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Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions.
5. Statistical prediction with a finite class.

I Converting online to batch.
I Online convex optimization.
I Log loss.



Online to Batch Conversion

I Suppose we have an online strategy that, given
observations `1, . . . , `t−1, produces at = A(`1, . . . , `t−1).

I Can we convert this to a method that is suitable for a
probabilistic setting? That is, if the `t are chosen i.i.d., can
we use A’s choices at to come up with a â ∈ A so that

E`1(â)−min
a∈A

E`1 (a)

is small?
I Consider the following simple randomized method:

1. Pick T uniformly from {0, . . . ,n}.
2. Let â = A(`T +1, . . . , `n).



Online to Batch Conversion

Theorem
If A has a regret bound of Cn+1 for sequences of length n + 1,
then for any stationary process generating the `1, . . . , `n+1, this
method satisfies

E`n+1(â)−min
a∈A

E`n (a) ≤ Cn+1

n + 1
.

(Notice that the expectation averages also over the
randomness of the method.)



Online to Batch Conversion

Proof.

E`n+1(â) = E`n+1(A(`T +1, . . . , `n))

= E
1

n + 1

n∑
t=0

`n+1(A(`t+1, . . . , `n))

= E
1

n + 1

n∑
t=0

`n−t+1(A(`1, . . . , `n−t ))

= E
1

n + 1

n+1∑
t=1

`t (A(`1, . . . , `t−1))

≤ E
1

n + 1

(
min

a

n+1∑
t=1

`t (a) + Cn+1

)

≤ min
a

E`t (a) +
Cn+1

n + 1
.



Online to Batch Conversion

I The theorem is for the expectation over the randomness of
the method.

I For a high probability result, we could
1. Choose â = 1

n

∑n
t=1 at , provided A is convex and the `t are

all convex.
2. Choose

â = arg min
at

(
1

n − t

n∑
s=t+1

`s(at ) + c

√
log(n/δ)

n − t

)
.

In both cases, the analysis involves concentration of
martingale sequences.
The second (more general) approach does not recover the
Cn/n result: the penalty has the wrong form when
Cn = o(

√
n).



Online to Batch Conversion

Key Point:
I An online strategy with regret bound Cn can be converted

to a batch method.
The regret per trial in the probabilistic setting is bounded
by the regret per trial in the adversarial setting.



Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization
5. Regret bounds

I Log loss.



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent to minimizing latest

loss and divergence from previous decision
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Online Convex Optimization

I A = convex subset of Rd .
I L = set of convex real functions on A.

For example,

`t (a) = (xt · a− yt )
2.

`t (a) = |xt · a− yt |.



Online Convex Optimization: Example

Choosing at to minimize past losses,
at = arg mina∈A

∑t−1
s=1 `s(a), can fail.

(‘fictitious play,’ ‘follow the leader’)
I Suppose A = [−1,1], L = {a 7→ v · a : |v | ≤ 1}.
I Consider the following sequence of losses:

a1 = 0, `1(a) =
1
2

a,

a2 = −1, `2(a) = −a,
a3 = 1, `3(a) = a,
a4 = −1, `4(a) = −a,
a5 = 1, `5(a) = a,

...
...

I a∗ = 0 shows L∗n ≤ 0, but L̂n = n − 1.



Online Convex Optimization: Example

I Choosing at to minimize past losses can fail.
I The strategy must avoid overfitting, just as in probabilistic

settings.
I Similar approaches (regularization; Bayesian inference)

are applicable in the online setting.
I First approach: gradient steps.

Stay close to previous decisions, but move in a direction of
improvement.



Online Convex Optimization: Gradient Method

a1 ∈ A,
at+1 = ΠA (at − η∇`t (at )) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem
For G = maxt ‖∇`t (at )‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.



Online Convex Optimization: Gradient Method

Theorem
For G = maxt ‖∇`t (at )‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Example
A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√

n) is optimal.)



Online Convex Optimization: Gradient Method

Theorem
For G = maxt ‖∇`t (at )‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Example
A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D = 2, G ≤

√
m.

Regret is no more than 2
√

mn.
Since competing with the whole simplex is equivalent to
competing with the vertices (experts) for linear losses, this is
worse than exponential weights (

√
m versus log m).



Online Convex Optimization: Gradient Method

Proof.

Define ãt+1 = at − η∇`t (at ),

at+1 = ΠA(ãt+1).

Fix a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t (at )‖2 − 2η∇t (at ) · (at − a).

By convexity,

n∑
t=1

(`t (at )− `t (a)) ≤
n∑

t=1

∇`t (at ) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t (at )‖2



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent to minimizing latest

loss and divergence from previous decision
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Online Convex Optimization: A Regularization Viewpoint

I Suppose `t is linear: `t (a) = gt · a.
I Suppose A = Rd .
I Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1
2
‖a‖2

)

corresponds to the gradient step

at+1 = at − η∇`t (at ).



Online Convex Optimization: Regularization

Regularized minimization
Consider the family of strategies of the form:

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.



Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

I R keeps the sequence of ats stable: it diminishes `t ’s
influence.

I We can view the choice of at+1 as trading off two
competing forces: making `t (at+1) small, and keeping at+1
close to at .

I This is a perspective that motivated many algorithms in the
literature. We’ll investigate why regularized minimization
can be viewed this way.



Properties of Regularization Methods

In the unconstrained case (A = Rd ), regularized minimization is
equivalent to minimizing the latest loss and the distance to the
previous decision. The appropriate notion of distance is the
Bregman divergence DΦt−1 :
Define

Φ0 = R,
Φt = Φt−1 + η`t ,

so that

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt (a).



Bregman Divergence

Definition
For a strictly convex, differentiable Φ : Rd → R, the Bregman
divergence wrt Φ is defined, for a,b ∈ Rd , as

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a,b) is the difference between Φ(a) and the value at a of
the linear approximation of Φ about b.



Bregman Divergence

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example
For a ∈ Rd , the squared euclidean norm, Φ(a) = 1

2‖a‖
2, has

DΦ(a,b) =
1
2
‖a‖2 −

(
1
2
‖b‖2 + b · (a− b)

)
=

1
2
‖a− b‖2,

the squared euclidean norm.



Bregman Divergence

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example
For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a,b) =
∑

i

(ai(ln ai − 1)− bi(ln bi − 1)− ln bi(ai − bi))

=
∑

i

(
ai ln

ai

bi
+ bi − ai

)
,

the unnormalized KL divergence.
Thus, for a ∈ ∆d , Φ(a) =

∑
i ai ln ai has

Dφ(a,b) =
∑

i

ai ln
ai

bi
.



Bregman Divergence

When the range of Φ is A ⊂ Rd , in addition to differentiability
and strict convexity, we make two more assumptions:

I The interior of A is convex,
I For a sequence approaching the boundary of A,
‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.



Bregman Divergence

Properties:
1. DΦ ≥ 0, DΦ(a,a) = 0.
2. DA+B = DA + DB.
3. Bregman projection, ΠΦ

A(b) = arg mina∈ADΦ(a,b) is
uniquely defined for closed, convex A.

4. Generalized Pythagorus: for closed, convex A,
b∗ = ΠΦ

A(b), and a ∈ A,

DΦ(a,b) ≥ DΦ(a,a∗) + DΦ(a∗,b).

5. ∇aDΦ(a,b) = ∇Φ(a)−∇Φ(b).
6. For ` linear, DΦ+` = DΦ.
7. For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a,b) = DΦ∗(∇φ(b),∇φ(a)).



Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

I Φ∗ is Legendre.
I dom(Φ∗) = ∇Φ(int dom Φ).
I ∇Φ∗ = (∇Φ)−1.
I DΦ(a,b) = DΦ∗(∇φ(b),∇φ(a)).
I Φ∗∗ = Φ.



Legendre Dual

Example
For Φ = 1

2‖ · ‖
2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where

1/p + 1/q = 1.

Example
For Φ(a) =

∑d
i=1 eai ,

∇Φ(a) = (ea1 , . . . ,ead )′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud )′,

and Φ∗(u) =
∑

i ui(ln ui − 1).



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent to minimizing latest

loss and divergence from previous decision
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Properties of Regularization Methods

In the unconstrained case (A = Rd ), regularized minimization is
equivalent to minimizing the latest loss and the distance
(Bregman divergence) to the previous decision.

Theorem
Define ã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(
η`t (a) + DΦt−1(a, ãt )

)
.

Then

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

`s(a) + R(a)

)
.



Properties of Regularization Methods

Proof.
By the definition of Φt ,

η`t (a) + DΦt−1(a, ãt ) = Φt (a)− Φt−1(a) + DΦt−1(a, ãt ).

The derivative wrt a is

∇Φt (a)−∇Φt−1(a) +∇aDΦt−1(a, ãt )

= ∇Φt (a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt )

Setting to zero shows that

∇Φt (ãt+1) = ∇Φt−1(ãt ) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .



Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained
minimization, followed by Bregman projection:

Theorem
For

at+1 = arg min
a∈A

Φt (a),

ãt+1 = arg min
a∈Rd

Φt (a),

we have

at+1 = ΠΦt
A (ãt+1).



Properties of Regularization Methods

Proof.
Let a′t+1 denote ΠΦt

A (ãt+1). First, by definition of at+1,

Φt (at+1) ≤ Φt (a′t+1).

Conversely,

DΦt (a
′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt (ãt+1) = 0, so

DΦt (a, ãt+1) = Φt (a)− Φt (ãt+1).

Thus, Φt (a′t+1) ≤ Φt (at+1).



Properties of Regularization Methods

Example
For linear `t , regularized minimization is equivalent to
minimizing the last loss plus the Bregman divergence wrt R to
the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t (a) + DR(a, ãt ))

)
,

because adding a linear function to Φ does not change DΦ.



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent and Bregman

divergence from previous
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Properties of Regularization Methods: Linear Loss

We can replace `t by ∇`t (at ), and this leads to an upper bound
on regret.

Theorem
Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . ,gn)

can be used to construct a strategy for online convex
optimization, with regret

n∑
t=1

`t (at )−min
a∈A

n∑
t=1

`t (a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof.
Convexity implies `t (at )− `t (a) ≤ ∇`t (at ) · (at − a).



Properties of Regularization Methods: Linear Loss

Key Point:
We can replace `t by ∇`t (at ), and this leads to an upper bound
on regret.
Thus, we can work with linear `t .



Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as
mirror descent—taking a gradient step in a dual space:

Theorem
The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)

can be written

ãt+1 = (∇R)−1 (∇R(ãt )− ηgt ) .

This corresponds to first mapping from ãt through ∇R, then
taking a step in the direction −gt , then mapping back through
(∇R)−1 = ∇R∗ to ãt+1.



Regularization Methods: Mirror Descent

Proof.
For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs,

∇R(ãt ) = −η
t−1∑
s=1

gs,

so ∇R(ãt+1) = ∇R(ãt )− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt )− ηgt ) .



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization and Bregman divergences
5. Regret bounds

I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.



Regularization Methods: Regret

Theorem
For A = Rd , regularized minimization suffers regret against any
a ∈ A of

n∑
t=1

`t (at )−
n∑

t=1

`t (a) =
DR(a,a1)− DΦn (a,an+1)

η
+

1
η

n∑
t=1

DΦt (at ,at+1),

and thus

L̂n ≤ inf
a∈Rd

(
n∑

t=1

`t (a) +
DR(a,a1)

η

)
+

1
η

n∑
t=1

DΦt (at ,at+1).

So the sizes of the steps DΦt (at ,at+1) determine the regret
bound.



Regularization Methods: Regret

Theorem
For A = Rd , regularized minimization suffers regret

L̂n ≤ inf
a∈Rd

(
n∑

t=1

`t (a) +
DR(a,a1)

η

)
+

1
η

n∑
t=1

DΦt (at ,at+1).

Notice that we can write

DΦt (at ,at+1) = DΦ∗
t
(∇Φt (at+1),∇Φt (at ))

= DΦ∗
t
(0,∇Φt−1(at ) + η∇`t (at ))

= DΦ∗
t
(0, η∇`t (at )).

So it is the size of the gradient steps, DΦ∗
t
(0, η∇`t (at )), that

determines the regret.



Regularization Methods: Regret Bounds

Example
Suppose R = 1

2‖ · ‖
2. Then we have

L̂n ≤ L∗n +
‖a∗ − a1‖2

2η
+
η

2

n∑
t=1

‖gt‖2.

And if ‖gt‖ ≤ G and ‖a∗ − a1‖ ≤ D, choosing η appropriately
gives L̂n ≤ L∗n ≤ DG

√
n.



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization and Bregman divergences
5. Regret bounds

I Unconstrained minimization
I Seeing the future
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Regularization Methods: Regret Bounds

Seeing the future gives small regret:

Theorem
For all a ∈ A,

n∑
t=1

`t (at+1)−
n∑

t=1

`t (a) ≤ 1
η

(R(a)− R(a1)).



Regularization Methods: Regret Bounds

Proof.
Since at+1 minimizes Φt ,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t (at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t (at+1) + η

t−1∑
s=1

`s(at ) + R(at )

...

≥ η
t∑

s=1

`s(as+1) + R(a1).



Regularization Methods: Regret Bounds

Theorem
For all a ∈ A,

n∑
t=1

`t (at+1)−
n∑

t=1

`t (a) ≤ 1
η

(R(a)− R(a1)).

Thus, if at and at+1 are close, then regret is small:

Corollary
For all a ∈ A,

n∑
t=1

(`t (at )− `t (a)) ≤
n∑

t=1

(`t (at )− `t (at+1)) +
1
η

(R(a)− R(a1)) .

So how can we control the increments `t (at )− `t (at+1)?
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Regularization Methods: Regret Bounds

Definition
We say R is strongly convex wrt a norm ‖ · ‖ if, for all a,b,

R(a) ≥ R(b) +∇R(b) · (a− b) +
1
2
‖a− b‖2.

For linear losses and strongly convex regularizers, the dual
norm of the gradient is small:

Theorem
If R is strongly convex wrt a norm ‖ · ‖, and `t (a) = gt · a, then

‖at − at+1‖ ≤ η‖gt‖∗,

where ‖ · ‖∗ is the dual norm to ‖ · ‖:

‖v‖∗ = sup{|v · a| : a ∈ A, ‖a‖ ≤ 1}.



Regularization Methods: Regret Bounds

Proof.

R(at ) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1
2
‖at − at+1‖2,

R(at+1) ≥ R(at ) +∇R(at ) · (at+1 − at ) +
1
2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at )−∇R(at+1)) · (at − at+1)

Hence,

‖at − at+1‖ ≤ ‖∇R(at )−∇R(at+1)‖∗ = ‖ηgt‖∗.



Regularization Methods: Regret Bounds

This leads to the regret bound:

Corollary
For linear losses, if R is strongly convex wrt ‖ · ‖, then for all
a ∈ A,

n∑
t=1

(`t (at )− `t (a)) ≤ η
n∑

t=1

‖gt‖2∗ +
1
η

(R(a)− R(a1)) .

Thus, for ‖gt‖∗ ≤ G and R(a)− R(a1) ≤ D2, choosing η
appropriately gives regret no more than 2GD

√
n.



Regularization Methods: Regret Bounds

Example
Consider R(a) = 1

2‖a‖
2, a1 = 0, and A contained in a

Euclidean ball of diameter D.
Then R is strongly convex wrt ‖ · ‖ and ‖ · ‖∗ = ‖ · ‖. And the
mapping between primal and dual spaces is the identity.
So if supa∈A ‖∇`t (a)‖ ≤ G, then regret is no more than
2GD

√
n.



Regularization Methods: Regret Bounds

Example
Consider A = ∆m, R(a) =

∑
i ai ln ai . Then the mapping

between primal and dual spaces is ∇R(a) = ln(a)
(component-wise). And the divergence is the KL divergence,

DR(a,b) =
∑

i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1 (check!).
Suppose that ‖gt‖∞ ≤ 1. Also, R(a)− R(a1) ≤ ln m, so the
regret is no more than 2

√
n ln m.



Regularization Methods: Regret Bounds

Example
A = ∆m, R(a) =

∑
i ai ln ai .

What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt )− ηgt ))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt )))

= ΠR
A(ãt exp(−ηgt )),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to
normalization, ΠR

A(ã) = ã/‖a‖1.



Regularization Methods: Regret Bounds

Notice that when the losses are linear, exponentiated gradient
is exactly the exponential weights strategy we discussed for a
finite comparison class.
Compare R(a) =

∑
i ai ln ai with R(a) = 1

2‖a‖
2,

for ‖gt‖∞ ≤ 1, A = ∆m:

O(
√

n ln m) versus O(
√

mn).
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1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent and Bregman

divergence from previous
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Regularization Methods: Extensions

I Instead of

at+1 = arg min
a∈A

(
η`t (a) + DΦt−1(a, ãt )

)
,

we can use

at+1 = arg min
a∈A

(
η`t (a) + DΦt−1(a,at )

)
.

And analogous results apply. For instance, this is the
approach used by the first gradient method we considered.

I We can get faster rates with stronger assumptions on the
losses...



Regularization Methods: Varying η

Theorem
Define

at+1 = arg min
a∈Rd

(
n∑

t=1

ηt`t (a) + R(a)

)
.

For any a ∈ Rd ,

L̂n−
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

(
DΦt (at ,at+1) + DΦt−1(a,at )− DΦt (a,at+1)

)
.

If we linearize the `t , we have

L̂n −
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

(DR(at ,at+1) + DR(a,at )− DR(a,at+1)) .

But what if `t are strongly convex?



Regularization Methods: Strongly Convex Losses

Theorem
If `t is σ-strongly convex wrt R, that is, for all a,b ∈ Rd ,

`t (a) ≥ `t (b) +∇`t (b) · (a− b) +
σ

2
DR(a,b),

then for any a ∈ Rd , this strategy with ηt = 2
tσ has regret

L̂n −
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

DR(at ,at+1).



Strongly Convex Losses: Proof idea

n∑
t=1

(`t (at )− `t (a))

≤
n∑

t=1

(
∇`t (at ) · (at − a)− σ

2
DR(a,at )

)
≤

n∑
t=1

1
ηt

(
DR(at ,at+1) + DR(a,at )− DR(a,at+1)− ηtσ

2
DR(a,at )

)
≤

n∑
t=1

1
ηt

DR(at ,at+1) +
n∑

t=2

(
1
ηt
− 1
ηt−1

− σ

2

)
DR(a,at )

+

(
1
η1
− σ

2

)
DR(a,a1).

And choosing ηt appropriately eliminates the second and third
terms.



Strongly Convex Losses

Example
For R(a) = 1

2‖a‖
2, we have

L̂n − L∗n ≤
1
2

n∑
t=1

1
ηt
‖ηt∇`t‖2 ≤

n∑
t=1

G2

tσ
= O

(
G2

σ
log n

)
.



Strongly Convex Losses

Key Point: When the loss is strongly convex wrt the regularizer,
the regret rate can be faster; in the case of quadratic R (and `t ),
it is O(log n), versus O(

√
n).



Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.
I Log loss.


