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Prediction in Probabilistic Settings I

» iid. (X, Y), (X1, Y1),...,(Xn, Yn) from X x Y
(e.g., Y is preference score vector).
» Use data (Xi, Y1),...,(Xn, Yn) to choose f, : X — A with
small risk,
R(fn) = EL(Y, fr(X)).



Online Learning I

» Repeated game:

Player chooses a;
Adversary reveals /¢

» Example: ¢i(a;) = loss(yi, ai(xt))-
» Aim: minimize Zﬁt(a,), compared to the best

t
(in retrospect) from some class:
regret = li(ar) —min )y 4i(a).
egret Zf: t(ar) aeAzt: t(a)

» Data can be adversarially chosen.



Online Learning: Motivations'

1. Adversarial model is appropriate for
» Computer security.
» Computational finance.

2. Understanding statistical prediction methods.
3. Online algorithms are also effective in probabilistic settings.



The Dark Pools Problem I

» Computational finance: adversarial setting is appropriate.

» Online algorithm improves on best known algorithm for
probabilistic setting.



Dark Pools

Instinet, International Securities Exchange,
Chi-X, Investment  Technology  Group
Knight Match, ... (POSIT),

» Crossing networks.
» Alternative to open exchanges.

» Avoid market impact by hiding transaction size and traders’
identities.
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Allocations for Dark Pools I

The problem: Allocate orders to several dark pools
so as to maximize the volume of transactions.
» Volume V! must be allocated across K venues: Vi, ..., v,
K t oyt
suchthat ), v, = V.
» Venue k can accommodate up to sf, transacts
' mi t of
re = min(vg, s;).

s

T K
» The aim is to maximize Z Z rl.
=1 k—1



Allocations for Dark Pools.

» Allocation v!,..., vf ranks the K venues.

» Loss is not discrete: it is summed across venues, and
depends on the allocations in a piecewise-linear, convex,
monotone way.



Allocations for Dark Pools: Probabilistic Assumptions I

Previous work: (Ganchev, Kearns, Nevmyvaka and Wortman, 2008)

» Assume venue volumes are i.i.d.:
{st.k=1,... K, t=1,....Th

» In deciding how to allocate the first unit,
choose the venue k where Pr(s} > 0) is largest.

» Allocate the second and subsequent units in decreasing
order of venue tail probabilities.

» Algorithm: estimate the tail probabilities (Kaplan-Meier
estimator—data is censored), and allocate as if the
estimates are correct.



Allocations for Dark Pools: Adversarial Assumptions'

li.d. is questionable:
» one party’s gain is another’s loss
» volume available now affects volume remaining in future

» volume available at one venue affects volume available at
others

In the adversarial setting, we allow an arbitrary sequence of
venue capacities (s{(), and of total volume to be allocated (V).
The aim is to compete with any fixed allocation order.



Continuous Allocations I

We wish to maximize a sum of (unknown) concave functions of
the allocations:

J(v) =D  min(vg, sf),

t=1 k=1

subject to the constraint S5, vi < V1.
The allocations are parameterized as distributions over the K
venues:
x{,x?,... € Ag_1 = (K — 1)-simplex.
Here, x; determines how the first unit is allocated, x? the
second, ...
vt
The algorithm allocates to the kth venue: v = xyy.
v=1



Continuous Allocations '

We wish to maximize a sum of (unknown) concave functions of
the distributions:

T K
J = " min(vi(x/k), sk).
(=1 k=1

Want small regret with respect to an arbitrary distribution x",
and hence w.r.t. an arbitrary allocation.

regret_ZZmln (x¥), sk) — J.

t=1 k=1



Continuous Allocations I

We use an exponentiated gradient algorithm:

Initialize x}; = % for v ={1,..., V}.
fort=1,...,Tdo
t vl

Set vy =>4 X/

Receive rf = min{v},s!}.

Set g;fk = thka.

Update X/, , o< X/, exp(ngy)-
end for



Continuous Allocations I

Theorem: For all choices of V! < V and of s, ExpGrad has
regret no more than 3Vv TInK.




Continuous Allocations I

Theorem: For all choices of V! < V and of s, ExpGrad has
regret no more than 3Vv TInK.

Theorem: For every algorithm, there are sequences V! and s{
such that regret is at least Vv T In K/16.




Cumulative Reward

Experimental results I
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Continuous Allocations: i.i.d. data.

» Simple online-to-batch conversions show ExpGrad obtains
per-trial utility within O(T~"/2) of optimal.

» Ganchev et al bounds:
per-trial utility within O(T~'/4) of optimal.



Discrete allocations I

» Trades occur in quantized parcels.
» Hence, we cannot allocate arbitrary values.

» This is analogous to a multi-arm bandit problem:

» We cannot directly obtain the gradient at the current x.
» But, we can estimate it using importance sampling ideas.

Theorem: There is an algorithm for discrete allocation with ex-
pected regret O((VTK)?/3).
Any algorithm has regret Q((VTK)'/2).




Dark Pools

» Allow adversarial choice of volumes and transactions.

» Per trial regret rate superior to previous best known
bounds for probabilistic setting.

» In simulations, performance comparable to (correct)
parametric model’s, and superior to nonparametric
estimate.



