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Course Synopsis I

» A finite comparison class: A= {1,...,m}.
1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy: /nlog m regret.
4. Refinements and extensions.
5. Statistical prediction with a finite class.

» Converting online to batch.
» Online convex optimization.
» Log loss.



Online to Batch Conversion I

» Suppose we have an online strategy that, given
observations /1, ..., ¢;_1, produces a; = A(l1,...,4i_1).

» Can we convert this to a method that is suitable for a
probabilistic setting? That is, if the ¢; are chosen i.i.d., can
we use A’s choices a; to come up with a & € A so that

E¢1(2) — minE
/1(a) min /1 (a)

is small?
» Consider the following simple randomized method:

1. Pick T uniformly from {0,. .., n}.
2. Leta=A(l1i1,..,Ln).



Online to Batch Conversion I

Theorem
If A has a regret bound of C, 1 for sequences of length n+ 1,
then for any stationary process generating the ¢4, ..., ¢n.4, this
method satisfies
Elpi1(8) — minEl, (a) < Cni1.
acA ~—n+1

(Notice that the expectation averages also over the
randomness of the method.)



Online to Batch Conversion '

Proof.
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Online to Batch Conversion.

» The theorem is for the expectation over the randomness of
the method.

» For a high probability result, we could
1. Choose a = 15 EL ay, provided A is convex and the /; are

all convex.
2. Choose
. . [ log(n/d)
& = argmin (n—t S;ﬂ (s(ar) + o[ == |

In both cases, the analysis involves concentration of
martingale sequences.

The second (more general) approach does not recover the
Cn/n result: the penalty has the wrong form when

Cn = o(v/n).



Online to Batch Conversion.
Key Point:

» An online strategy with regret bound C, can be converted
to a batch method.
The regret per trial in the probabilistic setting is bounded
by the regret per trial in the adversarial setting.



Course Synopsis I

» A finite comparison class: A= {1,...,m}.
» Converting online to batch.

» Online convex optimization.

1. Problem formulation

2. Empirical minimization fails.
3. Gradient algorithm.

4. Regularized minimization
5. Regret bounds

» Log loss.
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Online Convex Optimization I

Problem formulation
Empirical minimization fails.
Gradient algorithm.
Regularized minimization
» Bregman divergence
» Regularized minimization equivalent to minimizing latest
loss and divergence from previous decision
» Constrained minimization equivalent to unconstrained plus
Bregman projection
» Linearization
» Mirror descent
Regret bounds
Unconstrained minimization
Seeing the future
Strong convexity
Examples (gradient, exponentiated gradient)
Extensions

vV vy VY VvYy



Online Convex Optimization I

» A = convex subset of RY.
» L = set of convex real functions on A.

For example,

Et(a) = (Xt -a— yt)z.
ti(a) = |xi-a—yil.



Online Convex Optimization: ExampIeI

Choosing a; to minimize past losses,
ar = argminac 4 L} 45(a), can fail.
(‘fictitious play, ‘follow the leader’)

» Suppose A =[-1,1], L={a—Vv-a:|v|<1}.
» Consider the following sequence of losses:

a; =0, l1(a) = %a,
a = -1, lr(a) = —a,
az =1, l3(a) = a,
ay = —1, ls(a) = —a,
as =1, ls(a) = a,

» a* =0 shows L} <0,but L, =n—1.



Online Convex Optimization: ExampIeI

» Choosing a; to minimize past losses can fail.

» The strategy must avoid overfitting, just as in probabilistic
settings.

» Similar approaches (regularization; Bayesian inference)
are applicable in the online setting.

» First approach: gradient steps.

Stay close to previous decisions, but move in a direction of
improvement.



Online Convex Optimization: Gradient Method

as € A,
a1 = Na(ar —nViar)),

where I 4 is the Euclidean projection on A,
I =argmin|/x — a||.
a(x) = argmin |.x - a]
Theorem

For G = max; ||V{(a;)|| and D = diam(.A), the gradient
strategy withn = D/(Gv/n) has regret satisfying

L,—L: < GDVn.



Online Convex Optimization: Gradient Method I

Theorem
For G = max; | V¢i(a;)|| and D = diam(.A), the gradient
strategy withn = D/(Gv/n) has regret satisfying

L,—L: < GDVn.

Example

A={acR%: |a|<1},L={a—v-a:|v| <1}
D=2,G<1.

Regret is no more than 2,/n.

(And O(+/n) is optimal.)



Online Convex Optimization: Gradient Method I

Theorem
For G = max; | V¢i(a;)|| and D = diam(.A), the gradient
strategy withn = D/(G+/n) has regret satisfying

L,— Ly < GDVn.

Example
A=A"L={a—Vv-a:|V|ew<1}.
D=2 G<+vm.

Regret is no more than 2/mn.

Since competing with the whole simplex is equivalent to
competing with the vertices (experts) for linear losses, this is
worse than exponential weights (v/m versus log m).



Online Convex Optimization: Gradient Method I

Proof.

Define arr1 = ar — Vi ar),
a1 = Na(ai1).

Fix a € A and consider the measure of progress ||a; — a||.
a1 — al? < [|&e 1 — al®
= lla: — all* + 17|V ee(@r)lI” — 20Vi(ar) - (at — a)-

By convexity,

n

> (tr(ar) — tr(a <2Vft ar)-(ar—a)

t=1

||a1 —a|®— a1 —al® | 7 2
< 5y ZHW )l
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Online Convex Optimization I

Problem formulation
Empirical minimization fails.
Gradient algorithm.
Regularized minimization
» Bregman divergence
» Regularized minimization equivalent to minimizing latest
loss and divergence from previous decision
» Constrained minimization equivalent to unconstrained plus
Bregman projection
» Linearization
» Mirror descent
Regret bounds
Unconstrained minimization
Seeing the future
Strong convexity
Examples (gradient, exponentiated gradient)
Extensions
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Online Convex Optimization: A Regularization Viewpoint'

» Suppose /; is linear: ¢:(a) = gt - a.
» Suppose A = RY.
» Then minimizing the regularized criterion

t
_ 1
a1 = argmin <n2€s(a) + 2H3H2>
s=1

corresponds to the gradient step

a1 = ar —nViga).



Online Convex Optimization: Regularization I

Regularized minimization
Consider the family of strategies of the form:

t
arp1 = arg gﬂeiﬂ (n;&(a) + F?(a)) :

The regularizer R : RY — R is strictly convex and differentiable.



Online Convex Optimization: Regularization I

Regularized minimization

t
ar+1 = argmin (nz;és(a) + R(a)> :
S=

» R keeps the sequence of a;s stable: it diminishes ¢;'s
influence.

» We can view the choice of a;, 1 as trading off two
competing forces: making ¢:(a;.1) small, and keeping a1
close to a;.

» This is a perspective that motivated many algorithms in the
literature. We'll investigate why regularized minimization
can be viewed this way.



Properties of Regularization Methods'

In the unconstrained case (A = RY), regularized minimization is
equivalent to minimizing the latest loss and the distance to the
previous decision. The appropriate notion of distance is the
Bregman divergence Dy, ,:

Define

oy =R,
=1+l

so that

t
ar+1 = argmin <n;€s(a) + R(a)>

= argmin ®(a).
gaelA t()



Bregman Divergence'
Definition

For a strictly convex, differentiable ¢ : R — R, the Bregman
divergence wrt ¢ is defined, for a, b € RY, as

Do(a,b) = d(a) — (d(b) + Vo(b) - (a— b)).

D¢ (a, b) is the difference between ®(a) and the value at a of
the linear approximation of ¢ about b.



Bregman Divergence'

Do(a,b) = d(a) — (d(b) + Vo(b) - (a— b)).

Example
For a € RY, the squared euclidean norm, (a) = }||a||?, has

Do(a.b) = zlal - 5617 + b: (a- b))

71 2
= slla- b2,

the squared euclidean norm.



Bregman Divergence'

De(a,b) = ®(a) — (¢(b) + Ve(b) - (a— b)).

Example
For a € [0, 00)¢, the unnormalized negative entropy,
®(a) =%, a/(Ina;— 1), has

Do(a,b) =) (ai(lna;— 1) — b(Inb; — 1) — Inbi(a; — b))

i
—Z(&;mai—i-b/—a/),
i by

the unnormalized KL divergence.
Thus, for ac A9, ®(a) = 3, a;In a; has

_ né
Dy(a,b) = Zj:a, In b



Bregman Divergence'

When the range of ¢ is .A ¢ RY, in addition to differentiability
and strict convexity, we make two more assumptions:

» The interior of A is convex,

» For a sequence approaching the boundary of A,
IV®(an)| — oo.

We say that such a ¢ is a Legendre function.



Bregman Divergence'
Properties:

1. Dy > 0, D¢(a, a) =0.

2. DA+B = DA + DB-

3. Bregman projection, N9 (b) = arg minae 4 Do (a, b) is
uniquely defined for closed, convex A.

4. Generalized Pythagorus: for closed, convex A,
b* =MN%(b), and a € A,

D¢(a7 b) > D¢’(av a*) + D¢'(a*7 b)

5. VaDe(a, b) = Vo(a) — Vo(b).
For ¢ linear, Dy ¢y = Dq.
7. For ®* the Legendre dual of ¢,

o

Vo* = (Vo)
Do (a, b) = Do+(Vé(b), Vo(a)).



Legendre Dual I

For a Legendre function ¢ : A — R, the Legendre dual is

o*(u) =sup(u-v—>(v)).
veA

o* is Legendre.

dom(®*) = Vé(int dom ).
Vor = (Vo).

Do(a, b) = Do-(V(b), Vo(a)).
O = .

vV v v v Y



Legendre Dual I

Example
For & = J|| - ||, the Legendre dual is ®* = J|| - [|2, where
1/p+1/g=1.

Example
For d(a) = 17, 7,
Vo(a) = (e?, ..., e%),

S0
(V) (u) = Vor(u) = (Inuy, ..., Inug),

and ®*(u) = > ui(lnu; — 1).
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Online Convex Optimization I

Problem formulation
Empirical minimization fails.
Gradient algorithm.
Regularized minimization
» Bregman divergence
» Regularized minimization equivalent to minimizing latest
loss and divergence from previous decision
» Constrained minimization equivalent to unconstrained plus
Bregman projection
» Linearization
» Mirror descent
Regret bounds
Unconstrained minimization
Seeing the future
Strong convexity
Examples (gradient, exponentiated gradient)
Extensions
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Properties of Regularization Methods'

In the unconstrained case (A = RY), regularized minimization is
equivalent to minimizing the latest loss and the distance
(Bregman divergence) to the previous decision.

Theorem
Define ay via VR(a1) = 0, and set

ét—H = arg ang]ilgf (nﬁt(a) + D¢t—1 (a, ét)) .

Then .
a;,4 = arg min ls(a) + R(a) | .
t+1 gae]Rd (77;:1 s(a) ( ))



Properties of Regularization Methods'
Proof.

By the definition of &y,
nﬁt(a) + Dq>t71 (a, ét) = d>,(a) — q)l‘—1 (a) + Dq;F1 (a, ét)
The derivative wrt a is

Vd)t(a) — Vo4 (a) + VaD4>t_1 (37 ét)
= Vdy(a) — Vo;_1(a) + Vor_q(a) — Vor_1(&)

Setting to zero shows that
Voi(aiq1) =V _1(a) =---=Vdy(a1) = VR(a1) =0,

So &, 1 minimizes ¢;.

O



Properties of Regularization Methods'

Constrained minimization is equivalent to unconstrained
minimization, followed by Bregman projection:

Theorem
For
a;, 1 = argmin d®¢(a
t+1 gaeA t( )7
a1 = arg min ®4(a),
acRrd
we have

arer = N5 (8r41)-



Properties of Regularization Methods'

Proof.
Let a,, , denote NM%(&1). First, by definition of a1,

br(ar1) < u(ap4).
Conversely,
Do,(,1,8t11) < Do,(8t41, 8t11)-
But V&4(ar1) =0, so
Do, (a, 1) = d1(a) — P1(ars1).

Thus, ¢t(a’t+1) < ¢1(at+1 )



Properties of Regularization Methods'

Example
For linear ¢;, regularized minimization is equivalent to
minimizing the last loss plus the Bregman divergence wrt R to

the previous decision:
t
[ R
arg min (n sZ_:1€s(a) + (a)>
=% (arg min (14(a) + D(a. ) )
acRd

because adding a linear function to ¢ does not change D.
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Online Convex Optimization I

Problem formulation
Empirical minimization fails.

Gradient algorithm.
Regularized minimization

» Bregman divergence
» Regularized minimization equivalent and Bregman
divergence from previous
» Constrained minimization equivalent to unconstrained plus
Bregman projection
» Linearization
» Mirror descent
Regret bounds
Unconstrained minimization
Seeing the future
Strong convexity
Examples (gradient, exponentiated gradient)
Extensions
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Properties of Regularization Methods: Linear Loss'

We can replace ¢; by V/(a;), and this leads to an upper bound
on regret.

Theorem
Any strategy for online linear optimization, with regret satisfying

th ar — mmth a< Cn(91,---.9n)
t=1

can be used to construct a strategy for online convex
optimization, with regret

zn:zt(a, mmZEt a) < Cn(Vli(ay),...,Ven(an)).

Proof.
Convexity implies ¢:(at) — ¢i(a) < Vii(ar) - (ar — a). O



Properties of Regularization Methods: Linear LossI

Key Point:
We can replace ¢; by V/(a;), and this leads to an upper bound

on regret.
Thus, we can work with linear ¢;.



Regularization Methods: Mirror Descent'

Regularized minimization for linear losses can be viewed as
mirror descent—taking a gradient step in a dual space:

Theorem
The decisions

t
31,1 = arg argﬁgf (n;gs -a+ Ff(a))
can be written
&1 = (VR) ' (VR(&r) —ngt) .-
This corresponds to first mapping from a; through VR, then

taking a step in the direction —g;, then mapping back through
(VR)™' = VR* t0 &r,4.



Regularization Methods: Mirror Descent'

Proof.
For the unconstrained minimization, we have

VR af+1 = —nzgs,

t)=-n Z Os;
s=1

so VR(a:.1) = VR(a:) — ng:, which can be written

&1 =VR ' (VR(&) —ngt).
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Online Convex Optimization: Regularization

Regularized minimization

t
ar 1 = arg gﬂeiﬂ (n;&(a) + F?(a)) :

The regularizer R : RY — R is strictly convex and differentiable.



Regularization Methods: Regret'
Theorem

For A = RY, regularized minimization suffers regret against any
ae Aof

L L Dr(a, a1) — Do,(a, ani1)
S t(a)-Y u(a) = —= Pt B0 ZD@ a, ar 1),
=1 =1

K t 1

and thus

A . r(a, ar)
L, < alen]lgd <Z l(a ) Z Ds,(at, at41)-

" l‘ 1

So the sizes of the steps Dq,(at, ai11) determine the regret
bound.



Regularization Methods: Regret'
Theorem

For A = R9, regularized minimization suffers regret

r(a, ar)
n < inf 2e( Do, (at, ar+1)-
ot (s 222 4 1S 0y )

il t 1

Notice that we can write

Do, (ar; at11) = Doy (VOi(ari1), Vei(ar))
= Dq;;f (0,Vo;_q(ar) + nVii(ar))
= Dq>t* (O, T]Vﬁt(at)).

So it is the size of the gradient steps, Do; (0,7V/1(ar)), that
determines the regret.



Regularization Methods: Regret Bounds'

Example
Suppose R = | - ||2. Then we have

n
7 * ||a>k — a1||2 n 2
Lo+ 20 33 ol

And if ||gi]| < Gand ||a* — ai|| < D, choosing 7 appropriately
gives L, < L} < DGv/n.
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Regularization Methods: Regret Bounds'

Seeing the future gives small regret:

Theorem
Forall a € A,

th(at+1 Zf{ — R(a1))
t=1

Q_L



Regularization Methods: Regret Bounds'

Proof.
Since a;; 1 minimizes ¢,

t t
nY ts(a)+R(@) =nY  ls(a1)+ R(ar1)
s=1 s=1
t—1
= nl(ar1) + U253(3t+1) + R(ar+1)
s=1
t—1
> nti(ar) + 1Y bo(an) + Aar)

s=1

t
>n> Ls(as1) + Ra).

s=1



Regularization Methods: Regret Bounds'

Theorem
Forallac A,

S tann) — > ti(a) < ;(R(eo ~ R(a)).
t=1 t=1

Thus, if a; and a; 4 are close, then regret is small:

Corollary
Forallac A,

n n

> (t(a) — (@) <> (Ular) — @) + 717 (R(a) — R(a1)).

t=1 t=1

So how can we control the increments ¢:(a;) — ¢+(a+1)?
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Regularization Methods: Regret Bounds'

Definition
We say R is strongly convex wrt a norm || - || if, for all a, b,

R(a) > R(b) + VR(b) - (a— b) + %Ha — b|2.

For linear losses and strongly convex regularizers, the dual
norm of the gradient is small:

Theorem
If R is strongly convex wrt a norm || - ||, and ¢¢(a) = g; - a, then

lar — a1l < nllgell«
where || - ||« is the dual norm to || - ||:

Iv[l« =sup{[v-al-ac A all <1}.



Regularization Methods: Regret Bounds'

Proof.

Rlar) > (@) + VR(@1) - (@~ a) + ylla - a |
R(ai+1) = R(ar) + VR(ar) - (ar41 — ar) + %llar — a1
Combining,
lar — ar1]? < (VR(ar) — VR(ar1)) - (ar — ar1)
Hence,

lat — ar1]l < IVR(ar) — VR(ati 1)« = [[ngtll«



Regularization Methods: Regret Bounds'

This leads to the regret bound:

Corollary
For linear losses, if R is strongly convex wrt || - ||, then for all
acA,

n

> (tar) — (@) <n)_llgel + :7 (R(a) — R(ar))-
t=1

t=1

Thus, for ||g¢||« < G and R(a) — R(ay) < D?, choosing 1
appropriately gives regret no more than 2GD+/n.



Regularization Methods: Regret Bounds'

Example

Consider R(a) = }||al?, a; = 0, and A contained in a
Euclidean ball of diameter D.

Then R is strongly convex wrt || - || and || - ||« = || - ||. And the
mapping between primal and dual spaces is the identity.

So if sup,c 4 [ V4i(a)|| < G, then regret is no more than
2GD/n.



Regularization Methods: Regret Bounds'

Example

Consider A = A™, R(a) = ), a;In a;. Then the mapping
between primal and dual spaces is VR(a) = In(a)
(component-wise). And the divergence is the KL divergence,

Dr(a b) = ajIn(a;/b)).

And R is strongly convex wrt || - || (check!).
Suppose that ||gi|l.c < 1. Also, R(a) — R(ay) < Inm, so the
regret is no more than 2v nin m.



Regularization Methods: Regret Bounds'

Example
A=A" R(a)=>;alna;.
What are the updates?

where the In and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with VR = In.
It is easy to check that the projection corresponds to
normalization, N7 (&) = &/||al/.



Regularization Methods: Regret Bounds'

Notice that when the losses are linear, exponentiated gradient
is exactly the exponential weights strategy we discussed for a
finite comparison class.

Compare R(a) = 3, a;In a; with R(a) = }||all?,

for |9tllcc <1, A =AM

O(v/nInm) versus O(v/mn).



Ao~

Online Convex Optimization I

Problem formulation
Empirical minimization fails.

Gradient algorithm.
Regularized minimization

» Bregman divergence
» Regularized minimization equivalent and Bregman
divergence from previous
» Constrained minimization equivalent to unconstrained plus
Bregman projection
» Linearization
» Mirror descent
Regret bounds
Unconstrained minimization
Strong convexity

Examples (gradient, exponentiated gradient)
Extensions

vV vy vYyy



Regularization Methods: Extensions'

» Instead of
a; 1 = arg rarélﬂ (nti(a) + Do, ,(a &),
we can use
aiq = arg gyﬂ (nét(a) + D¢t,1 (37 at)) :

And analogous results apply. For instance, this is the
approach used by the first gradient method we considered.

» We can get faster rates with stronger assumptions on the
losses...



Regularization Methods: Varying 7;'

Theorem
Define

ar 1 = arg mm (met + A( ))

For any a € R,

n

n

A 1

Lh— g l(a) < g p” (Do,(at, ar41) + Do, ,(a,at) — Do,(a@, ar41)) -
— 1—1

If we linearize the ¢;, we have

’
Zfr Z (Dr(ar, ar+1) + Dr(a, ar) — Dr(a, ar+1)) -
t—1 Mt

But what if ¢; are strongly convex?



Regularization Methods: Strongly Convex Losses'

Theorem
If ¢; is o-strongly convex wrt R, that is, for all a,b € RY,

((a) = (b) + Vii(b) - (2~ b) + 5 Dr(a.b).

then for any a € RY, this strategy with n; = 2 has regret

n n

A 1

Lp— E li(a) < § EDR(ataat—i-ﬂ'
t=1

t=1



Strongly Convex Losses: Proof idea I

n

> (t(ar) — t(a))

t=1

< Z (Vﬁt(at) (ar—a) - %DR(37 ai))

ag
< Z (Dn ai, a+1) + Da(a, &) — Dr(@. au1) — "5~ Dala, )

n
1 1 o
< —Dg(at, ary1) + (——)D aa
;m A(ar, ar41) t}_; o~ 3)Palaa)

+ (1 - ") Dr(a, a).

m 2

And choosing n; appropriately eliminates the second and third
terms.



Strongly Convex Losses'
Example

For R(a) = }| al|, we have

n

Lo L < 12—Hmwtu2<2

t=1

2
—logn
(o

).



Strongly Convex Losses'

Key Point: When the loss is strongly convex wrt the regularizer,
the regret rate can be faster; in the case of quadratic R (and ¢;),
itis O(log n), versus O(y/n).



Course Synopsis I

» A finite comparison class: A= {1,...,m}.
» Converting online to batch.

» Online convex optimization.

» Log loss.



