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Game-Theoretic Statistics

Formulating decision problems as sequential games

Decision problems: regression, classification, order allocation,
dynamic pricing, portfolio optimization, option pricing.

Rather than model the process generating the data probabilistically,
we view it as an adversary.

Decision-making = hedging against the future choices of the
process generating the data.
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Outline

• Decision problems as sequential games

1 Allocation to dark pools

2 Pricing options

3 Linear regression
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Prediction as a game

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses outcome yt ∈ Y.

3 Player incurs loss `(at , yt).

Player’s aim:

Minimize regret:

T∑
t=1

`(at , yt)−min
a∈A

T∑
t=1

`(a, yt).

1

1

2

2

3 3

∗

`(at , yt) = ‖at − yt‖2.
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Online Prediction Games

The value of the game: Minimax

Regret

VT (Y,A) = min
a1∈A

max
y1∈Y

· · · min
aT∈A

max
yT∈Y

(

T∑
t=1

`(at , yt)−min
a∈A

T∑
t=1

`(a, yt)

)
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Online Prediction

Examples

at yt `(at , yt)

Density density pθ outcome yt − log pθ(yt)
estimation

Regression fθ(xt) outcome yt ‖fθ(xt)− yt‖2

Bandit pt on {1, . . . , k} rewards y ∈ Rk −EIt∼ptyIt
(observe only yIt )
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Online Prediction

Probabilistic Model

Batch

Independent random data.

Aim for small expected loss
subsequently.

Adversarial Model

Online

Sequence of interactions
with an adversary.

Aim for small cumulative
loss throughout.
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Game-Theoretic Statistics

Why?

Weak assumptions on data

Streaming: appropriate for big data

Often no harder than the probabilistic formulation

Insight into robustness to probabilistic assumptions
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Online Learning: Motivations

Online algorithms are also effective in probabilistic settings.

Easy to convert an online algorithm to a batch algorithm.

Easy to show that good online performance implies good
i.i.d. performance, for example.
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Outline

• Decision problems as sequential games

1 Allocation to dark pools

2 Pricing options

3 Linear regression
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Dark Pools Allocation

Joint work with Alekh Agarwal and Max Dama.

Crossing networks.

Alternative to open
exchanges.

Avoid market impact by
hiding transaction size and
traders’ identities.

en.wikipedia.org

Instinet
BATS

Liquidnet
Investment Technology Group (POSIT)
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Dark Pools
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Allocations for Dark Pools

The problem: Allocate orders to several dark pools
so as to maximize the volume of transactions.

At time t:

1 See the required volume V t to be allocated.

2 Choose allocations v t1 , . . . , v
t
K across the K venues, such that∑K

k=1 v
t
k = V t .

3 Venue k can accommodate up to stk , transacts r tk = min(v tk , s
t
k).

The aim is to maximize
T∑
t=1

K∑
k=1

r tk .
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Allocations for Dark Pools: Probabilistic Assumptions

Previous approaches: probabilistic. (Ganchev, Kearns, Nevmyvaka and Wortman, 2008)

Assume independent venue volumes:
{stk , k = 1, . . . ,K , t = 1, . . . ,T}.
In deciding how to allocate the first unit,
choose the venue k where Pr(stk > 0) is largest.

Allocate the second and subsequent units in decreasing order of venue
tail probabilities.

Algorithm: estimate the tail probabilities (Kaplan-Meier
estimator—data is censored), and allocate as if the estimates are
correct.
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Allocations for Dark Pools: Adversarial Assumptions

Independence assumption is questionable:

one party’s gain is another’s loss

volume available now affects volume remaining in future

volume available at one venue affects volume available at others

In the adversarial setting, we allow an arbitrary sequence of venue
capacities (stk), and of total volume to be allocated (V t).
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Continuous Allocations: Concave maximization

We wish to maximize a sum of (unknown) concave functions of the
allocations:

J(v) =
T∑
t=1

K∑
k=1

min(v tk , s
t
k),

subject to the constraint
∑K

k=1 v
t
k ≤ V t .

The allocations are parameterized as distributions over the K venues:

x1
t , x

2
t , . . . ∈ ∆K−1 = (K − 1)-simplex.

Here, x1
t determines how the first unit is allocated, x2

t the second, ...

Allocate to the kth venue: v tk =
V t∑
v=1

xvt,k .
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Continuous Allocations: Concave maximization

We wish to maximize a sum of (unknown) concave functions of the
distributions:

J =
T∑
t=1

K∑
k=1

min(v tk(xvt,k), stk).

Want small regret with respect to an arbitrary distribution xv .
(And hence w.r.t. an arbitrary allocation.)

regret =
T∑
t=1

K∑
k=1

min(v tk(xvk ), stk)− J.
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Continuous Allocations: Online Convex Optimization

Exponentiated gradient algorithm

Mirror descent (each step optimizes a sum of a linear approximation
of the objective and a convex regularizer that keeps the step small)

Gradient descent suffices for the optimal regret rate; the right
regularizer gives the right dependence on the dimension.
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Continuous Allocations

Theorem:

For all choices of V t ≤ V and of stk , ExpGrad has regret no
more than 3V

√
T lnK .

Theorem:

For every algorithm, there are sequences V t and stk such
that regret is at least V

√
T lnK/16.

(Recall: T is number of rounds of the game; K is number of venues.)
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Simulation results
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Continuous Allocations: i.i.d. data

Simple online-to-batch conversions show ExpGrad obtains
per-trial utility within O(T−1/2) of optimal.

Ganchev et al bounds:
per-trial utility within O(T−1/4) of optimal.
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Discrete allocations

Trades occur in quantized parcels.

Hence, we cannot allocate arbitrary values.

This is analogous to a multi-arm bandit problem:

We cannot directly obtain the gradient at the current x .
But, we can estimate it using importance sampling ideas.

Theorem:

There is an algorithm for discrete
allocation with expected regret
Õ((VTK )2/3).

Theorem:

Any algorithm has regret
Ω̃((VTK )1/2).

(Value of the game is O(T 1/2); no known algorithm.)
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Dark Pools

Allow adversarial choice of volumes and transactions.

Per trial regret rate superior to previous best known bounds for
probabilistic setting.

In simulations, performance comparable to (correct) parametric
model’s, and superior to nonparametric estimate.
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Option Pricing

Joint work with Jacob Abernethy, Rafael Frongillo, Andre Wibisono

Given a financial contract with a known payoff at a future time T ,
how much is it worth now?

European call / put option: contract that gives the holder the right
to buy / sell an asset at strike price K at expiration time T

Payoff of call option:

gC (ST ) = max{0, ST − K}

0
K

gC (S )

K

Student Version of MATLAB

Payoff of put option:

gP(ST ) = max{0, K − ST}

0
K

gP (S)

K

Student Version of MATLAB
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Option Pricing

Assume no arbitrage: No opportunity to make riskless profit

Black-Scholes (1973): Asset price St ∼ geometric Brownian motion

log St = log S0 + σ Bt +
(
µ− σ2

2

)
t

Multiplicative price fluctuation is
normally distributed

St+∆t − St = r St

r ≈ log (1 + r) ∼ N
((
µ− σ2

2

)
∆t, σ2 ∆t

)
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Option Pricing

Option value is V (S , t) when asset price is S at time t

Black-Scholes strategy: invest $∆(S , t) = S VS(S , t) in asset at time t

Option value V (S , t) satisfies (logarithmic) heat equation

Vt(S , t) +
1

2
S2 VSS(S , t) = 0

with boundary condition given by option payoff V (S ,T ) = g(S)

Black-Scholes Formula:

V (S , t) = E
[
g
(
S · G (T − t)

)]

where G (t) ∼ GBM(0, σ2) asset price

option payoff
at time T

Black-Scholes price
at time 0

Student Version of MATLAB

31 / 47



Option Pricing

Option value is V (S , t) when asset price is S at time t

Black-Scholes strategy: invest $∆(S , t) = S VS(S , t) in asset at time t

Option value V (S , t) satisfies (logarithmic) heat equation

Vt(S , t) +
1

2
S2 VSS(S , t) = 0

with boundary condition given by option payoff V (S ,T ) = g(S)

Black-Scholes Formula:

V (S , t) = E
[
g
(
S · G (T − t)

)]

where G (t) ∼ GBM(0, σ2) asset price

option payoff
at time T

Black-Scholes price
at time 0

Student Version of MATLAB

31 / 47



Option Pricing

Option value is V (S , t) when asset price is S at time t

Black-Scholes strategy: invest $∆(S , t) = S VS(S , t) in asset at time t

Option value V (S , t) satisfies (logarithmic) heat equation

Vt(S , t) +
1

2
S2 VSS(S , t) = 0

with boundary condition given by option payoff V (S ,T ) = g(S)

Black-Scholes Formula:

V (S , t) = E
[
g
(
S · G (T − t)

)]

where G (t) ∼ GBM(0, σ2) asset price

option payoff
at time T

Black-Scholes price
at time 0

Student Version of MATLAB

31 / 47



Option Pricing

Option value is V (S , t) when asset price is S at time t

Black-Scholes strategy: invest $∆(S , t) = S VS(S , t) in asset at time t

Option value V (S , t) satisfies (logarithmic) heat equation

Vt(S , t) +
1

2
S2 VSS(S , t) = 0

with boundary condition given by option payoff V (S ,T ) = g(S)

Black-Scholes Formula:

V (S , t) = E
[
g
(
S · G (T − t)

)]

where G (t) ∼ GBM(0, σ2) asset price

option payoff
at time T

Black-Scholes price
at time 0

Student Version of MATLAB

31 / 47



Adversarial Option Pricing

Black-Scholes requires strong assumption on St

Can we construct trading strategy robust to adversarially chosen
price?

DeMarzo, Kremer, Mansour (2006):

Trading algorithm with lower
bound on payoff ⇒ upper
bound on option price
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Adversarial Option Pricing

Our approach: option pricing from online learning perspective

Sequential zero-sum online trading game between Investor and Market

Suppose there are n trading periods before expiration time T

• Observes asset
price S

• Invests $�

• Selects
fluctuation r

• Updates price
S  S(1 + r)

Investor profits �r

Investor Market
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Adversarial Option Pricing

Minimax regret is “minimax option price”

How much more money Investor could have made from option:

regret = g
(
S ·

n∏
i=1

(1 + ri )
)

︸ ︷︷ ︸
option payoff

−
n∑

i=1

∆i ri︸ ︷︷ ︸
trading profit

V n
ζ (S , c) = inf

∆1

sup
r1

· · · inf
∆n

sup
rn

g
(
S ·

n∏
i=1

(1 + ri )
)
−

n∑
i=1

∆i ri

with cumulative volatility constraint:
n∑

i=1

r2
i ≤ c

maximum jump constraint: |ri | ≤ ζn
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Convergence to Black-Scholes Price

Let G (t)
d
= exp(B(t)− 1

2 t) be GBM with zero drift and unit volatility.

Define Black-Scholes price: U(S , c) = E[g(S · G (c))]

Theorem (Lower Bound):
If payoff function g is Lipschitz and lim infn→∞ n ζ2

n > c , then

lim inf
n→∞

V n
ζn(S , c) ≥ U(S , c)

Theorem (Upper Bound):
If g is convex, L-Lipschitz, and K -eventually linear, then for any ζ > 0,

V n
ζ (S , c) ≤ U(S , c) + 18LK c ζ1/4

Corollary:
If also ζn → 0, then limn→∞ V n

ζn
(S , c) = U(S , c)

Black-Scholes as “worst-case” model
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Adversarial Option Pricing

The upper bound is obtained by considering the Black-Scholes
strategy for Investor:

∆(S , c) = S US(S , c)

Lower bound proof sketch:
Analyze randomized price for Market: Ri,n ∼ Uniform{±

√
c/n} i.i.d.

Central limit theorem:
E[g(S

∏n
i=1(1 + Ri,n))]→ E[g(S · G (c))] = U(S , c)
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Outline

• Decision problems as sequential games

1 Allocation to dark pools

2 Pricing options

3 Linear regression
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Online fixed design linear regression

Joint work with Wouter Koolen, Alan Malek, Eiji Takimoto, Manfred Warmuth.

Protocol

Given: T ; x1, . . . , xT ∈ Rp; YT ⊂ RT .
For t = 1, 2, . . . ,T :

Learner predicts ŷt ∈ R
Adversary reveals yt ∈ R

(yT1 ∈ YT )

Learner incurs loss (ŷt − yt)
2.

Regret =
T∑
t=1

(ŷt − yt)
2 − min

β∈Rp

T∑
t=1

(
β>xt − yt

)2
.
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Online fixed design linear regression

Online linear regression: previous work

(Foster, 1991): `2-regularized least squares.

(Cesa-Bianchi et al, 1996): `2-constrained least squares.

(Kivinen and Warmuth, 1997): exponentiated gradient (relative
entropy regularization).

(Vovk, 1998): aggregating algorithm.

(Forster, 1999; Azoury and Warmuth, 2001):
aggregating algorithm is last-step minimax.

This work

The optimal strategy.
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Linear regression in a probabilistic setting

Ordinary least squares (linear model, uncorrelated errors)

Given (x1, y1), . . . , (xn, yn) ∈ Rp × R,

choose

β̂ =

(
n∑

t=1

xtx
>
t

)−1 n∑
t=1

xtyt ,

and for a subsequent x ∈ Rp, predict

ŷ = x>β̂ = x>

(
n∑

t=1

xtx
>
t

)−1 n∑
t=1

xtyt ,

A sequential version of OLS

ŷn+1 := x>n+1

(
n∑

t=1

xtx
>
t

)−1 n∑
t=1

xtyt .
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ŷ = x>β̂ = x>

(
n∑

t=1

xtx
>
t

)−1 n∑
t=1

xtyt ,

A sequential version of OLS
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Given (x1, y1), . . . , (xn, yn) ∈ Rp × R, choose

β̂ =

(
n∑

t=1

xtx
>
t

)−1 n∑
t=1

xtyt ,

and for a subsequent x ∈ Rp, predict

ŷ = x>β̂ = x>

(
n∑

t=1

xtx
>
t

)−1 n∑
t=1

xtyt ,

A sequential version of ridge regression

ŷn+1 := x>n+1

(
n∑

t=1

xtx
>
t + λI

)−1 n∑
t=1

xtyt .
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Online fixed design linear regression

Sufficient statistics

Fix x1, . . . , xT ∈ Rp.

YT = {(y1, . . . , yT ) : |yt | ≤ Bt}.
Use sufficient statistics: sn =

∑n
t=1 ytxt .

∗ provided: Bn ≥
n−1∑
t=1

∣∣∣x>n Pnxt

∣∣∣ Bt .

Minimax∗ strategy: linear

ŷ∗n+1 = x>n+1Pn+1sn.

P−1
n =

n∑
t=1

xtx
>
t +

T∑
t=n+1

x>t Ptxt

1 + x>t Ptxt
xtx
>
t

.
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Linear regression

Box constraints

YT = {(y1, . . . , yT ) : |yn| ≤ Bn} Bn ≥
n−1∑
t=1

∣∣∣x>n Pnxt

∣∣∣Bt .

Regret =
T∑
t=1

B2
t .

Minimax strategy: linear

ŷ∗n = x>n Pnsn−1.

Optimal shrinkage

P−1
n =

n∑
t=1

xtx
>
t +

T∑
t=n+1

xtx
>
t .

c.f. ridge regression:
n∑

t=1

xtx
>
t + λI .
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Linear regression with adversarial covariates

Legal covariate sequences
For any t ≥ 0, any x1, . . . , xt and any Pt , the following two conditions are
equivalent.

1 There is a T ≥ t and a sequence xt+1, . . . , xT such that

P−1
T =

T∑
q=1

xqx
>
q .

2 P−1
t �∑t

q=1 xqx
>
q .

Adversarial covariates

Thus, each P0 � 0 (a ‘covariance budget’) defines a set of sequences
x1, . . . , xT (and corresponding suitable bounds on y1, . . . , yT ).
The same strategy is optimal for each of these sequences.
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Linear regression

ŷ∗n = x>n Pnsn−1

Minimax optimal for two families of label constraints:
box constraints and problem-weighted `2 norm constraints.

Strategy does not need to know the constraints.

Regret is O(p logT ).

Same strategy is optimal for covariate sequences consistent with some
‘covariance budget’ P0.
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Other games with efficient minimax optimal strategies

Euclidean loss

Prediction in Rd :
Y ⊆ Rd , A = Rd , Euclidean loss: `(ŷ , y) = 1

2 ‖ŷ − y‖2.

Minimax strategy is empirical minimizer plus shrinkage towards center
of smallest ball containing Y: a∗t+1 = tαt+1ȳt + (1− tαt+1)c.

Regret:

r2

2

T∑
t=1

αt ,

where r is radius of smallest ball,

αT =
1

T
, αt = α2

t+1 + αt+1

45 / 47



Other games with efficient minimax optimal strategies

Time series forecasting

min
a1

max
x1

· · ·min
aT

max
xT

T∑
t=1

‖at − xt‖2

︸ ︷︷ ︸
Loss of Learner

− min
â1,...,âT

T∑
t=1

‖ât − xt‖2

︸ ︷︷ ︸
Loss of Comparator

+λ

T+1∑
t=1

‖ât − ât−1‖2

︸ ︷︷ ︸
Comparator Complexity

.

Expression for regret when xt bounded. (And a bound when it is not.)

Minimax strategy makes linear predictions.

Regret is O

(
T√

1 + λ

)
.

More generally, penalize comparator by the energy of the innovations
of a time series model. Efficient linear minimax strategy. Regret?
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Outline

• Decision problems as sequential games

1 Allocation to dark pools

2 Pricing options

3 Linear regression

Formulating decision problems as sequential games

Decision problems: regression, classification, order allocation,
dynamic pricing, portfolio optimization, option pricing.

Rather than model the process generating the data probabilistically,
we view it as an adversary.

Decision-making = hedging against the future choices of the
process generating the data.
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