Science

Peter Bartlett

Convexity in Pattern Classification
AdaBoost and other Large Margin Classifiers:
The Pattern Classification Problem

\[\phi \] Replace 0-1 loss \(\varphi \) with a convex surrogate \(\phi \).

Often intractable.

\[\left((\mathbf{X})f, \mathbf{y} \right) \mathbb{P} \sum_{i=1}^{n} \frac{1}{n} = \left((\mathbf{X})f, \mathbf{y} \right) \mathbb{E} = (f)_{\mathbb{P}} \]

Natural approach: minimize empirical risk,

\[\left((\mathbf{X})f, \mathbf{y} \right) \mathbb{P} = (\mathbf{y} \neq (\mathbf{X})^u f) \mathbb{P} = (u^f)_{\mathbb{P}} \]

Risk,

\[\mathbb{R} \leftarrow \mathcal{X} : u \mathbf{f} \text{ to choose } (u \mathbf{X}, u \mathbf{X}) \cdots (u \mathbf{Y}, u \mathbf{X}) \] from \((u \mathbf{Y}, u \mathbf{X}) \cdots (u \mathbf{Y}, u \mathbf{X}) \), \((u \mathbf{Y}, u \mathbf{X}) \) i.i.d.

Use data \(\mathbb{R} \) with small

\[\{1 \pm \} \times \mathcal{X} \] i.i.d.

The Pattern Classification Problem
Consider the margins, $Yf(X)$.

Define a margin cost function:
\[\mathcal{R} \to \mathcal{R}^+ \]

Define the empirical risk:
\[\hat{\mathcal{R}}(f) = \frac{\sum_{i=1}^{n} u_i}{n} \]

Choose $f \in \mathcal{F}$ to minimize empirical risk.

\[((X)f\phi) = (f)\phi \]

(\text{e.g., use data, $(X_1, Y_1), \ldots, (X_n, Y_n)$ to minimize empirical risk.)

Define the risk of f as $\mathcal{R} \leftarrow X : f \Rightarrow \phi$.

Define a margin cost function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$.

Consider the margins, $X_f \phi$.

Large Margin Algorithms
\[
\phi_{\mathcal{H}}^* \left(\sum_{t=1}^{T} \alpha_t \phi \right) = \left(\sum_{t=1}^{T+1} \alpha_t \phi \right) \phi_{\mathcal{H}}
\]

Minimizes \(R(f) \) using greedy basis selection, line search:

\[
\langle x - \exp \rangle = \langle x \rangle \phi
\]

For a VC-class \(\delta \)

\[
\text{span}(\delta) = \mathcal{F}
\]

Adaboost
Large Margin Algorithms

Many other variants

Logistic regression

L2Boost, LS-SVMs

Neural net classifiers

Algorithm minimizes

\[\min_{\mathcal{H}} \| f \|_{\mathcal{Y}} + (f)_{\mathcal{H}} \]

\[(\alpha - 1, 0, \max (0, 1) = (\alpha)_{\phi} \]

\[\mathcal{H} = \text{ball in reproducing kernel Hilbert space}, \mathcal{H} \]

Support vector machines:

Future directions: Prediction in adversarial environments
Consistency of AdaBoost
Universal consistency
Convex cost versus risk
\[
((x)f - \phi((x)u - 1)) + ((x)f)\phi(x)u = [x = X|((X)f \Lambda)\phi] E
\]

Notice:
\[
R(f) = \inf_{f \in \mathcal{H}} R(f) = \inf_{f \in \mathcal{H}} \mathbb{E}[(x)f(X)]
\]

Definitions:

- **Risk:**
 \[(x) \mathbb{P} = (x) R(f) = \mathbb{E}[Yf(X)]
 \]

- **Conditional probability:**
 \[P(x = X|\Lambda = \lambda) = (x) u
 \]

- **Conditional risk:**
 \[\mathbb{E}[Yf(X)|X = x] = (f) R \mathcal{F}(x)
 \]

- **Conditional \(\phi\)-risk:**
 \[((x)f)\phi(X)u = [x = X|((X)f \Lambda)\phi] E
 \]
\[
\cdot \left(\frac{\tau}{\theta + 1} \right) H - \left(\frac{\tau}{\theta + 1} \right)_- H = (\theta) \phi
\]

Difference:

\[
\cdot \left((\nu - \phi)(\nu - 1) + (\nu)\phi \nu \right) = (\nu) H
\]

with error:

\[
\cdot \left((\nu - \phi)(\nu - 1) + (\nu)\phi \nu \right) = (\nu) H
\]

Optimal:

Conditional-risk: \(\phi \)
The Relationship between Excess Risk and Excess -risk

Theorem:

1. For any P and f, \((f)_{\phi} R \leq (f)_{\phi} (\epsilon) \)

2. This inequality cannot be improved:
 For $j \in \{1, 2\}$, with P_i different, there is a P and an f with $R(f)_{\phi} R = (f)_{\phi} (\epsilon) + (i)_{\phi} (\epsilon)$.

3. The following conditions are equivalent:
 (a) For $i \neq 1 = 2$, $H \leq H - (f)_{\phi}$.
 (b) $(i)_H < (i)_{H} - 2, \epsilon \neq P_i$
 (c) $R(f_i)_{\phi} R \leq (f)_{\phi} (\epsilon)$
 (d) $\theta = (i)_{\phi} (\epsilon) + (i)_{\phi} (\epsilon)$

For $\epsilon > 2, \epsilon \neq 0$, there is a P and f with

2. This inequality cannot be improved:

1. For any P and f, \(R(f)_{\phi} R \geq (R(f)_{\phi} R)_{\phi} \)

For $\epsilon > 2, \epsilon \neq 0$, there is a P and f with $R(f)_{\phi} R \geq (R(f)_{\phi} R)_{\phi}$.

Classification calibrated:
Universal Consistency

Assume: i.i.d. data, \((X,Y)\), \((X_1,Y_1)\), \((X_2,Y_2)\), \ldots, \((X_n,Y_n)\) from \(XY\) (with \(Y = f_1g\)).

Consider a method \(f_n = A((X_1,Y_1); \ldots; (X_n,Y_n))\), e.g., \(f_n = \text{AdaBoost}((X_1,Y_1); \ldots; (X_n,Y_n); t_n)\).

Definition: We say that the method is universally consistent if, for all distributions \(P\),

\[
\mathbf{H} \leftarrow \frac{1}{n} \mathbf{f} \mathbf{H}
\]

Recall that \(R^* \) is the risk and \(\mathbf{H}^*\) is the Bayes risk:

\[
\mathbf{H} \leftarrow \frac{1}{n} \mathbf{f} \mathbf{H}
\]

\[
R^* \leq (uf)H
\]

Consider a method \(f_n = \text{AdaBoost}((u_X^1,u_X^2)\ldots,(u_X^1,u_X^2))\) with \(\mathcal{C}\) and \(\mathcal{X}\) from \(\mathcal{C} \times \mathcal{X}\) (i.i.d. data).

Universal Consistency
The Approximation/Estimation Decomposition

\[\phi \hat{R} - (u_f) \phi R \geq (\hat{R} - (u_f)R) \phi \]

Approximation and estimation errors are in terms of \(\phi R \), not \(R \).

Like a regression problem.

With a rich class and suitable method, \(R \) is classification calibrated.

Universal consistency \(R \) * if \((\hat{R} - (u_f)R) \phi R \) changes in terms of \(\phi R \), not \(R \).

Approximation and estimation errors are in terms of \(\phi R \), not \(R \).
Overview

Future directions: Prediction in adversarial environments

Consistency of AdaBoost.

Universal consistency.

Convex cost versus risk.
AdaBoost chooses \(f \) from the linear span of \(\mathcal{G} \).

\[
\text{function AdaBoost}(S, T) :
\]

\[
\begin{align*}
\text{return } \ & f \\
\text{for } t \text{ from } 1 \text{ to } T \\
& f_t := 0 \\
& f_t := f_t + t g_t \\
\end{align*}
\]

\[
\text{for } t \text{ from } 1 \text{ to } T \\
\text{return } f_t \\
\]

\[
\text{class of functions, } \mathcal{G} \text{, number of iterations, } T \\
\text{sample, } u \text{, } S \\
\text{linear span of } \mathcal{G}.
\]
Instead, we could consider a regularized version of AdaBoost:

1. Minimize $\sum_{\mathcal{F}} (f)$ over \mathcal{F}, the scaled convex hull of \mathcal{F}.

2. Minimize $\sum_{\mathcal{F}} \inf_{f \in \mathcal{F}} \log \|f\|_{\mathcal{F}}$ over span (\mathcal{F}), where \mathcal{F} is a family of functions.

3. AdaBoost with step-size bounded: $a_t \leq \frac{1}{t}$.

For suitable choices of the parameters (n, u), the algorithms are universally consistent.

For $X \subset \mathbb{R}^d$, if the log odds ratio, $\log(\frac{1}{1 + x})$, is smooth, then AdaBoost estimates it asymptotically.

For $\mathcal{F} \subset \mathbb{R}$, if the log odds ratio, $\log \|f\|$, is smooth, then

Universal consistency of AdaBoost

Theorem: If $\text{VC}(F) < 1$ and $R = \lim_{n \to \infty} \inf_{f \in \text{co}(F)} R(f) = O(n^{-\alpha})$ for some $\alpha > 0$, then AdaBoost is universally consistent.

\[
\begin{align*}
\text{for some } & \alpha \in (0, 1), \\
(u^{-1} u) O & = u^T
\end{align*}
\]

\[
\infty \leftarrow u^T
\]

\[
\lim_{n \to \infty} \inf f \in (H) \phi H = H_
\]

\[
\infty > (H) \phi H
\]

Universal consistency of AdaBoost
Overview

Convex cost versus risk.

Universal consistency.

Consistency of AdaBoost.

Future directions: Prediction in adversarial environments.

Universal consistency.

Convex cost versus risk.
Prediction Game:
1. sees side information x_t
2. makes prediction y_t in A
3. sees outcome y_t and incurs loss $\ell(y_t; y_t)$.

Aim: choose y_t so that, for all data sequences, the cumulative regret is not too large:

$$\left(\sum_{t=1}^{\infty} \inf_{f \in F} \sum_{u} \ell(f; y_t) \right) - \left(\sum_{t=1}^{\infty} \ell(y_t; y_t) \right)$$

Future directions: Prediction in adversarial environments.
Future directions: Prediction in adversarial environments

Applications:

1. Computer security
 - detection of anomalous network traffic
 - virus detection
 - spam filtering

2. Internet search

3. Financial portfolio optimization
Future directions: Prediction in adversarial environments

Adversary: controls some data, and benefits if predictions are incorrect.

- Performance of Bayesian methods?
- Performance of large margin classifiers?
Overview

• Convex cost versus risk.
• Universal consistency.
• Consistency of AdaBoost.
• Future directions: Prediction in adversarial environments.
• Universal consistency.
• Convex cost versus risk.