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Generalization in Neural Networks

@ What determines the statistical complexity of a deep network?
e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures




Neural Networks for Classification

Neural network computes f : RY — R.
Directed acyclic graph with one output node, nodes compute

m
(z1,...yzZm)— 0 (ZW;Z;+W0> ,

i=1
where o : R — R is a nonlinear function, such as

1

@)=

or o(a) = max{0, a}.

Parameters (w's) adjusted by gradient descent to minimize an objective
function on training examples, such as

Z(f xi) = yi)?




VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X x {—1,1}.

@ Want to choose a function f such that with high probability
P(f(x) # y) is small (near optimal).




VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}X.

For every prob distribution P on X x {—1,1},

with probability 1 — & over n iid examples (x1,y1), .-, (Xn, ¥n),
every f in F satisfies

PUF() # ) < (i () # ) + (S (vCdim(F) +log(1/))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth



VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = O(p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
Q@ Sigmoid: VCdim(F) = O (pk?).
(Karpinsky and Maclntyre, 1994))
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Generalization in Neural Networks: Number of Parameters

NIPS 1996

Experimental Results

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.
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Generalization in Neural Networks

@ What determines the statistical complexity of a deep network?
e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures




Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ 0 ( W)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fatr(7) = O((B/7)?)-

@ The bound depends on the margin loss plus an error term.

@ Minimizing quadratic loss or cross-entropy loss leads to large margins.

e fatg(v) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.



ralization: Margins and Size of Parameters

1996: Sigmoid networks 2017: Deep RelLU network

Increasing the Network Size
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@ Qualitative behavior explained @ How to measure the
by small weights theorem. complexity of a ReLU network?
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Generalization in Neural Networks

@ What determines the statistical complexity of a deep network?
e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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Explaining Generalization Failures

CIFAR10
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Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10
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(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
@ Need to account for the scale of the neural network functions.

@ What is the appropriate notion of the size of these functions?
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Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.

B., Dylan J. Foster, Matus Telgarsky, 2017.
arXiv:1706.08498

Matus Telgarsky
UluC

Dylan Foster
Cornell
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Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

@ Large multiclass versus binary classification.

v

o Consider operator norms: For a matrix A;,

[Aill+ == sup [[Aix].
lIxlI<1

e Multiclass margin function for f : X — R™, y € {1,..., m}:

M(F(x).y) = F(x)y = max F(x);
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Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

PrM(fa(X), ¥) £ 0) < - 5 1IM(A(X). Y) < 21 +0 (7).

i=1

Definitions
Network with L layers, parameters A;, ..., A;r:

| A

fA(X) = O'(ALO'Lfl(ALfl ce 0'1(A1X) ce ))

Scale of fa: Ra :=[[;i_q [|Aillsy/2is |

(Assume o; is 1-Lipschitz, inputs normalized.)
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Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10
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(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
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Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled margins on CIFAR10

—  cifar
- rand label
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Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled margins on MNIST
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Generalization in Deep Networks

With high probability, every fa with Ra < r satisfies

n

PrM(fa(X), ¥) £ 0) < - 5 1M((X). Y) < 11 +.0 ().

Network with L layers, parameters Ay, ..., A;:
fa(x) = o(Aror-1(Ar—1---01(A1x) - --)).

Scale of fa: Ra == [T |Aills/>2E, ||||i\\',||||5
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Explaining Generalization Failures

——— excess risk 0.9
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Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Lower bounds?
Regularization: explicit control of operator norms?
Role of depth?

Interplay with optimization?

Residual networks: Close to identity.
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