Learning Methods for Online Prediction Problems

Peter Bartlett

Statistics and EECS UC Berkeley

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Course Synopsis

- A finite comparison class: $A = \{1, \ldots, m\}$.
 - 1. "Prediction with expert advice."
 - 2. With perfect predictions: log *m* regret.
 - 3. Exponential weights strategy: $\sqrt{n \log m}$ regret.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 4. Refinements and extensions.
- 5. Statistical prediction with a finite class.
- Converting online to batch.
- Online convex optimization.
- Log loss.

- Suppose we have an online strategy that, given observations ℓ₁,..., ℓ_{t-1}, produces a_t = A(ℓ₁,..., ℓ_{t-1}).
- Can we convert this to a method that is suitable for a probabilistic setting? That is, if the ℓ_t are chosen i.i.d., can we use A's choices a_t to come up with a â ∈ A so that

$$\mathsf{E}\ell_1(\hat{a}) - \min_{a\in\mathcal{A}}\mathsf{E}\ell_1(a)$$

(日) (日) (日) (日) (日) (日) (日)

is small?

Consider the following simple randomized method:

- 1. Pick T uniformly from $\{0, \ldots, n\}$.
- 2. Let $\hat{a} = A(\ell_{T+1}, ..., \ell_n)$.

Theorem

If A has a regret bound of C_{n+1} for sequences of length n + 1, then for any stationary process generating the $\ell_1, \ldots, \ell_{n+1}$, this method satisfies

$$\mathbf{E}\ell_{n+1}(\hat{a}) - \min_{a\in\mathcal{A}} \mathbf{E}\ell_n(a) \leq rac{C_{n+1}}{n+1}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(Notice that the expectation averages also over the randomness of the method.)

Proof.

$$\begin{aligned} \mathbf{E}\ell_{n+1}(\hat{a}) &= \mathbf{E}\ell_{n+1}(A(\ell_{T+1},\ldots,\ell_n)) \\ &= \mathbf{E}\frac{1}{n+1}\sum_{t=0}^n \ell_{n+1}(A(\ell_{t+1},\ldots,\ell_n)) \\ &= \mathbf{E}\frac{1}{n+1}\sum_{t=0}^n \ell_{n-t+1}(A(\ell_1,\ldots,\ell_{n-t})) \\ &= \mathbf{E}\frac{1}{n+1}\sum_{t=1}^{n+1} \ell_t(A(\ell_1,\ldots,\ell_{t-1})) \\ &\leq \mathbf{E}\frac{1}{n+1}\left(\min_a\sum_{t=1}^{n+1}\ell_t(a) + C_{n+1}\right) \\ &\leq \min_a \mathbf{E}\ell_t(a) + \frac{C_{n+1}}{n+1}. \end{aligned}$$

- The theorem is for the expectation over the randomness of the method.
- ► For a high probability result, we could
 - 1. Choose $\hat{a} = \frac{1}{n} \sum_{t=1}^{n} a_t$, provided A is convex and the ℓ_t are all convex.
 - 2. Choose

$$\hat{a} = \arg\min_{a_t} \left(\frac{1}{n-t} \sum_{s=t+1}^n \ell_s(a_t) + c \sqrt{\frac{\log(n/\delta)}{n-t}} \right).$$

In both cases, the analysis involves concentration of martingale sequences.

The second (more general) approach does not recover the C_n/n result: the penalty has the wrong form when $C_n = o(\sqrt{n})$.

Key Point:

 An online strategy with regret bound C_n can be converted to a batch method.
 The regret per trial in the probabilistic setting is bounded by the regret per trial in the adversarial setting.

(日) (日) (日) (日) (日) (日) (日)

Course Synopsis

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- A finite comparison class: $A = \{1, \ldots, m\}$.
- Converting online to batch.
- Online convex optimization.
 - 1. Problem formulation
 - 2. Empirical minimization fails.
 - 3. Gradient algorithm.
 - 4. Regularized minimization
 - 5. Regret bounds
- Log loss.

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization equivalent to minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection

- Linearization
- Mirror descent
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions

Online Convex Optimization

- $\mathcal{A} = \text{ convex subset of } \mathbb{R}^d$.
- $\mathcal{L} =$ set of convex real functions on \mathcal{A} .

For example,

$$\ell_t(a) = (x_t \cdot a - y_t)^2.$$

$$\ell_t(a) = |x_t \cdot a - y_t|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Online Convex Optimization: Example

Choosing a_t to minimize past losses, $a_t = \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. ('fictitious play,' 'follow the leader')

► Suppose $\mathcal{A} = [-1, 1], \mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}.$

Consider the following sequence of losses:

 $\begin{array}{ll} a_1 = 0, & \ell_1(a) = \frac{1}{2}a, \\ a_2 = -1, & \ell_2(a) = -a, \\ a_3 = 1, & \ell_3(a) = a, \\ a_4 = -1, & \ell_4(a) = -a, \\ a_5 = 1, & \ell_5(a) = a, \end{array}$

• $a^* = 0$ shows $L_n^* \le 0$, but $\hat{L}_n = n - 1$.

;

Online Convex Optimization: Example

- Choosing a_t to minimize past losses can fail.
- The strategy must avoid overfitting, just as in probabilistic settings.
- Similar approaches (regularization; Bayesian inference) are applicable in the online setting.
- First approach: gradient steps.
 Stay close to previous decisions, but move in a direction of improvement.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$a_{1} \in \mathcal{A}, \\ a_{t+1} = \Pi_{\mathcal{A}} \left(a_{t} - \eta \nabla \ell_{t}(a_{t}) \right),$$

where $\Pi_{\mathcal{A}}$ is the Euclidean projection on \mathcal{A} ,

$$\Pi_{\mathcal{A}}(x) = \arg\min_{a\in\mathcal{A}} \|x-a\|.$$

Theorem

For $G = \max_t \|\nabla \ell_t(a_t)\|$ and D = diam(A), the gradient strategy with $\eta = D/(G\sqrt{n})$ has regret satisfying

$$\hat{L}_n - L_n^* \leq GD\sqrt{n}.$$

Theorem

For $G = \max_t \|\nabla \ell_t(a_t)\|$ and $D = diam(\mathcal{A})$, the gradient strategy with $\eta = D/(G\sqrt{n})$ has regret satisfying

 $\hat{L}_n - L_n^* \leq GD\sqrt{n}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

 $\mathcal{A} = \{ a \in \mathbb{R}^d : ||a|| \le 1 \}, \mathcal{L} = \{ a \mapsto v \cdot a : ||v|| \le 1 \}.$ $D = 2, G \le 1.$ Regret is no more than $2\sqrt{n}$. (And $O(\sqrt{n})$ is optimal.)

Theorem

For $G = \max_t \|\nabla \ell_t(a_t)\|$ and $D = diam(\mathcal{A})$, the gradient strategy with $\eta = D/(G\sqrt{n})$ has regret satisfying

$$\hat{L}_n - L_n^* \leq GD\sqrt{n}.$$

Example

 $\mathcal{A} = \Delta^m, \mathcal{L} = \{ a \mapsto v \cdot a : \|v\|_{\infty} \le 1 \}.$ $D = 2, G \le \sqrt{m}.$ Regret is no more than $2\sqrt{mn}.$

Since competing with the whole simplex is equivalent to competing with the vertices (experts) for linear losses, this is worse than exponential weights (\sqrt{m} versus log *m*).

Proof.

Define
$$\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t),$$

 $a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}).$

Fix $a \in A$ and consider the measure of progress $||a_t - a||$.

$$egin{aligned} \|a_{t+1}-a\|^2 &\leq \| ilde{a}_{t+1}-a\|^2 \ &= \|a_t-a\|^2 + \eta^2 \|
abla \ell_t(a_t)\|^2 - 2\eta
abla_t(a_t) \cdot (a_t-a). \end{aligned}$$

By convexity,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \le \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a)$$
$$\le \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2$$

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization equivalent to minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection

(日) (日) (日) (日) (日) (日) (日)

- Linearization
- Mirror descent
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions

Online Convex Optimization: A Regularization Viewpoint

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step

$$a_{t+1} = a_t - \eta \nabla \ell_t(a_t).$$

Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

The regularizer $R : \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Online Convex Optimization: Regularization

Regularized minimization

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

- ► R keeps the sequence of a_ts stable: it diminishes ℓ_t's influence.
- We can view the choice of a_{t+1} as trading off two competing forces: making ℓ_t(a_{t+1}) small, and keeping a_{t+1} close to a_t.
- This is a perspective that motivated many algorithms in the literature. We'll investigate why regularized minimization can be viewed this way.

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$: Define

$$\begin{split} \Phi_0 &= R, \\ \Phi_t &= \Phi_{t-1} + \eta \ell_t, \end{split}$$

so that

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$

= $\arg\min_{a \in \mathcal{A}} \Phi_t(a).$

(日) (日) (日) (日) (日) (日) (日)

Definition

For a strictly convex, differentiable $\Phi : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a,b) = \Phi(a) - \left(\Phi(b) + \nabla \Phi(b) \cdot (a-b)\right).$$

 $D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at *a* of the linear approximation of Φ about *b*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$D_{\Phi}(a,b) = \Phi(a) - \left(\Phi(b) + \nabla \Phi(b) \cdot (a-b)\right).$$

Example

For $a \in \mathbb{R}^d$, the squared euclidean norm, $\Phi(a) = \frac{1}{2} ||a||^2$, has

$$egin{aligned} D_{\Phi}(a,b) &= rac{1}{2} \|a\|^2 - \left(rac{1}{2} \|b\|^2 + b \cdot (a-b)
ight) \ &= rac{1}{2} \|a-b\|^2, \end{aligned}$$

the squared euclidean norm.

$$D_{\Phi}(a,b) = \Phi(a) - \left(\Phi(b) + \nabla \Phi(b) \cdot (a-b)\right).$$

Example

For $a \in [0, \infty)^d$, the unnormalized negative entropy, $\Phi(a) = \sum_{i=1}^d a_i (\ln a_i - 1)$, has

$$egin{aligned} D_{\Phi}(a,b) &= \sum_i \left(a_i(\ln a_i - 1) - b_i(\ln b_i - 1) - \ln b_i(a_i - b_i)
ight) \ &= \sum_i \left(a_i \ln rac{a_i}{b_i} + b_i - a_i
ight), \end{aligned}$$

the unnormalized KL divergence. Thus, for $a \in \Delta^d$, $\Phi(a) = \sum_i a_i \ln a_i$ has

$$D_{\phi}(a,b) = \sum_{i} a_{i} \ln \frac{a_{i}}{b_{i}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

When the range of Φ is $\mathcal{A} \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make two more assumptions:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ▶ The interior of *A* is convex,
- ► For a sequence approaching the boundary of A, $\|\nabla \Phi(a_n)\| \to \infty$.

We say that such a Φ is a *Legendre function*.

Properties:

- 1. $D_{\Phi} \geq 0, D_{\Phi}(a, a) = 0.$
- $2. D_{A+B} = D_A + D_B.$
- 3. Bregman projection, $\Pi^{\Phi}_{\mathcal{A}}(b) = \arg \min_{a \in \mathcal{A}} D_{\Phi}(a, b)$ is uniquely defined for closed, convex \mathcal{A} .
- 4. Generalized Pythagorus: for closed, convex \mathcal{A} , $b^* = \Pi^{\Phi}_{\mathcal{A}}(b)$, and $a \in \mathcal{A}$,

$$D_\Phi(a,b) \geq D_\Phi(a,a^*) + D_\Phi(a^*,b).$$

- 5. $\nabla_a D_{\Phi}(a, b) = \nabla \Phi(a) \nabla \Phi(b).$
- 6. For ℓ linear, $D_{\Phi+\ell} = D_{\Phi}$.
- 7. For Φ^* the Legendre dual of Φ ,

$$abla \Phi^* = (
abla \Phi)^{-1},
onumber \ D_{\Phi}(a,b) = D_{\Phi^*}(
abla \phi(b),
abla \phi(a)).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For a Legendre function $\Phi : \mathcal{A} \to \mathbb{R}$, the Legendre dual is

$$\Phi^*(u) = \sup_{v \in \mathcal{A}} (u \cdot v - \Phi(v)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Φ* is Legendre.
- dom(Φ^*) = $\nabla \Phi(\text{int dom } \Phi)$.

$$\blacktriangleright \nabla \Phi^* = (\nabla \Phi)^{-1}.$$

• $D_{\Phi}(a,b) = D_{\Phi^*}(\nabla \phi(b), \nabla \phi(a)).$

Legendre Dual

Example

For $\Phi = \frac{1}{2} \| \cdot \|_p^2$, the Legendre dual is $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$, where 1/p + 1/q = 1.

Example

For $\Phi(a) = \sum_{i=1}^{d} e^{a_i}$, $\nabla \Phi(a) = (e^{a_1}, \dots, e^{a_d})'$,

SO

$$(\nabla\Phi)^{-1}(u) = \nabla\Phi^*(u) = (\ln u_1, \ldots, \ln u_d)',$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and $\Phi^*(u) = \sum_i u_i (\ln u_i - 1)$.

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization equivalent to minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection

(日) (日) (日) (日) (日) (日) (日)

- Linearization
- Mirror descent
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance (Bregman divergence) to the previous decision.

Theorem Define \tilde{a}_1 via $\nabla R(\tilde{a}_1) = 0$, and set

$$\tilde{a}_{t+1} = \arg\min_{a\in\mathbb{R}^d} \left(\eta\ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t)\right).$$

Then

$$\widetilde{a}_{t+1} = \arg\min_{a\in\mathbb{R}^d} \left(\eta \sum_{s=1}^t \ell_s(a) + R(a)\right).$$

(日) (日) (日) (日) (日) (日) (日)

Proof. By the definition of Φ_t ,

$$\eta\ell_t(\boldsymbol{a}) + D_{\Phi_{t-1}}(\boldsymbol{a}, \tilde{\boldsymbol{a}}_t) = \Phi_t(\boldsymbol{a}) - \Phi_{t-1}(\boldsymbol{a}) + D_{\Phi_{t-1}}(\boldsymbol{a}, \tilde{\boldsymbol{a}}_t).$$

The derivative wrt a is

$$abla \Phi_t(a) -
abla \Phi_{t-1}(a) +
abla_a D_{\Phi_{t-1}}(a, \tilde{a}_t)$$

 $=
abla \Phi_t(a) -
abla \Phi_{t-1}(a) +
abla \Phi_{t-1}(a) -
abla \Phi_{t-1}(\tilde{a}_t)$

Setting to zero shows that

$$\nabla \Phi_t(\tilde{a}_{t+1}) = \nabla \Phi_{t-1}(\tilde{a}_t) = \cdots = \nabla \Phi_0(\tilde{a}_1) = \nabla R(\tilde{a}_1) = 0,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

So \tilde{a}_{t+1} minimizes Φ_t .

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem For

$$a_{t+1} = rg\min_{a\in\mathcal{A}}\Phi_t(a),$$

 $\tilde{a}_{t+1} = rg\min_{a\in\mathbb{R}^d}\Phi_t(a),$

we have

$$a_{t+1} = \Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1}).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof.

Let a'_{t+1} denote $\Pi^{\Phi_t}_{\mathcal{A}}(\tilde{a}_{t+1})$. First, by definition of a_{t+1} ,

$$\Phi_t(\boldsymbol{a}_{t+1}) \leq \Phi_t(\boldsymbol{a}_{t+1}').$$

Conversely,

$$D_{\Phi_t}(a_{t+1}', \tilde{a}_{t+1}) \leq D_{\Phi_t}(a_{t+1}, \tilde{a}_{t+1}).$$

But $\nabla \Phi_t(\tilde{a}_{t+1}) = 0$, so

$$D_{\Phi_t}(a,\tilde{a}_{t+1})=\Phi_t(a)-\Phi_t(\tilde{a}_{t+1}).$$

(日) (日) (日) (日) (日) (日) (日)

Thus, $\Phi_t(a'_{t+1}) \le \Phi_t(a_{t+1})$.

Example

For linear ℓ_t , regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence wrt *R* to the previous decision:

$$\begin{split} &\arg\min_{\boldsymbol{a}\in\mathcal{A}}\left(\eta\sum_{s=1}^{t}\ell_{s}(\boldsymbol{a})+R(\boldsymbol{a})\right)\\ &=\Pi_{\mathcal{A}}^{R}\left(\arg\min_{\boldsymbol{a}\in\mathbb{R}^{d}}\left(\eta\ell_{t}(\boldsymbol{a})+D_{R}(\boldsymbol{a},\tilde{\boldsymbol{a}}_{t})\right)\right), \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

because adding a linear function to Φ does not change D_{Φ} .

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization equivalent and Bregman divergence from previous
 - Constrained minimization equivalent to unconstrained plus Bregman projection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Linearization
- Mirror descent
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions

Properties of Regularization Methods: Linear Loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

$$\sum_{t=1}^n g_t \cdot a_t - \min_{a \in \mathcal{A}} \sum_{t=1}^n g_t \cdot a \leq C_n(g_1, \dots, g_n)$$

can be used to construct a strategy for online convex optimization, with regret

$$\sum_{t=1}^n \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^n \ell_t(a) \leq C_n(\nabla \ell_1(a_1), \dots, \nabla \ell_n(a_n)).$$

Proof.

Convexity implies $\ell_t(a_t) - \ell_t(a) \leq \nabla \ell_t(a_t) \cdot (a_t - a)$.

Properties of Regularization Methods: Linear Loss

Key Point:

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thus, we can work with linear ℓ_t .

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem The decisions

$$ilde{a}_{t+1} = rg\min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^t g_s \cdot a + R(a) \right)$$

can be written

$$\tilde{a}_{t+1} = (\nabla R)^{-1} (\nabla R(\tilde{a}_t) - \eta g_t).$$

This corresponds to first mapping from \tilde{a}_t through ∇R , then taking a step in the direction $-g_t$, then mapping back through $(\nabla R)^{-1} = \nabla R^*$ to \tilde{a}_{t+1} .

Regularization Methods: Mirror Descent

Proof.

For the unconstrained minimization, we have

$$abla R(ilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s,$$
 $abla R(ilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s,$

so $\nabla R(\tilde{a}_{t+1}) = \nabla R(\tilde{a}_t) - \eta g_t$, which can be written

$$\tilde{a}_{t+1} = \nabla R^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization and Bregman divergences
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Extensions

Online Convex Optimization: Regularization

Regularized minimization

$$a_{t+1} = \arg\min_{a\in\mathcal{A}}\left(\eta\sum_{s=1}^t \ell_s(a) + R(a)\right).$$

The regularizer $R : \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Regularization Methods: Regret

Theorem For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret against any $a \in \mathcal{A}$ of

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) = \frac{D_R(a, a_1) - D_{\Phi_n}(a, a_{n+1})}{\eta} + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}),$$

and thus

$$\hat{L}_n \leq \inf_{\boldsymbol{a} \in \mathbb{R}^d} \left(\sum_{t=1}^n \ell_t(\boldsymbol{a}) + \frac{D_R(\boldsymbol{a}, \boldsymbol{a}_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^n D_{\Phi_t}(\boldsymbol{a}_t, \boldsymbol{a}_{t+1}).$$

So the sizes of the steps $D_{\Phi_t}(a_t, a_{t+1})$ determine the regret bound.

Regularization Methods: Regret

Theorem For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\hat{L}_n \leq \inf_{\boldsymbol{a} \in \mathbb{R}^d} \left(\sum_{t=1}^n \ell_t(\boldsymbol{a}) + \frac{D_R(\boldsymbol{a}, \boldsymbol{a}_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^n D_{\Phi_t}(\boldsymbol{a}_t, \boldsymbol{a}_{t+1}).$$

Notice that we can write

$$egin{aligned} D_{\Phi_t}(a_t,a_{t+1}) &= D_{\Phi_t^*}(
abla \Phi_t(a_{t+1}),
abla \Phi_t(a_t)) \ &= D_{\Phi_t^*}(0,
abla \Phi_{t-1}(a_t) + \eta
abla \ell_t(a_t)) \ &= D_{\Phi_t^*}(0,\eta
abla \ell_t(a_t)). \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

So it is the size of the gradient steps, $D_{\Phi_t^*}(0, \eta \nabla \ell_t(a_t))$, that determines the regret.

Example Suppose $R = \frac{1}{2} \| \cdot \|^2$. Then we have

$$\hat{L}_n \leq L_n^* + \frac{\|a^* - a_1\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^n \|g_t\|^2.$$

And if $||g_t|| \le G$ and $||a^* - a_1|| \le D$, choosing η appropriately gives $\hat{L}_n \le L_n^* \le DG\sqrt{n}$.

(日) (日) (日) (日) (日) (日) (日)

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization and Bregman divergences
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Extensions

Seeing the future gives small regret:

Theorem For all $a \in A$,

$$\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta}(R(a) - R(a_1)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof.

Since a_{t+1} minimizes Φ_t ,

$$\begin{split} \eta \sum_{s=1}^{t} \ell_s(a) + R(a) &\geq \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1}) \\ &= \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_{t+1}) + R(a_{t+1}) \\ &\geq \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_t) + R(a_t) \\ &\vdots \\ &\geq \eta \sum_{s=1}^{t} \ell_s(a_{s+1}) + R(a_1). \end{split}$$

< □ > < @ > < E > < E > < E > のへの

Theorem For all $a \in A$,

$$\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta}(R(a) - R(a_1)).$$

Thus, if a_t and a_{t+1} are close, then regret is small:

Corollary

For all $a \in A$,

$$\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a) \right) \leq \sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a_{t+1}) \right) + \frac{1}{\eta} \left(R(a) - R(a_1) \right).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

So how can we control the increments $\ell_t(a_t) - \ell_t(a_{t+1})$?

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization equivalent and Bregman divergence from previous
 - Constrained minimization equivalent to unconstrained plus Bregman projection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Linearization
- Mirror descent
- 5. Regret bounds
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions

Definition

We say *R* is strongly convex wrt a norm $\|\cdot\|$ if, for all *a*, *b*,

$$R(a) \geq R(b) + \nabla R(b) \cdot (a-b) + \frac{1}{2} \|a-b\|^2$$

For linear losses and strongly convex regularizers, the dual norm of the gradient is small:

Theorem

If R is strongly convex wrt a norm $\|\cdot\|$, and $\ell_t(a) = g_t \cdot a$, then

$$\|a_t - a_{t+1}\| \leq \eta \|g_t\|_*,$$

where $\|\cdot\|_*$ is the dual norm to $\|\cdot\|$:

$$\|\boldsymbol{v}\|_* = \sup\{|\boldsymbol{v}\cdot\boldsymbol{a}|: \boldsymbol{a}\in\mathcal{A}, \|\boldsymbol{a}\|\leq 1\}.$$

Proof.

$$egin{aligned} R(a_t) &\geq R(a_{t+1}) +
abla R(a_{t+1}) \cdot (a_t - a_{t+1}) + rac{1}{2} \|a_t - a_{t+1}\|^2, \ R(a_{t+1}) &\geq R(a_t) +
abla R(a_t) \cdot (a_{t+1} - a_t) + rac{1}{2} \|a_t - a_{t+1}\|^2. \end{aligned}$$

Combining,

$$||a_t - a_{t+1}||^2 \le (\nabla R(a_t) - \nabla R(a_{t+1})) \cdot (a_t - a_{t+1})$$

Hence,

$$\|a_t - a_{t+1}\| \le \|\nabla R(a_t) - \nabla R(a_{t+1})\|_* = \|\eta g_t\|_*.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This leads to the regret bound:

Corollary

For linear losses, if R is strongly convex wrt $\|\cdot\|$, then for all $a \in A$,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \eta \sum_{t=1}^{n} \|g_t\|_*^2 + \frac{1}{\eta} (R(a) - R(a_1)).$$

(日) (日) (日) (日) (日) (日) (日)

Thus, for $||g_t||_* \leq G$ and $R(a) - R(a_1) \leq D^2$, choosing η appropriately gives regret no more than $2GD\sqrt{n}$.

Example

Consider $R(a) = \frac{1}{2} ||a||^2$, $a_1 = 0$, and \mathcal{A} contained in a Euclidean ball of diameter *D*.

Then *R* is strongly convex wrt $\|\cdot\|$ and $\|\cdot\|_* = \|\cdot\|$. And the mapping between primal and dual spaces is the identity. So if $\sup_{a \in \mathcal{A}} \|\nabla \ell_t(a)\| \leq G$, then regret is no more than $2GD\sqrt{n}$.

(日) (日) (日) (日) (日) (日) (日)

Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise). And the divergence is the KL divergence,

$$D_R(a,b) = \sum_i a_i \ln(a_i/b_i).$$

(日) (日) (日) (日) (日) (日) (日)

And *R* is strongly convex wrt $\|\cdot\|_1$ (check!). Suppose that $\|g_t\|_{\infty} \leq 1$. Also, $R(a) - R(a_1) \leq \ln m$, so the regret is no more than $2\sqrt{n \ln m}$.

Example

 $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. What are the updates?

$$egin{aligned} & a_{t+1} = \Pi^R_{\mathcal{A}}(ilde{a}_{t+1}) \ &= \Pi^R_{\mathcal{A}}(
abla R^*(
abla R^*(
abla R^*(ext{In}(ilde{a}_t \exp(-\eta g_t))) \ &= \Pi^R_{\mathcal{A}}(
abla R^*(ilde{a}_t \exp(-\eta g_t)), \end{aligned}$$

where the ln and exp functions are applied component-wise. This is exponentiated gradient: mirror descent with $\nabla R = In$. It is easy to check that the projection corresponds to normalization, $\Pi^R_{\mathcal{A}}(\tilde{a}) = \tilde{a}/||a||_1$.

Notice that when the losses are linear, exponentiated gradient is exactly the exponential weights strategy we discussed for a finite comparison class.

(日) (日) (日) (日) (日) (日) (日)

Compare $R(a) = \sum_i a_i \ln a_i$ with $R(a) = \frac{1}{2} ||a||^2$, for $||g_t||_{\infty} \le 1$, $\mathcal{A} = \Delta^m$:

 $O(\sqrt{n \ln m})$ versus $O(\sqrt{mn})$.

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization equivalent and Bregman divergence from previous
 - Constrained minimization equivalent to unconstrained plus Bregman projection

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Linearization
- Mirror descent
- 5. Regret bounds
 - Unconstrained minimization
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions

Regularization Methods: Extensions

Instead of

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right),$$

we can use

$$a_{t+1} = \arg\min_{a\in\mathcal{A}} \left(\eta\ell_t(a) + D_{\Phi_{t-1}}(a, a_t)\right).$$

And analogous results apply. For instance, this is the approach used by the first gradient method we considered.

We can get faster rates with stronger assumptions on the losses...

Regularization Methods: Varying η

Theorem Define

$$a_{t+1} = \arg\min_{a\in\mathbb{R}^d}\left(\sum_{t=1}^n \eta_t\ell_t(a) + R(a)\right).$$

For any $a \in \mathbb{R}^d$,

$$\hat{L}_n - \sum_{t=1}^n \ell_t(a) \leq \sum_{t=1}^n \frac{1}{\eta_t} \left(D_{\Phi_t}(a_t, a_{t+1}) + D_{\Phi_{t-1}}(a, a_t) - D_{\Phi_t}(a, a_{t+1}) \right).$$

If we linearize the ℓ_t , we have

$$\hat{L}_n - \sum_{t=1}^n \ell_t(a) \leq \sum_{t=1}^n \frac{1}{\eta_t} \left(D_R(a_t, a_{t+1}) + D_R(a, a_t) - D_R(a, a_{t+1}) \right).$$

But what if ℓ_t are strongly convex?

Regularization Methods: Strongly Convex Losses

Theorem If ℓ_t is σ -strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$\ell_t(a) \geq \ell_t(b) +
abla \ell_t(b) \cdot (a-b) + rac{\sigma}{2} D_R(a,b),$$

then for any $\mathbf{a} \in \mathbb{R}^d$, this strategy with $\eta_t = \frac{2}{t\sigma}$ has regret

$$\hat{L}_n - \sum_{t=1}^n \ell_t(a) \leq \sum_{t=1}^n \frac{1}{\eta_t} D_R(a_t, a_{t+1}).$$

(日) (日) (日) (日) (日) (日) (日)

Strongly Convex Losses: Proof idea

$$\begin{split} &\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a) \right) \\ &\leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right) \\ &\leq \sum_{t=1}^{n} \frac{1}{\eta_t} \left(D_R(a_t, a_{t+1}) + D_R(a, a_t) - D_R(a, a_{t+1}) - \frac{\eta_t \sigma}{2} D_R(a, a_t) \right) \\ &\leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, a_{t+1}) + \sum_{t=2}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} - \frac{\sigma}{2} \right) D_R(a, a_t) \\ &+ \left(\frac{1}{\eta_1} - \frac{\sigma}{2} \right) D_R(a, a_1). \end{split}$$

And choosing η_t appropriately eliminates the second and third terms.

Strongly Convex Losses

Example For $R(a) = \frac{1}{2} ||a||^2$, we have

$$\hat{L}_n - L_n^* \leq \frac{1}{2} \sum_{t=1}^n \frac{1}{\eta_t} \|\eta_t \nabla \ell_t\|^2 \leq \sum_{t=1}^n \frac{G^2}{t\sigma} = O\left(\frac{G^2}{\sigma} \log n\right).$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Strongly Convex Losses

Key Point: When the loss is strongly convex wrt the regularizer, the regret rate can be faster; in the case of quadratic *R* (and ℓ_t), it is $O(\log n)$, versus $O(\sqrt{n})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Course Synopsis

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- A finite comparison class: $A = \{1, \ldots, m\}$.
- Converting online to batch.
- Online convex optimization.
- Log loss.