An Online Allocation Problem: Dark Pools

Peter Bartlett
Statistics and EECS
UC Berkeley

Joint work with Alekh Agarwal and Max Dama.

slides at http://www.stat.berkeley.edu/~bartlett
Prediction in Probabilistic Settings

- i.i.d. \((X, Y), (X_1, Y_1), \ldots, (X_n, Y_n)\) from \(\mathcal{X} \times \mathcal{Y}\) (e.g., \(Y\) is preference score vector).
- Use data \((X_1, Y_1), \ldots, (X_n, Y_n)\) to choose \(f_n: \mathcal{X} \rightarrow \mathcal{A}\) with small risk,

\[
R(f_n) = \mathbb{E}\ell(Y, f_n(X)).
\]
Online Learning

- Repeated game:
 - Player chooses a_t
 - Adversary reveals ℓ_t

- Example: $\ell_t(a_t) = \text{loss}(y_t, a_t(x_t))$.

- Aim: minimize $\sum_t \ell_t(a_t)$, compared to the best (in retrospect) from some class:
 \[
 \text{regret} = \sum_t \ell_t(a_t) - \min_{a \in A} \sum_t \ell_t(a).
 \]

- Data can be adversarially chosen.
Online Learning: Motivations

1. Adversarial model is appropriate for
 ▶ Computer security.
 ▶ Computational finance.

2. Understanding statistical prediction methods.
3. Online algorithms are also effective in probabilistic settings.
The Dark Pools Problem

- Computational finance: adversarial setting is appropriate.
- Online algorithm improves on best known algorithm for probabilistic setting.
Dark Pools

Instinet, Chi-X, Knight Match, ...

International Securities Exchange, Investment Technology Group (POSIT),

- Crossing networks.
- Alternative to open exchanges.
- Avoid market impact by hiding transaction size and traders’ identities.
Dark Pools

buy 1000
Dark Pools

buy 1000

sell 11000
Dark Pools

buy 1000

sell 100

sell 11000
Allocations for Dark Pools

The problem: Allocate orders to several dark pools so as to maximize the volume of transactions.

- Volume V^t must be allocated across K venues: v^t_1, \ldots, v^t_K, such that $\sum_{k=1}^{K} v^t_k = V^t$.
- Venue k can accommodate up to s^t_k, transacts $r^t_k = \min(v^t_k, s^t_k)$.

- The aim is to maximize $\sum_{t=1}^{T} \sum_{k=1}^{K} r^t_k$.
Allocations for Dark Pools

- Allocation v_1^t, \ldots, v_K^t ranks the K venues.
- Loss is not discrete: it is summed across venues, and depends on the allocations in a piecewise-linear, convex, monotone way.
Allocations for Dark Pools: Probabilistic Assumptions

Previous work: (Ganchev, Kearns, Nevmyvaka and Wortman, 2008)

1. Assume venue volumes are i.i.d.:
 \(\{ s^t_k, \ k = 1, \ldots, K, \ t = 1, \ldots, T \} \).
2. In deciding how to allocate the first unit, choose the venue \(k \) where \(Pr(s^t_k > 0) \) is largest.
3. Allocate the second and subsequent units in decreasing order of venue tail probabilities.
4. Algorithm: estimate the tail probabilities (Kaplan-Meier estimator—data is censored), and allocate as if the estimates are correct.
Allocations for Dark Pools: Adversarial Assumptions

I.i.d. is questionable:
- one party’s gain is another’s loss
- volume available now affects volume remaining in future
- volume available at one venue affects volume available at others

In the adversarial setting, we allow an arbitrary sequence of venue capacities (s^t_k), and of total volume to be allocated (V^t). The aim is to compete with any fixed allocation order.
Continuous Allocations

We wish to maximize a sum of (unknown) concave functions of the allocations:

\[J(v) = \sum_{t=1}^{T} \sum_{k=1}^{K} \min(v^t_k, s^t_k), \]

subject to the constraint \(\sum_{k=1}^{K} v^t_k \leq V^t \).

The allocations are parameterized as distributions over the \(K \) venues:

\[x^1_t, x^2_t, \ldots \in \Delta_{K-1} = (K - 1)\text{-simplex}. \]

Here, \(x^1_t \) determines how the first unit is allocated, \(x^2_t \) the second, ...

The algorithm allocates to the \(k \)th venue: \(v^t_k = \sum_{v=1}^{V^t} x^v_{t,k} \).
Continuous Allocations

We wish to maximize a sum of (unknown) concave functions of the distributions:

\[J = \sum_{t=1}^{T} \sum_{k=1}^{K} \min(v^t_k(x^v_{t,k}), s^t_k). \]

Want small regret with respect to an arbitrary distribution \(x^v \), and hence w.r.t. an arbitrary allocation.

\[\text{regret} = \sum_{t=1}^{T} \sum_{k=1}^{K} \min(v^t_k(x^v_{k}), s^t_k) - J. \]
Continuous Allocations

We use an exponentiated gradient algorithm:

Initialize $x_{1,i}^v = \frac{1}{K}$ for $v = \{1, \ldots, V\}$.

for $t = 1, \ldots, T$ do

Set $v_k^t = \sum_{v=1}^{V} x_{t,k}^v$.

Receive $r_k^t = \min\{v_k^t, s_k^t\}$.

Set $g_{t,k}^v = \nabla_{x_{t,k}} J$.

Update $x_{t+1,k}^v \propto x_{t,k}^v \exp(\eta g_{t,k}^v)$.

end for
Continuous Allocations

Theorem: For all choices of $V^t \leq V$ and of s_k^t, ExpGrad has regret no more than $3V\sqrt{T}\ln K$.
Continuous Allocations

Theorem: For all choices of $V^t \leq V$ and of s^t_k, ExpGrad has regret no more than $3V\sqrt{T \ln K}$.

Theorem: For every algorithm, there are sequences V^t and s^t_k such that regret is at least $V\sqrt{T \ln K}/16.$
Continuous Allocations: i.i.d. data

- Simple online-to-batch conversions show ExpGrad obtains per-trial utility within $O(T^{-1/2})$ of optimal.
- Ganchev et al bounds: per-trial utility within $O(T^{-1/4})$ of optimal.
Discrete allocations

- Trades occur in quantized parcels.
- Hence, we cannot allocate arbitrary values.
- This is analogous to a multi-arm bandit problem:
 - We cannot directly obtain the gradient at the current \(x \).
 - But, we can estimate it using importance sampling ideas.

Theorem: There is an algorithm for discrete allocation with expected regret \(\tilde{O}((VTK)^{2/3}) \).
Any algorithm has regret \(\tilde{\Omega}((VTK)^{1/2}) \).
Dark Pools

- Allow adversarial choice of volumes and transactions.
- Per trial regret rate superior to previous best known bounds for probabilistic setting.
- In simulations, performance comparable to (correct) parametric model’s, and superior to nonparametric estimate.