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Online Prediction

I Probabilistic Model
I Batch: independent random data.
I Aim for small expected loss subsequently.

I Adversarial Model
I Online: Sequence of interactions with an adversary.
I Aim for small cumulative loss throughout.



Online Learning: Motivations

1. Adversarial model is appropriate for
I Computer security.
I Computational finance.





Web Spam Challenge (www.iw3c2.org)
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Online Learning: Motivations

2. Understanding statistical prediction methods.

I Many statistical methods, based on probabilistic
assumptions, can be effective in an adversarial setting.

I Analyzing their performance in adversarial settings
provides perspective on their robustness.

I We would like violations of the probabilistic assumptions to
have a limited impact.



Online Learning: Motivations

3. Online algorithms are also effective in probabilistic settings.

I Easy to convert an online algorithm to a batch algorithm.
I Easy to show that good online performance implies good

i.i.d. performance, for example.



Prediction in Probabilistic Settings

I i.i.d. (X ,Y ), (X1,Y1), . . . , (Xn,Yn) from X × Y.
I Use data (X1,Y1), . . . , (Xn,Yn) to choose fn : X → A with

small risk,
R(fn) = E`(Y , fn(X )).



Online Learning

I Repeated game:

Player chooses at

Adversary reveals `t

I Example: `t (at ) = loss(yt ,at (xt )).

I Aim: minimize
∑

t

`t (at ), compared to the best

(in retrospect) from some class:

regret =
∑

t

`t (at )−min
a∈A

∑
t

`t (a).

I Data can be adversarially chosen.



Outline

1. An Example from Computational Finance: The Dark Pools
Problem.

2. Bounds on Optimal Regret for General Online Prediction
Problems.



The Dark Pools Problem

I Computational finance: adversarial setting is appropriate.
I Online algorithm improves on best known algorithm for

probabilistic setting.

Joint work with Alekh Agarwal and Max Dama.



Dark Pools

Instinet,
Chi-X,
Knight Match, ...

International Securities Exchange,
Investment Technology Group
(POSIT),

I Crossing networks.
I Alternative to open exchanges.
I Avoid market impact by hiding transaction size and traders’

identities.



Dark Pools



Dark Pools



Dark Pools



Dark Pools



Allocations for Dark Pools

The problem: Allocate orders to several dark pools
so as to maximize the volume of transactions.

I Volume V t must be allocated across K venues: v t
1, . . . , v

t
K ,

such that
∑K

k=1 v t
k = V t .

I Venue k can accommodate up to st
k , transacts

r t
k = min(v t

k , s
t
k ).

I The aim is to maximize
T∑

t=1

K∑
k=1

r t
k .



Allocations for Dark Pools: Probabilistic Assumptions

Previous work: (Ganchev, Kearns, Nevmyvaka and Wortman, 2008)

I Assume venue volumes are i.i.d.:
{st

k , k = 1, . . . ,K , t = 1, . . . ,T}.
I In deciding how to allocate the first unit,

choose the venue k where Pr(st
k > 0) is largest.

I Allocate the second and subsequent units in decreasing
order of venue tail probabilities.

I Algorithm: estimate the tail probabilities (Kaplan-Meier
estimator—data is censored), and allocate as if the
estimates are correct.



Allocations for Dark Pools: Adversarial Assumptions

Why i.i.d. is questionable:
I one party’s gain is another’s loss
I volume available now affects volume remaining in future
I volume available at one venue affects volume available at

others
In the adversarial setting, we allow an arbitrary sequence of
venue capacities (st

k ), and of total volume to be allocated (V t ).
The aim is to compete with any fixed allocation order.



Continuous Allocations

We wish to maximize a sum of (unknown) concave functions of
the allocations:

J(v) =
T∑

t=1

K∑
k=1

min(v t
k , s

t
k ),

subject to the constraint
∑K

k=1 v t
k ≤ V t .

The allocations are parameterized as distributions over the K
venues:

x1
t , x

2
t , . . . ∈ ∆K−1 = (K − 1)-simplex.

Here, x1
t determines how the first unit is allocated, x2

t the
second, ...

The algorithm allocates to the k th venue: v t
k =

V t∑
v=1

xv
t ,k .



Continuous Allocations

We wish to maximize a sum of (unknown) concave functions of
the distributions:

J =
T∑

t=1

K∑
k=1

min(v t
k (xv

t ,k ), st
k ).

Want small regret with respect to an arbitrary distribution xv ,
and hence w.r.t. an arbitrary allocation.

regret =
T∑

t=1

K∑
k=1

min(v t
k (xv

k ), st
k )− J.



Continuous Allocations

We use an exponentiated gradient algorithm:

Initialize xv
1,i = 1

K for v = {1, . . . ,V}.
for t = 1, . . . ,T do

Set v t
k =

∑V T

v=1 xv
t ,k .

Receive r t
k = min{v t

k , s
t
k}.

Set gv
t ,k = ∇xv

t,k
J.

Update xv
t+1,k ∝ xv

t ,k exp(ηgv
t ,k ).

end for



Continuous Allocations

Theorem: For all choices of V t ≤ V and of st
k , ExpGrad has

regret no more than 3V
√

T ln K .



Continuous Allocations

Theorem: For all choices of V t ≤ V and of st
k , ExpGrad has

regret no more than 3V
√

T ln K .

Theorem: For every algorithm, there are sequences V t and st
k

such that regret is at least V
√

T ln K/16.



Experimental results
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Continuous Allocations: i.i.d. data

I Simple online-to-batch conversions show ExpGrad obtains
per-trial utility within O(T−1/2) of optimal.

I Ganchev et al bounds:
per-trial utility within O(T−1/4) of optimal.



Discrete allocations

I Trades occur in quantized parcels.
I Hence, we cannot allocate arbitrary values.
I This is analogous to a multi-arm bandit problem:

I We cannot directly obtain the gradient at the current x .
I But, we can estimate it using importance sampling ideas.

Theorem: There is an algorithm for discrete allocation with ex-
pected regret Õ((VTK )2/3).
Any algorithm has regret Ω̃((VTK )1/2).



Dark Pools

I Allow adversarial choice of volumes and transactions.
I Per trial regret rate superior to previous best known

bounds for probabilistic setting.
I In simulations, performance comparable to (correct)

parametric model’s, and superior to nonparametric
estimate.



Outline

1. An Example from Computational Finance: The Dark Pools
Problem.

2. Bounds on Optimal Regret for General Online Prediction
Problems.



Optimal Regret for General Online Decision Problems

I Parallels between probabilistic and online frameworks.
I Tools for the analysis of probabilistic problems:

Rademacher averages.
I Analogous results in the online setting:

I Value of dual game.
I Bounds in terms of Rademacher averages.

I Open problems.

Joint work with Jake Abernethy, Alekh Agarwal, Sasha Rakhlin,
Karthik Sridharan and Ambuj Tewari.



Prediction in Probabilistic Settings

I i.i.d. (X ,Y ), (X1,Y1), . . . , (Xn,Yn) from X × Y.
I Use data (X1,Y1), . . . , (Xn,Yn) to choose fn : X → A with

small risk,
R(fn) = P`(Y , fn(X )),

ideally not much larger than the minimum risk over some
comparison class F :

excess risk = R(fn)− inf
f∈F

R(f ).



Parallels between Probabilistic and Online Settings

I Prediction with i.i.d. data:
I Convex F , strictly convex loss, `(y , f (x)) = (y − f (x))2:

sup
P

(
PR(f̂ )− inf

f∈F
R(f )

)
≈ C(F ) log n

n
.

I Nonconvex F , or (not strictly) convex loss,
`(y , f (x)) = |y − f (x)|:

sup
P

(
PR(f̂ )− inf

f∈F
R(f )

)
≈ C(F )√

n
.

I Online convex optimization:
I Convex A, strictly convex `t :

per trial regret ≈ c log n
n

.

I `t (not strictly) convex:

per trial regret ≈ c√
n
.



Tools for the analysis of probabilistic problems

For fn = arg minf∈F
∑n

t=1 `(Yt , f (Xt )),

R(fn)− inf
f∈F

P`(Y , f (X )) ≤ 2 sup
f∈F

∣∣∣∣∣1n
n∑

t=1

`(Yt , f (Xt ))− P`(Y , f (X ))

∣∣∣∣∣ .
So supremum of empirical process, indexed by F , gives upper
bound on excess risk.



Tools for the analysis of probabilistic problems

Typically, this supremum is concentrated about

P sup
f∈F

∣∣∣∣∣1n
n∑

t=1

(`(Yt , f (Xt ))− P`(Y , f (X )))

∣∣∣∣∣
= P sup

f∈F

∣∣∣∣∣P′1n
n∑

t=1

(
`(Yt , f (Xt ))− `(Y ′t , f (X ′t ))

)∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣1n
n∑

t=1

εt
(
`(Yt , f (Xt ))− `(Y ′t , f (X ′t ))

)∣∣∣∣∣
≤ 2E sup

f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ ,
where (X ′t ,Y

′
t ) are independent, with same distribution as

(X ,Y ), and εt are independent Rademacher (uniform ±1)
random variables.



Tools for the analysis of probabilistic problems

That is, for fn = arg minf∈F
∑n

t=1 `(Yt , f (Xt )), with high
probability,

R(fn)− inf
f∈F

P`(Y , f (X )) ≤ cE sup
f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ ,
where εt are independent Rademacher (uniform ±1) random
variables.

I Rademacher averages capture complexity of
{(x , y) 7→ `(y , f (x)) : f ∈ F}: they measure how well
functions align with a random (ε1, . . . , εn).

I Rademacher averages are a key tool in analysis of many
statistical methods: related to covering numbers (Dudley)
and combinatorial dimensions (Vapnik-Chervonenkis,
Pollard), for example.

I A related result applies in the online setting...



Online Decision Problems

We have:
I a set of actions A,
I a set of loss functions L.

At time t ,
I Player chooses distribution Pt on decision set A.
I Adversary chooses `t ∈ L (`t : A → R).
I Player incurs loss Pt`t .

Regret is value of game:

Vn(A,L) = inf
P1

sup
`1

· · · inf
Pn

sup
`n

E

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)
,

where at ∼ Pt .



Optimal Regret in Online Decision Problems

Theorem

Vn = sup
P

P

(
n∑

t=1

inf
at∈A

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

)
,

where P is distribution over sequences `1, . . . , `n.

I Follows from von Neumann’s minimax theorem.
I Dual game: adversary plays first by choosing P.



Optimal Regret in Online Decision Problems

Theorem

Vn = sup
P

P

(
n∑

t=1

inf
at∈A

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

)
,

where P is distribution over sequences `1, . . . , `n.

I Value is the difference between minimal (conditional)
expected loss and minimal empirical loss.

I If P were i.i.d., the expression would be the difference
between the minimal expected loss and minimal empirical
loss.



Optimal Regret in Online Decision Problems

Theorem

Vn ≤ 2 sup
`1

Eε1 · · · sup
`n

Eεn sup
a∈A

n∑
t=1

εt`t (a),

where ε1, . . . , εn are independent Rademacher (uniform
±1-valued) random variables.

I Compare to bound involving Rademacher averages in the
probabilistic setting:

excess risk ≤ cE sup
f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ .
I In the adversarial case, the choice of `t is deterministic,

and can depend on ε1, . . . , εt−1.
I Proof idea similar to i.i.d. case, but using a tangent

sequence (dependent on previous `ts).



Optimal Regret: Lower Bounds

I Rakhlin, Sridharan and Tewari recently considered the
case of prediction with absolute loss:

`t (at ) = |yt − at (xt )|,

and showed (almost) corresponding lower bounds:

c1Rn(A)

log3/2 n
≤ Vn ≤ c2Rn(A),

where

Rn(A) = sup
x1

Eε1 · · · sup
xn

Eεn sup
a∈A

n∑
t=1

εta(xt ).



Optimal Regret: Open Problems

I The bounds on regret of an optimal strategy in the online
framework might be loose:
In the probabilistic setting, the supremum of the empirical
process can be a loose bound on the excess risk. If the
variance of the excess loss can be bounded in terms of its
expectation (for example, in regression with a strongly
convex loss and a convex function class, or in classification
with a margin condition on the conditional class
probability), then we can get better (optimal) rates with
local Rademacher averages.
Is there an analogous result in the online setting?



Optimal Regret: Open Problems

I These results bound the regret of an optimal strategy, but
they are not constructive.
In what cases can we efficiently solve the optimal online
prediction optimization problem?



Outline

1. An Example from Computational Finance: The Dark Pools
Problem.

I Adversarial model is appropriate.
I Online strategy improves on the regret rate of previous best

known method for probabilistic setting.
2. Bounds on Optimal Regret for General Online Prediction

Problems.
I Parallels between probabilistic and online frameworks.
I Tools for the analysis of probabilistic problems:

Rademacher averages.
I Bounds on optimal online regret using Rademacher

averages.


