An Online Allocation Problem: Dark Pools

Peter Bartlett Statistics and EECS UC Berkeley

Joint work with Alekh Agarwal and Max Dama.

slides at http://www.stat.berkeley.edu/~bartlett

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Prediction in Probabilistic Settings

- i.i.d. (X, Y), (X₁, Y₁), ..., (X_n, Y_n) from X × Y (e.g., Y is preference score vector).
- ▶ Use data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose $f_n : \mathcal{X} \to \mathcal{A}$ with small risk,

 $R(f_n) = \mathbf{E}\ell(Y, f_n(X)).$

Online Learning

Repeated game:

Player chooses a_t Adversary reveals ℓ_t

- Example: $\ell_t(a_t) = loss(y_t, a_t(x_t))$.
- Aim: minimize $\sum_{t} \ell_t(a_t)$, compared to the best (in retrospect) from some class:

$$\mathsf{regret} = \sum_t \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_t \ell_t(a).$$

(日) (日) (日) (日) (日) (日) (日)

Data can be adversarially chosen.

Online Learning: Motivations

- 1. Adversarial model is appropriate for
 - Computer security.
 - Computational finance.
- 2. Understanding statistical prediction methods.
- 3. Online algorithms are also effective in probabilistic settings.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Dark Pools Problem

Computational finance: adversarial setting is appropriate.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 Online algorithm improves on best known algorithm for probabilistic setting.

Dark Pools

Instinet, Chi-X, Knight Match, ... International Securities Exchange, Investment Technology Group (POSIT),

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Crossing networks.
- Alternative to open exchanges.
- Avoid market impact by hiding transaction size and traders' identities.

 \mathbf{A}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Dark Pools

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dark Pools

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Allocations for Dark Pools

The problem: Allocate orders to several dark pools so as to maximize the volume of transactions.

► Volume V^t must be allocated across K venues: v_1^t, \ldots, v_K^t , such that $\sum_{k=1}^{K} v_k^t = V^t$.

(日) (日) (日) (日) (日) (日) (日)

• Venue k can accommodate up to s_k^t , transacts $r_k^t = \min(v_k^t, s_k^t)$.

Allocations for Dark Pools

- Allocation v_1^t, \ldots, v_K^t ranks the *K* venues.
- Loss is not discrete: it is summed across venues, and depends on the allocations in a piecewise-linear, convex, monotone way.

Allocations for Dark Pools: Probabilistic Assumptions

Previous work:

(Ganchev, Kearns, Nevmyvaka and Wortman, 2008)

- Assume venue volumes are i.i.d.: $\{s_k^t, k = 1, \dots, K, t = 1, \dots, T\}.$
- In deciding how to allocate the first unit, choose the venue k where Pr(s^t_k > 0) is largest.
- Allocate the second and subsequent units in decreasing order of venue tail probabilities.
- Algorithm: estimate the tail probabilities (Kaplan-Meier estimator—data is censored), and allocate as if the estimates are correct.

Allocations for Dark Pools: Adversarial Assumptions

- I.i.d. is questionable:
 - one party's gain is another's loss
 - volume available now affects volume remaining in future
 - volume available at one venue affects volume available at others

In the adversarial setting, we allow an arbitrary sequence of venue capacities (s_k^t) , and of total volume to be allocated (V^t) . The aim is to compete with any fixed allocation order.

We wish to maximize a sum of (unknown) concave functions of the allocations:

$$J(\mathbf{v}) = \sum_{t=1}^{T} \sum_{k=1}^{K} \min(\mathbf{v}_k^t, \mathbf{s}_k^t),$$

subject to the constraint $\sum_{k=1}^{K} v_k^t \leq V^t$.

The allocations are parameterized as distributions over the K venues:

$$x_t^1, x_t^2, \ldots \in \Delta_{K-1} = (K-1)$$
-simplex.

Here, x_t^1 determines how the first unit is allocated, x_t^2 the second, ...

The algorithm allocates to the *k*th venue: $v_k^t = \sum_{\nu=1}^{V^t} x_{t,k}^{\nu}$.

We wish to maximize a sum of (unknown) concave functions of the distributions:

$$J = \sum_{t=1}^{T} \sum_{k=1}^{K} \min(v_k^t(x_{t,k}^v), s_k^t).$$

Want small regret with respect to an arbitrary distribution x^{ν} , and hence w.r.t. an arbitrary allocation.

$$\operatorname{regret} = \sum_{t=1}^{T} \sum_{k=1}^{K} \min(v_k^t(x_k^v), s_k^t) - J.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We use an exponentiated gradient algorithm:

Initialize
$$x_{1,i}^{v} = \frac{1}{K}$$
 for $v = \{1, \dots, V\}$.
for $t = 1, \dots, T$ do
Set $v_k^t = \sum_{v=1}^{V^T} x_{t,k}^v$.
Receive $r_k^t = \min\{v_k^t, s_k^t\}$.
Set $g_{t,k}^v = \nabla_{x_{t,k}^v} J$.
Update $x_{t+1,k}^v \propto x_{t,k}^v \exp(\eta g_{t,k}^v)$.
end for

Theorem: For all choices of $V^t \leq V$ and of s_k^t , ExpGrad has regret no more than $3V\sqrt{T \ln K}$.

Theorem: For all choices of $V^t \leq V$ and of s_k^t , ExpGrad has regret no more than $3V\sqrt{T \ln K}$.

Theorem: For every algorithm, there are sequences V^t and s_k^t such that regret is at least $V\sqrt{T \ln K}/16$.

Experimental results

・ロト・日本・日本・日本・日本・日本

Continuous Allocations: i.i.d. data

Simple online-to-batch conversions show ExpGrad obtains per-trial utility within O(T^{-1/2}) of optimal.

(日) (日) (日) (日) (日) (日) (日)

► Ganchev et al bounds: per-trial utility within O(T^{-1/4}) of optimal. **Discrete allocations**

- Trades occur in quantized parcels.
- Hence, we cannot allocate arbitrary values.
- This is analogous to a multi-arm bandit problem:
 - We cannot directly obtain the gradient at the current *x*.
 - But, we can estimate it using importance sampling ideas.

Theorem: There is an algorithm for discrete allocation with expected regret $\tilde{O}((VTK)^{2/3})$. Any algorithm has regret $\tilde{\Omega}((VTK)^{1/2})$.

- Allow adversarial choice of volumes and transactions.
- Per trial regret rate superior to previous best known bounds for probabilistic setting.
- In simulations, performance comparable to (correct) parametric model's, and superior to nonparametric estimate.

(ロ) (同) (三) (三) (三) (三) (○) (○)