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Prediction in Probabilistic Settings

I i.i.d. (X ,Y ), (X1,Y1), . . . , (Xn,Yn) from X × Y
(e.g., Y is preference score vector).

I Use data (X1,Y1), . . . , (Xn,Yn) to choose fn : X → A with
small risk,

R(fn) = E`(Y , fn(X )).



Online Learning

I Repeated game:

Player chooses at

Adversary reveals `t

I Example: `t (at ) = loss(yt ,at (xt )).

I Aim: minimize
∑

t

`t (at ), compared to the best

(in retrospect) from some class:

regret =
∑

t

`t (at )−min
a∈A

∑
t

`t (a).

I Data can be adversarially chosen.



Online Learning: Motivations

1. Adversarial model is appropriate for
I Computer security.
I Computational finance.

2. Understanding statistical prediction methods.
3. Online algorithms are also effective in probabilistic settings.



The Dark Pools Problem

I Computational finance: adversarial setting is appropriate.
I Online algorithm improves on best known algorithm for

probabilistic setting.



Dark Pools

Instinet,
Chi-X,
Knight Match, ...

International Securities Exchange,
Investment Technology Group
(POSIT),

I Crossing networks.
I Alternative to open exchanges.
I Avoid market impact by hiding transaction size and traders’

identities.
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Allocations for Dark Pools

The problem: Allocate orders to several dark pools
so as to maximize the volume of transactions.

I Volume V t must be allocated across K venues: v t
1, . . . , v

t
K ,

such that
∑K

k=1 v t
k = V t .

I Venue k can accommodate up to st
k , transacts

r t
k = min(v t

k , s
t
k ).

I The aim is to maximize
T∑

t=1

K∑
k=1

r t
k .



Allocations for Dark Pools

I Allocation v t
1, . . . , v

t
K ranks the K venues.

I Loss is not discrete: it is summed across venues, and
depends on the allocations in a piecewise-linear, convex,
monotone way.



Allocations for Dark Pools: Probabilistic Assumptions

Previous work: (Ganchev, Kearns, Nevmyvaka and Wortman, 2008)

I Assume venue volumes are i.i.d.:
{st

k , k = 1, . . . ,K , t = 1, . . . ,T}.
I In deciding how to allocate the first unit,

choose the venue k where Pr(st
k > 0) is largest.

I Allocate the second and subsequent units in decreasing
order of venue tail probabilities.

I Algorithm: estimate the tail probabilities (Kaplan-Meier
estimator—data is censored), and allocate as if the
estimates are correct.



Allocations for Dark Pools: Adversarial Assumptions

I.i.d. is questionable:
I one party’s gain is another’s loss
I volume available now affects volume remaining in future
I volume available at one venue affects volume available at

others
In the adversarial setting, we allow an arbitrary sequence of
venue capacities (st

k ), and of total volume to be allocated (V t ).
The aim is to compete with any fixed allocation order.



Continuous Allocations

We wish to maximize a sum of (unknown) concave functions of
the allocations:

J(v) =
T∑

t=1

K∑
k=1

min(v t
k , s

t
k ),

subject to the constraint
∑K

k=1 v t
k ≤ V t .

The allocations are parameterized as distributions over the K
venues:

x1
t , x

2
t , . . . ∈ ∆K−1 = (K − 1)-simplex.

Here, x1
t determines how the first unit is allocated, x2

t the
second, ...

The algorithm allocates to the k th venue: v t
k =

V t∑
v=1

xv
t ,k .



Continuous Allocations

We wish to maximize a sum of (unknown) concave functions of
the distributions:

J =
T∑

t=1

K∑
k=1

min(v t
k (xv

t ,k ), st
k ).

Want small regret with respect to an arbitrary distribution xv ,
and hence w.r.t. an arbitrary allocation.

regret =
T∑

t=1

K∑
k=1

min(v t
k (xv

k ), st
k )− J.



Continuous Allocations

We use an exponentiated gradient algorithm:

Initialize xv
1,i = 1

K for v = {1, . . . ,V}.
for t = 1, . . . ,T do

Set v t
k =

∑V T

v=1 xv
t ,k .

Receive r t
k = min{v t

k , s
t
k}.

Set gv
t ,k = ∇xv

t,k
J.

Update xv
t+1,k ∝ xv

t ,k exp(ηgv
t ,k ).

end for



Continuous Allocations

Theorem: For all choices of V t ≤ V and of st
k , ExpGrad has

regret no more than 3V
√

T ln K .



Continuous Allocations

Theorem: For all choices of V t ≤ V and of st
k , ExpGrad has

regret no more than 3V
√

T ln K .

Theorem: For every algorithm, there are sequences V t and st
k

such that regret is at least V
√

T ln K/16.



Experimental results
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Continuous Allocations: i.i.d. data

I Simple online-to-batch conversions show ExpGrad obtains
per-trial utility within O(T−1/2) of optimal.

I Ganchev et al bounds:
per-trial utility within O(T−1/4) of optimal.



Discrete allocations

I Trades occur in quantized parcels.
I Hence, we cannot allocate arbitrary values.
I This is analogous to a multi-arm bandit problem:

I We cannot directly obtain the gradient at the current x .
I But, we can estimate it using importance sampling ideas.

Theorem: There is an algorithm for discrete allocation with ex-
pected regret Õ((VTK )2/3).
Any algorithm has regret Ω̃((VTK )1/2).



Dark Pools

I Allow adversarial choice of volumes and transactions.
I Per trial regret rate superior to previous best known

bounds for probabilistic setting.
I In simulations, performance comparable to (correct)

parametric model’s, and superior to nonparametric
estimate.


