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Online Prediction

A repeated game:

At round t:

1 Player chooses prediction at ∈ A.

2 Adversary chooses outcome yt ∈ Y.

3 Player incurs loss `(at , yt).

`(at , yt) = ‖at − yt‖2.

Player’s aim:

T∑
t=1

`(at , yt)− inf
a∈

T∑
t=1

`(a, yt).
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2 Adversary chooses outcome yt ∈ Y.

3 Player incurs loss `(at , yt).

`(at , yt) = ‖at − yt‖2.

Player’s aim:

Minimize regret wrt comparison C:

T∑
t=1

`(at , yt)− inf
a∈C

T∑
t=1

`(a, yt).
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Online Prediction Games: Why

Universal prediction:
very weak assumptions on process generating the data.

Deterministic heart of a decision problem.

Gives robust statistical methods.

This talk: Minimax optimal strategies.
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Online Prediction Games

The value of the game: Minimax Regret

VT (Y,A) = inf
a1∈A

sup
y1∈Y
· · · inf

aT∈A
sup
yT∈Y

(
T∑
t=1

`(at , yt)− inf
a∈A

T∑
t=1

`(a, yt)

)
.

Minimax Optimal

Strategy:

:
T⋃
t=0

Yt → A.

VT (Y,A) = inf
S

sup
yT

1 ∈YT

(
T∑
t=1

`
(
S
(
y t−1

1

)
, yt
)
− inf

a∈A

T∑
t=1

`(a, yt)

)

= sup
yT

1 ∈YT

(
T∑
t=1

`
(
S∗
(
y t−1

1

)
, yt
)
− inf

a∈A

T∑
t=1

`(a, yt)

)
.
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Online Prediction Games

Questions

Minimax regret?

Optimal player’s strategy?

Efficiently computable?

Optimal adversary’s strategy?

How do they depend on `

loss, `(a, y):

1 1
2‖a− y‖2

2,
a, y ∈ Rd .

2 1
2 (a− y)>W (a− y),
W � 0.

3 − log a(y),
a ∈ {pθ : θ ∈ Θ}.

wikimedia.org
mfo.de

www.indiana.edu
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Outline

Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

Normalized maximum likelihood.
SNML: predicting like there’s no tomorrow.
Bayesian strategies.
Optimality = exchangeability.

Part 2: Euclidean loss.

The role of the smallest ball.
The simplex and the ball.
Sub-game optimal strategies on ellipsoids.
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Computing minimax optimal strategies

The value of the game:

VT (Y,A) = inf
a1∈A

sup
y1∈Y
· · · inf

aT∈A
sup
yT∈Y

(
T∑
t=1

`(at , yt)− inf
a∈A

T∑
t=1

`(a, yt)

)
.

Recursion for the value-to-go, given a history:

V (y1, . . . , yT ) := −min
a

T∑
t=1

`(a, yt),

V (y1, . . . , yt−1) := min
at

max
yt

(`(at , yt) + V (y1, . . . , yt)) .

VT (Y,A) = V ().
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Computing minimax optimal strategies

To play the minimax strategy: after seeing y1, . . . , yt−1,

1 Compute V (y1, . . . , yt),

2 Choose at as the minimizer of

max
yt

(`(at , yt) + V (y1, . . . , yt))

Difficult!

Efficient minimax optimal strategies

When is V a simple function of (statistics of) the history y1, . . . , yt?
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10 / 40



Games with simple minimax optimal strategies

Prediction Game Efficient optimal strategy?

Log loss

some cases

Absolute loss, binary can be approximated

Experts, bounded loss can be approximated

Quadratic loss unit ball

Quadratic/Mahalanobis loss

Log loss: `(p̂, y) = − log p̂(y). (p̂ a density; C a probability model.)

Minimax optimal strategy: normalized maximum likelihood.[Shtarkov, 1987]

Computation difficult in general. Efficient special cases:

Multinomials [Kontkanen, Myllymäki, 2005]
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Outline

Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.
Normalized maximum likelihood.
SNML: predicting like there’s no tomorrow.
Bayesian strategies.
Optimality = exchangeability.

Part 2: Euclidean loss.

The role of the smallest ball.
The simplex and the ball.
Sub-game optimal strategies on ellipsoids.
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Online density estimation with log loss

Comparison class

Parametric family of densities: C = {pθ : θ ∈ Θ},
where pθ : Y → R+ is a parameterized probability
density with respect to a reference measure λ
on Y.

Log loss

`(p̂, y) = − log p̂(y).

Regret

R(yn1 , p̂) =
n∑

t=1

`(p̂t , yt)− inf
p∈C

n∑
t=1

`(p, yt).
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Online density estimation with log loss

Strategies are joint densities

A strategy p̂ is a mapping from histories y t1 = (y1, . . . , yt)
to densities p̂(·|y t1) on Y.

Every strategy is a joint density:

p̂(y1, . . . , yn) =

p̂(y1)p̂(y2|y1) · · · p̂(yn|yn−1
1 ).

Regret wrt comparison C = {pθ} is log likelihood ratio:

R(yn1 , p̂) =
n∑

t=1

`(p̂t , yt)− inf
p∈C

n∑
t=1

`(p, yt)

= sup
θ∈Θ

log pθ(yn1 )− log p̂(yn1 ).

Here, pθ(yn1 ) =
∏n

t=1 pθ(yt).
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Online density estimation with log loss

Many interpretations of prediction with log loss

Sequential probability prediction.

Sequential lossless data compression.

Repeated gambling/investment.

Long history in several communities.

[Kelly, 1956], [Solomonoff, 1964], [Kolmogorov, 1965], [Cover, 1974], [Rissanen, 1976, 1987, 1996], [Shtarkov, 1987], [Feder,
Merhav and Gutman, 1992], [Freund, 1996], [Xie and Barron, 2000], [Cesa-Bianchi and Lugosi, 2001, 2006], [Grünwald, 2007]
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Normalized maximum likelihood

NML

p
(n)
nml(y

n
1 ) ∝ sup

θ∈Θ
pθ(yn1 ).

NML is optimal [Shtarkov, 1987]

1 NML equalizes regret: for any sequence yn1 , regret is

log

∫
Y n

sup
θ∈Θ

pθ(zn) dλn(zn).

2 Any strategy that does not equalize regret has strictly worse
maximum regret.
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Outline

Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

Normalized maximum likelihood.
SNML: predicting like there’s no tomorrow.
Bayesian strategies.
Optimality = exchangeability.

Part 2: Euclidean loss.

The role of the smallest ball.
The simplex and the ball.
Sub-game optimal strategies on ellipsoids.

17 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 ) ∝ sup

θ∈Θ
pθ(y t1)

Pretend that this is the last prediction we’ll ever make.

Simpler conditional calculation.

Known to have asymptotically optimal regret.
[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kot lowski and Grünwald, 2011]

18 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 ) ∝ sup

θ∈Θ
pθ(y t1)

Pretend that this is the last prediction we’ll ever make.

Simpler conditional calculation.

Known to have asymptotically optimal regret.
[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kot lowski and Grünwald, 2011]

18 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 )

∝ sup
θ∈Θ

pθ(y t1)

Pretend that this is the last prediction we’ll ever make.

Simpler conditional calculation.

Known to have asymptotically optimal regret.
[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kot lowski and Grünwald, 2011]

18 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 ) ∝ sup

θ∈Θ
pθ(y t1)

Pretend that this is the last prediction we’ll ever make.

Simpler conditional calculation.

Known to have asymptotically optimal regret.
[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kot lowski and Grünwald, 2011]

18 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 ) ∝ sup

θ∈Θ
pθ(y t1)

Pretend that this is the last prediction we’ll ever make.

Simpler conditional calculation.

Known to have asymptotically optimal regret.
[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kot lowski and Grünwald, 2011]

18 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 ) ∝ sup

θ∈Θ
pθ(y t1)

Pretend that this is the last prediction we’ll ever make.

Simpler conditional calculation.

Known to have asymptotically optimal regret.
[Takimoto and Warmuth, 2000], [Roos and Rissanen, 2008], [Kot lowski and Grünwald, 2011]

18 / 40



Predicting like there’s no tomorrow: Sequential NML

Sequential Normalized Maximum Likelihood

psnml(yt |y t−1
1 ) = p

(t)
nml(yt |y

t−1
1 ) ∝ sup

θ∈Θ
pθ(y t1)

Theorem

Sequential NML is optimal iff psnml is exchangeable.

psnml is exchangeable means
psnml(y1, y2, y3, y4) = psnml(y1, y2, y4, y3) = · · · = psnml(y4, y3, y2, y1).
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Proof idea:

SNML’s regret doesn’t depend on last observation.

(⇐) Exchangeability implies regret is independent of observations.
Hence SNML is an equalizer: same as NML.
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Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Bayesian strategies

Bayesian strategies

For prior π on Θ:

pπ(x t1) =

∫
θ∈Θ

pθ(x t1) dπ(θ)

pπ(θ|x t1) ∝ pπ(θ|x t−1
1 )pθ(xt).

Sequential update to prior.

Jeffreys prior:
π(θ) ∝

√
|I (θ)|,

Attractive properties (e.g., invariant to parameterization).

Asymptotically optimal regret for exponential families.

22 / 40



Sequential NML and Bayesian strategies

Optimality

For regular pθ (asymptotically normal maximum likelihood estimator, Fisher

information well-behaved, integrals exist), the following are equivalent:

1 NML = SNML.

2 psnml exchangeable.

3 NML = Bayesian.

4 NML = Bayesian with Jeffreys prior.

5 SNML = Bayesian.

6 SNML = Bayesian with Jeffreys prior.

If we can ignore the time horizon and be optimal, that’s the same as
Bayesian prediction with Jeffreys prior.
If any Bayesian strategy is optimal, it uses Jeffreys prior.
Why?

If NML=SNML, then we can consider long time horizons, so
the asymptotics emerge. Asymptotic normality of the MLE implies
Jeffreys prior is the only candidate.
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Online density estimation with log loss

Extensions [B., Grünwald, Harremoës, Hedayati, Kot lowski, 2013]

One-dimensional exponential families:
pθ(y) = h(y) exp (θy − A(θ)) .

pSNML is exchangeable (i.e., SNML optimal, Bayesian optimal) ⇔

1 Gaussian distributions with fixed variance σ2 > 0,
2 gamma distributions with fixed shape k > 0,
3 Tweedie exponential family of order 3/2,
4 Or smooth transformations

(Pareto, Laplace, Rayleigh, Lévy, Nakagami)
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Outline

Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

Normalized maximum likelihood.
SNML: predicting like there’s no tomorrow.
Bayesian strategies.
Optimality = exchangeability.

Part 2: Euclidean loss.
The role of the smallest ball.
The simplex and the ball.
Sub-game optimal strategies on ellipsoids.
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Mahalanobis loss and squared Euclidean loss

The value of the game: minimax regret

VT (Y, `W ) = inf
a1∈A

sup
y1∈Y
· · · inf

aT∈A
sup
yT∈Y

(
T∑
t=1

`(at , yt)− inf
a∈A

T∑
t=1

`(a, yt)

)
.

A = Rd , Y ⊂ Rd ,

`W (a, y) =
1

2
(a− y)>W (a− y), W � 0.

Mahalanobis loss → quadratic loss

Since (a− y)>W (a− y) =
∥∥W 1/2(a− y)

∥∥2
, we

can work with `(a, y) = 1
2‖a− y‖2 and W 1/2Y:

VT (Y, `W ) = VT (W 1/2Y, `).
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Main result: the role of the smallest ball

The smallest ball: BY
Define the ‘minimum radius’ function:
JY(c) = maxy∈Y ‖y − c‖,
so the smallest ball containing Y is
BY = {y ∈ Rd : ‖y − c‖ ≤ r},
with r = JY(c) = minx JY(x).

Main Theorem

For closed, bounded Y ⊂ Rd :

Minimax strategy is a∗n+1 = nαn+1
1

n

n∑
t=1

yt + (1− nαn+1)c.

Optimal regret is V (Y) =
r2

2

T∑
n=1

αn.
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Online prediction with quadratic loss

The simplex case

Consider a set of d + 1 affinely independent points in Rd , all lying on the
surface of the smallest ball.

Use sufficient statistics: sn =
∑n

t=1(yt − c), σ2
n =

∑n
t=1 ‖yt − c‖2.

Value-to-go: quadratic in state

1

2

(
αn‖sn‖2 − σ2

n + r2
T∑

t=n+1

αt

)
.

Minimax strategy: affine in state

a∗n+1 − c = nαn+1
sn
n
.

a∗n+1 = nαn+1ȳn + (1− nαn+1)c

Maximin distribution: same mean.

αT =
1

T
, αt = α2

t+1 + αt+1

≤ 1

t
.
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Online prediction with quadratic loss

Value-to-go: quadratic in state

V (y1, . . . , yn) =
1

2

(
αn‖sn‖2 − σ2

n + r2
T∑

t=n+1

αt

)
.

where: sn =
n∑

t=1

(yt − c), σ2
n =

n∑
t=1

‖yt − c‖2.

αT =
1

T
, αt = α2

t+1 + αt+1

≤ 1

t
.

Minimax regret for simplex

V (Y) =
r2

2

T∑
t=1

αt

≤ r2

2
(1 + logT ) .
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Online prediction with quadratic loss on the simplex

Proof idea

V (y1, . . . , yT ) := −min
a

T∑
t=1

`(a, yt),

V (y1, . . . , yt−1) := min
at

max
yt

(`(at , yt) + V (y1, . . . , yt)) .

The final V (y1, . . . , yT ) is a (convex) quadratic in the state.

V (y1, . . . , yt−1) := min
at

max
pt

Eyt∼pt (`(at , yt) + V (y1, . . . , yt))

= max
pt

min
at

Eyt∼pt (`(at , yt) + V (y1, . . . , yt)) .

At each step, the unconstrained maximizer in {p ∈ Rd+1 : 1>p = 1} keeps
the value-to-go a quadratic function.
When the simplex points are on the surface of the smallest ball, the
maximizer is a probability distribution.
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Online prediction with quadratic loss on the ball

The ball case: Y = {y : ‖y − c‖ ≤ r}

Use sufficient statistics: sn =
∑n

t=1(yt − c), σ2
n =

∑n
t=1 ‖yt − c‖2.

Value-to-go: quadratic in state

1

2

(
αn‖sn‖2 − σ2

n + r2
T∑

t=n+1

αt

)
.

Minimax strategy: affine in state

a∗n+1 − c = nαn+1
sn
n
.

a∗n+1 = nαn+1ȳn + (1− nαn+1)c

Maximin distribution: same mean.

Minimax regret for ball

V (Y) =
r2

2

T∑
t=1

αt .

31 / 40



Online prediction with quadratic loss on the ball

The ball case: Y = {y : ‖y − c‖ ≤ r}
Use sufficient statistics: sn =

∑n
t=1(yt − c), σ2

n =
∑n

t=1 ‖yt − c‖2.

Value-to-go: quadratic in state

1

2

(
αn‖sn‖2 − σ2

n + r2
T∑

t=n+1

αt

)
.

Minimax strategy: affine in state

a∗n+1 − c = nαn+1
sn
n
.
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Online prediction with quadratic loss on the ball

Proof idea

V (y1, . . . , yT ) := −min
a

T∑
t=1

`(a, yt),

V (y1, . . . , yt−1) := min
at

max
yt

(`(at , yt) + V (y1, . . . , yt)) .

The final V (y1, . . . , yT ) is a (convex) quadratic in the state.

V (y1, . . . , yt−1) := min
at

max
yt

(`(at , yt) + V (y1, . . . , yt)) .

At each step, the inner maximum is of a (convex) quadratic criterion with
a single quadratic constraint. This is a rare example of a nonconvex
problem where strong duality holds. Evaluating the dual gives the
recurrence for the value-to-go.
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Online prediction with quadratic loss

The general case: closed, bounded Y ⊂ Rd

Recall: the smallest ball containing Y is BY = {x ∈ Rd : ‖x − c‖ ≤ r}.
A Lagrange dual argument shows that the optimal center is in the convex
hull of a set of contact points of Y at radius r .
From Carathéodory’s Theorem, there is an affinely independent subset S
of these contact points, with |S | ≤ d + 1.

From below

Y ⊇ S , so

V (Y) ≥ V (S) =
r2

2

T∑
i=1

αi .

From above

Y ⊆ BY , so

V (Y) ≤ V (BY) =
r2

2

T∑
i=1

αi .
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Main result: the role of the smallest ball

The smallest ball: BY
Define the ‘minimum radius’ function:
JY(c) = maxy∈Y ‖y − c‖,
so the smallest ball containing Y is
BY = {y ∈ Rd : ‖y − c‖ ≤ r},
with r = JY(c) = minx JY(x).

Main Theorem

For closed, bounded Y ⊂ Rd :

Minimax strategy is a∗n+1 = nαn+1
1

n

n∑
t=1

yt + (1− nαn+1)c.

Optimal regret is V (Y) =
r2

2

T∑
n=1

αn.
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Online prediction with quadratic loss

Minimax regret

V (Y) =
r2

2

T∑
t=1

αt

=
r2

2

(
logT − log logT + O

(
log logT

logT

))
.
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Online prediction with quadratic loss

Sub-game optimal

For any closed, bounded Y, the minimax regret is achieved by the
strategy for BY .

If Y is a simplex (with vertices on the surface of BY), or if Y = BY ,
this strategy is sub-game optimal: given any history, it minimizes the
worst case regret.

For arbitrary Y, this minimax optimal strategy might not be
sub-game optimal.

For Y an ellipsoid, a more complex strategy has this property...
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Online prediction with quadratic loss on an ellipsoid

The ellipsoid

Y =
{
y ∈ Rd : y>Wy ≤ 1

}
. (W � 0.)

Use sufficient statistics: sn =
∑n

t=1 yt , σ2
n =

∑n
t=1 ‖yt‖2.

Value-to-go: quadratic in state

V (y1, . . . , yn) =
1

2

(
s>n Ansn − σ2

n + λmax(W−1)
T∑

t=n+1

αt

)
.

W−1 =
∑
i

νiuiu
>
i At =

∑
i

λ
(t)
i

νi
uiu
>
i ,

λ
(T )
i =

νi
T
, λ

(t)
i =

λ
(t+1)
i

νi + λ
(t+1)
max − λ(t+1)

i

(
νi + λ

(t+1)
i

)
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Online prediction with quadratic loss on an ellipsoid

Minimax strategy: linear in state

a∗n+1 = Bnsn.

Maximin distribution: same mean, concentrated on two points along the
major axis direction.

W−1 =
∑
i

νiuiu
>
i Bt =

∑
i

λ
(t+1)
i

νi + λ
(t+1)
max − λ(t+1)

i

uiu
>
i .

λ
(T )
i =

νi
T
, λ

(t)
i =

λ
(t+1)
i

νi + λ
(t+1)
max − λ(t+1)

i

(
νi + λ

(t+1)
i

)

λ
(t)
max

νmax
= αt .

other directions: more shrinkage.
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Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.

39 / 40



Online prediction with quadratic loss

Minimax regret depends on the radius of the smallest ball.

The minimax strategy is simple: shrink the sample average towards
the center of the smallest ball.

For the simplex and the ball, the strategy is sub-game optimal.

For arbitrary ellipsoids, the strategy involves the same shrinkage in
the largest eigenvalue direction, more shrinkage in other directions.
This strategy is also sub-game optimal.

Sub-game optimal strategies for other cases (when the convex hull of
the contact points between Y and the surface of the smallest ball is a
proper subset of Y)?

Extensions:

Changing losses: `n(a, y) = (a− y)>Wn(a− y).

Linear regression: `n(θ, y) = (θ>xn − y)2.

Hilbert space.
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Outline

Computing minimax optimal strategies.

Prediction games with simple minimax optimal strategies.

Part 1: Log loss.

Normalized maximum likelihood.
SNML: predicting like there’s no tomorrow.
Bayesian strategies.
Optimality = exchangeability.

Part 2: Euclidean loss.

The role of the smallest ball.
The simplex and the ball.
Sub-game optimal strategies on ellipsoids.
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