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Generalization in Neural Networks

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures
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Neural Networks for Classification

Neural network computes f : Rd → R.
Directed acyclic graph with one output node, nodes compute

(z1, . . . , zm) 7→ σ

(
m∑
i=1

wizi + w0

)
,

where σ : R→ R is a nonlinear function, such as

σ(α) =
1

1 + e−α
, or σ(α) = max{0, α}.

Parameters (w ’s) adjusted by gradient descent to minimize an objective
function on training examples, such as

n∑
i=1

(f (xi )− yi )
2.
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VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that with high probability
P(f (x) 6= y) is small (near optimal).
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VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi ) 6= yi}|+

(c
n

(VCdim(F ) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F ) = Õ(p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F ) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F ) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F ) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)
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Generalization in Neural Networks: Number of Parameters

NIPS 1996
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Generalization in Neural Networks

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures
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Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X )) 6= Y ) ≤ 1

n

n∑
i=1

1[Yi f (Xi ) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

Same ideas used to give rigorous dimension-independent
generalization bounds for SVMs (B. and Shawe-Taylor, 1999)

... and margins analysis of boosting. (Schapire, Freund, B., Lee, 1998)

The scale of functions f ∈ F is important.

Bigger f s give bigger margins, so fatF (γ) should be bigger.

The output y of a sigmoid layer has ‖y‖∞ ≤ 1,
so ‖w‖1 ≤ B controls the scale of f .
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Generalization: Margins and Size of Parameters

1996: Sigmoid networks

Qualitative behavior explained
by small weights theorem.

2017: Deep ReLU networks

simons.berkeley.edu

How to measure the
complexity of a ReLU network?
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Generalization in Neural Networks

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures
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Explaining Generalization Failures

CIFAR10

http://corochann.com/

12 / 24



Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

Need to account for the scale of the neural network functions.

What is the appropriate notion of the size of these functions?
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Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.
B., Dylan J. Foster, Matus Telgarsky, 2017.
arXiv:1706.08498

Matus Telgarsky

UIUC

Dylan Foster

Cornell

15 / 24



Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measuring the size of functions computed by a network of ReLUs.
(c.f. sigmoid networks: the output y of a layer has ‖y‖∞ ≤ 1, so
‖w‖1 ≤ B keeps the scale under control.)

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .
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Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X ),Y ) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi ),Yi ) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σ(ALσL−1(AL−1 · · ·σ1(A1x) · · · )).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
√∑L

i=1
‖Ai‖F
‖Ai‖∗ .

(Assume σi is 1-Lipschitz, inputs normalized.)
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Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?
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Explaining Generalization Failures

If we rescale the margins by RA (the scale parameter):

Rescaled margins on CIFAR10
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Explaining Generalization Failures

If we rescale the margins by RA (the scale parameter):

Rescaled margins on MNIST
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Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X ),Y ) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi ),Yi ) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σ(ALσL−1(AL−1 · · ·σ1(A1x) · · · )).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
√∑L

i=1
‖Ai‖F
‖Ai‖∗ .
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Explaining Generalization Failures
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Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

Residual networks: Close to identity.

24 / 24


