
Linear Bandits.
Peter Bartlett

• Linear bandits.

− Exponential weights with unbiased loss estimates.

− Controlling loss estimates and their variance.

∗ Barycentric spanner.

∗ Uniform distribution.

∗ John’s distribution.

− Lower bounds.

− Stochastic mirror descent.

∗ Full information.

∗ Bandit information.
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Linear bandits

At roundt,

• Strategy choosesat ∈ A ⊂ R
d.

• Adversary chooses linear lossℓt : A → [−1, 1].

• Strategy sees lossℓt(at).

Loss islinear in action.

Aim to minimize regret:

Rn = E

n∑

t=1

ℓt(at)− inf
a∈A

E

n∑

t=1

ℓt(a).
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Example: Packet routing

Consider the problem of packet-routing in a network(V,E). At roundt,

• Strategy chooses a pathat ∈ A ⊂ {0, 1}E from origin node to

destination node.

• Adversary chooses delaysℓt ∈ L = [0, 1]E .

• See lossℓt · at (total delay).

Aim to minimize regret:

Rn = E

n∑

t=1

ℓt · at − inf
a∈A

E

n∑

t=1

ℓt · a.

Loss islinear in action.
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Linear bandits vs k-armed bandits

This problem is closely related to the classicalk-armed bandit problem:

At roundt:

• Strategy choosesat ∈ A = {1, . . . , k}.

• Adversary choosesℓt ∈ L = [0, 1]A.

• See lossℓt(at).

Aim to minimize regret:

Rn = E

n∑

t=1

ℓt(at)− inf
a∈A

E

n∑

t=1

ℓt(a).
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Linear bandits vs k-armed bandits

This is unchanged (up to a constant factor) if we instead define

A = {e1, . . . , ek} ⊂ R
k,

L = {ℓ : A → [−1, 1] linear}.

And allowing the strategy to choosea in the convex hull ofA does not

change the regret

Rn = E

n∑

t=1

ℓt(at)− inf
a∈A

E

n∑

t=1

ℓt(a).

(But it might make the game easier for the strategy since it changes the information that the strategy sees.)
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Finite covers

For a compactA ⊆ R
d, we can construct anǫ-cover of sizeO(1/ǫd),

for example, in the uniform metric

ρ(â, a) = ‖â− a‖∞ := max
i

|âi − ai|.

Since we’re aiming forO(
√
n) regret, we can think ofA as having

cardinality|A| = O(nd/2), solog |A| = O(d logn).

6



Exponential weights for linear bandits

GivenA, distributionµ onA, mixing coefficientγ > 0, learning

rateη > 0,

setq1 uniform onA.

for t = 1, 2, . . . , n,

1. pt = (1− γ)qt + γµ

2. chooseat ∼ pt

3. observeℓTt at

4. updateqt+1(a) ∝ qt(a) exp(−ηℓ̃Tt a)),

where ℓ̃t = Σ−1
t ata

T
t ℓt,

Σt = Ea∼pt
aaT .

7



Unbiased loss estimates

• Assumespan(A) = R
d (otherwise, we can project to a lower

dimension) and thatµ has support on ad-dimensional set. So

Ea∼pt
aaT has rankd.

• Strategy observesaTt ℓt andat, so it can compute

ℓ̃t = Σ−1
t at

(
aTt ℓt

)
.

• ℓ̃t is unbiased:

E

[

ℓ̃t|Ft−1

]

=
(
Ea∼pt

aaT
)−1 (

Eat∼pt
ata

T
t

)
ℓt = ℓt.
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Regret bound

Theorem: Forη supa∈A

∣
∣
∣ℓ̃Tt a

∣
∣
∣ ≤ 1,

Rn ≤ γn+
log |A|

η
+ (e− 2)η

n∑

t=1

EEa∼pt

(

ℓ̃Tt a
)2

.

So we need to controlη times the magnitude of the loss estimates,

η sup
a∈A

∣
∣
∣ℓ̃Tt a

∣
∣
∣

and the variance term,

EEa∼pt

(

ℓ̃Tt a
)2

.
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Proof

The regret is

E

[
n∑

t=1

(
ℓTt at − ℓTt a

∗)
]

.

We’ve seen that, given historyFt−1,

E

[

ℓ̃t|Ft−1

]

= E
[
Σ−1

t ata
T
t ℓt|Ft−1

]
= E [ℓt|Ft−1] .

Lemma: Some unbiased estimates involvingℓ̃t:

E
[
ℓTt a
]
= E

[

ℓ̃Tt a
]

,

E
[
ℓTt at

]
= E

[
∑

a∈A
pt(a)E

[

ℓ̃t

∣
∣
∣Ft−1

]T

a

]

= E

[
∑

a∈A
pt(a)ℓ̃

T
t a

]

.
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Proof

So we can write the strategy’s expected cumulative loss as

E

n∑

t=1

ℓTt at = E

n∑

t=1

∑

a∈A
pt(a)ℓ̃

T
t a.

We’ll give up on the loss incurred in the exploration trials:

n∑

t=1

∑

a∈A
pt(a)ℓ̃

T
t a =

n∑

t=1

∑

a∈A
((1− γ)qt(a) + γµ(a)) ℓ̃Tt a

= (1− γ)

(
n∑

t=1

∑

a∈A
qt(a)ℓ̃

T
t a

)

+ γ
n∑

t=1

∑

a∈A
µ(a)ℓ̃Tt a

︸ ︷︷ ︸

exploration

.
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Proof

For qt, we follow the standard analysis (see Adversarial Bandits), but

instead of using non-negativity of thẽℓs, we use a lower bound:

logE exp (−η(X − EX)) ≤ E (exp(−ηX)− 1 + ηX)

≤ (e− 2)η2EX2,

where the last inequality usesexp(−x) ≤ 1− x+ (e− 2)x2 for x ≥ −1.

So if ηℓ̃Tt a ≥ −1 for all a ∈ A, the previous analysis shows that, for any

a∗ ∈ A, the first term above satisfies

n∑

t=1

∑

a∈A
qt(a)ℓ̃

T
t a ≤

n∑

t=1

ℓ̃Tt a
∗ +

log |A|
η

+ (e− 2)η
n∑

t=1

∑

a∈A
qt(a)

(

ℓ̃Tt a
)2

.
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Proof

Combining, and using the fact that(1− γ)qt(a) ≤ pt(a),

n∑

t=1

∑

a∈A
pt(a)ℓ̃

T
t a ≤

n∑

t=1

ℓ̃Tt a
∗

+ (exploration) +
log |A|

η
+ (e− 2)η

n∑

t=1

∑

a∈A
pt(a)

(

ℓ̃Tt a
)2

.

The unbiasedness lemma gives

Rn ≤ γn+
log |A|

η
+ (e− 2)η

n∑

t=1

Ea∼pt

(

ℓ̃Tt a
)2

.
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Controlling variance

Lemma: ForL ⊂ [−1, 1]A, the variance term is bounded:

EEa∼pt

(

ℓ̃Tt a
)2

≤ d.

E

(

ℓ̃Tt a
)2

= aTE
(

ℓ̃tℓ̃
T
t

)

a

= aTE
((

ℓTt at
)2

Σ−1
t ata

T
t Σ

−1
t

)

a

≤ aTΣ−1
t E

(
ata

T
t

)
Σ−1

t a

= aTΣ−1
t a.

Ea∼pt
E

(

ℓ̃Tt a
)2

≤ E tr
(
aTΣ−1

t a
)
= tr

(
Σ−1

t E
(
aaT

))
= tr (I) = d.
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Controlling the magnitude of the estimator

Lemma: ForL ⊂ [−1, 1]A,
∣
∣
∣ℓ̃Tt a

∣
∣
∣ ≤ sup

a,b∈A
aTΣ−1

t b.

∣
∣
∣ℓ̃Tt a

∣
∣
∣ =

∣
∣
∣aTt ℓt

(
Σ−1

t at
)T

a
∣
∣
∣

≤
∣
∣aTt ℓt

∣
∣
∣
∣aTt Σ

−1
t a

∣
∣

≤ sup
a,b∈A

aTΣ−1
t b.

We’ll see that typicallysupa,b∈A aTΣ−1
t b ≤ cd/γ.
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Regret bound

Theorem: ForL ⊂ [−1, 1]A, if

sup
a,b∈A

aTΣ−1
t b ≤ cd

γ
,

settingη =

√

log |A|
n ((e− 2)d+ cd)

γ = cdη

givesRn ≤ 2
√

n(d+ cd) log |A|.
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Exploration distributions

• (Dani, Hayes, Kakade, 2008):
Forµ uniform overbarycentric spanner,

Rn = O
(

d
√

n log |A|
)

= Õ
(

d3/2
√
n
)

.

• (Cesa-Bianchi and Lugosi, 2009):
For several combinatorial problems,A ⊆ {0, 1}d, µ uniform overA
gives

supa∈A ‖a‖22
λmin (Ea∼µ[aaT ])

= O(d),

so

Rn = O
(√

dn log |A|
)

= Õ
(
d
√
n
)
.

• (Bubeck, Cesa-Bianchi and Kakade, 2009):John’s Theorem:
Õ (d

√
n).
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Barycentric spanner

(Suppose thatA ⊆ R
d spansRd .)

A barycentric spanner of A is a set{b1, . . . , bd} that spansRd and

satisfies:

for all a ∈ A there is anα ∈ [−1, 1]d such thata = Bα, where

B =
(

b1 · · · bd

)

.

• Every compactA has a barycentric spanner.

• If linear functions can be efficiently optimized overA, then there is

an efficient algorithm for finding an approximate barycentric spanner

(that is,|αi| ≤ 1 + δ; O(d2 log d/δ) linear optimizations).

18



Barycentric spanner

Lemma: If {b1, . . . , bd} ⊂ A maximizesdet(B), then it is a

barycentric spanner.

Proof. Fora = Bα,

|det(B)| ≥
∣
∣
∣det

(

a b2 · · · bd

)∣
∣
∣

=

∣
∣
∣
∣
∣

∑

i

αi det
(

bi b2 · · · bd

)
∣
∣
∣
∣
∣

= |α1| |det(B)| .
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Barycentric spanner

Theorem: For A ⊆ [−1, 1]d andµ uniform on a barycentric

spanner ofA,

sup
a,b∈A

aTΣ−1
t b ≤ d2

γ

(that is,cd ≤ d2). Hence,

Rn ≤ 2d
√

2n log |A|.

Σt =
γ

d
BBT + (1− γ)

∑

a∈A
qt(a)aa

T

︸ ︷︷ ︸

M

.
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Barycentric spanner: Proof

sup
a,b∈A

aTΣ−1
t b ≤ sup

α,β∈[−1,1]d
αTBTΣ−1

t Bβ

≤ sup
‖α‖=‖β‖=

√
d

αTBTΣ−1
t Bβ

= dλmax

(
BTΣ−1

t B
)

= dλmax

(
B−1ΣtB

−T
)−1

=
d

λmin

(
B−1

(
γ
dBBT +M

)
B−T

)

≤ d2

γλmin (B−1BBTB−T )
=

d2

γ
,

whereλmax(·) andλmin(·) denote the largest and smallest eigenvalues.
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Other exploration distributions

Lemma:

sup
a,b∈A

aTΣ−1
t b ≤ supa∈A ‖a‖22

γλmin (Ea∼µ[aaT ])
.

sup
a,b∈A

aTΣ−1
t b ≤ sup

a∈A
‖a‖22λmax

(
Σ−1

t

)

=
supa∈A ‖a‖22
λmin (Σt)

.

λmin (Σt) = min
‖v‖=1

∑

a∈A
pt(a)v

T aaT v

≥ γ min
‖v‖=1

∑

a∈A
µ(a)vT aaT v = γλmin

(
Ea∼µ[aa

T ]
)
.
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John’s distribution

Theorem: [John’s Theorem] For any convex setA ⊂ R
d, denote

the ellipsoid of minimal volume containing it as

E =
{
x ∈ R

d : (x− c)TM(x− c) ≤ 1
}
.

Then there is a set{u1, . . . , um} ⊆ E ∩A of m ≤ d(d+1)/2+1

contact points and a distributionp on this set such that anyx ∈ R
d

can be written

x = c+ d

m∑

i=1

pi〈x− c, ui − c〉(ui − c),

where〈·, ·〉 is the inner product for which the minimal ellipsoid is

the unit ball about its centerc: 〈x, y〉 = xTMy.

23



John’s distribution

This shows that

x− c = d
∑

i

pi(ui − c)(ui − c)TM(x− c)

⇔ x̃ = d
∑

i

piũiũ
T
i x̃

⇔ 1

d
I =

∑

i

piũiũ
T
i ,

whereũi = M1/2(ui − c), and similarly forx̃. Setting the exploration

distributionµ to be the distributionp over the set of transformed contact

pointsũi, we see that, fora, b ∈ A,

ãTEu∼µuu
T b̃ =

1

d
ãT b̃.
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John’s distribution

So if we shift the origin of the setA and of theui (and the corresponding

introduction of a constant component in the losses), we have

sup
a,b∈A

aTΣ−1
t b ≤ d

γ
,

that is,cd ≤ d. Hence,

Rn ≤ 2
√

2nd log |A|.
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Exploration distributions

• (Dani, Hayes, Kakade, 2008):
Forµ uniform overbarycentric spanner,

Rn = O
(

d
√

n log |A|
)

= Õ
(

d3/2
√
n
)

.

• (Cesa-Bianchi and Lugosi, 2009):
For several combinatorial problems,A ⊆ {0, 1}d, µ uniform overA
gives

supa∈A ‖a‖22
λmin (Ea∼µ[aaT ])

= O(d),

so

Rn = O
(√

dn log |A|
)

= Õ
(
d
√
n
)
.

• (Bubeck, Cesa-Bianchi and Kakade, 2009):John’s Theorem:
Õ (d

√
n).
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Outline

• Linear bandits.

− Exponential weights with unbiased loss estimates.

− Controlling loss estimates and their variance.

∗ Barycentric spanner.

∗ Uniform distribution.

∗ John’s distribution.

− Lower bounds.

− Stochastic mirror descent.

∗ Full information.

∗ Bandit information.
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Lower bounds

Lower bounds from the stochastic setting suffice.

Theorem: ConsiderA = {±1}d, L ⊇ {±ei : 1 ≤ i ≤ d}. There

is a constantc such that, for any strategy and anyn, there is an

i.i.d. adversary for which

Rn ≥ cd
√
n.

(Here,
√

nd log |A| = O(d
√
n).)
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Lower bounds: proof

Probabilistic method: Fixǫ ∈ (0, 1/2) and, for eachb ∈ {±1}d, definePb

onL as

Pb(ei) =
1− biǫ

2d
,

Pb(−ei) =
1 + biǫ

2d
.

(so that the optimala∗ = b). We’ll chooseb uniformly, and show that the

expected regret under this choice is large.
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Lower bounds: proof

Rn(Pb) =
n∑

t=1

d∑

i=1

E [ℓt,i (at,i − bi)]

=
n∑

t=1

d∑

i=1

(at,i − bi)

(
1− 2biǫ

2d
− 1 + 2biǫ

2d

)

=
n∑

t=1

d∑

i=1

(bi − at,i)
biǫ

d

=

d∑

i=1

2ǫ

d

n∑

t=1

1[at,i 6= bi]

︸ ︷︷ ︸

R
i

n
(bi)

.
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Lower bounds: proof

The regret of sub-gamei, R
i

n(bi), is at least the regret that would be
incurred if the strategy knew that the adversary was using one of thePb

distributions, and also knew{bj : j 6= i}. In that case, it would know

θ := E

∑

j 6=i

lt,jat,j ,

and so at each round, it would see a (±1) Bernoulli random variableℓTt at,
with mean

θ − biat,i
ǫ

d
.

Notice that the1/d here is crucial: because information about theith
component only arrives once everyd rounds on average, the range of
values of the unknown Bernoulli mean has shrunk. If the strategy saw the
components ofℓi (even in the semi-bandit setting, withA = {0, 1}d and
feedback(ℓt,1at,1, . . . , ℓt,dat,d)), it would not suffer this disadvantage.
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Lower bounds: proof

Using the same argument as we saw for the stochastic multi-armed bandit

case (with a little extra work to show thatθ is unlikely to be too close to0

or 1, so that the variance of the Bernoulli is not too small), we see that

ER
i

n(bi) ≥
2ǫn

d

(
1

2
− c

ǫ
√
n

d

)

.

Choosingǫ = d/(4c
√
n) givesER

i

n(bi) = Ω(
√
n), and so

ERn(Pb) = Ω(d
√
n).

[NB: A = [−1, 1]d L = {±ei} has lower regret, because the strategy can

useat to identify which direction±ei was played.]

[Open problem: when isΘ(d
√
n) possible with an efficient strategy?]
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Outline

• Linear bandits.

− Exponential weights with unbiased loss estimates.

− Controlling loss estimates and their variance.

∗ Barycentric spanner.

∗ Uniform distribution.

∗ John’s distribution.

− Lower bounds.

− Stochastic mirror descent.

∗ Full information.

∗ Bandit information.
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Full information online prediction games

• Repeated game:

Strategy playsat ∈ A
Adversary revealsℓt ∈ L

• Aim to minimizeregret:

Rn =

n∑

t=1

ℓt(at)−min
a∈A

n∑

t=1

ℓt(a).
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Online Convex Optimization

• Choosingat to minimize past losses can fail.

• The strategy must avoid overfitting.

• First approach: gradient steps.

Stay close to previous decisions, but move in a direction of

improvement.
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Online Convex Optimization

1. Gradient algorithm.

2. Regularized minimization

• Bregman divergence

• Regularized minimization⇔ minimizing latest loss and

divergence from previous decision

• Constrained minimization equivalent to unconstrained plus

Bregman projection

• Linearization

• Mirror descent

3. Regret bound
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Online Convex Optimization: Gradient Method

a1 ∈ A,

at+1 = ΠA (at − η∇ℓt(at)) ,

whereΠA is the Euclidean projection onA,

ΠA(x) = argmin
a∈A

‖x− a‖.

Theorem: ForG = maxt ‖∇ℓt(at)‖ andD = diam(A), the gradient

strategy withη = D/(G
√
n) has regret satisfying

Rn ≤ GD
√
n.
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Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball)

A = {a ∈ R
d : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}. D = 2, G ≤ 1.

Regret is no more than2
√
n.

(And O(
√
n) is optimal.)

Example: (1-ball,∞-ball)

A = ∆(k), L = {a 7→ v · a : ‖v‖∞ ≤ 1}.

D = 2, G ≤
√
k.

Regret is no more than2
√
kn.

Since competing with the whole simplex is equivalent to competing with

the vertices (experts) for linear losses, this is worse thanexponential

weights (
√
k versuslog k).
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Gradient Method: Proof

Define ãt+1 = at − η∇ℓt(at),

at+1 = ΠA(ãt+1).

Fix a ∈ A and consider the measure of progress‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇ℓt(at)‖2 − 2η∇t(at) · (at − a).

By convexity,

n∑

t=1

(ℓt(at)− ℓt(a)) ≤
n∑

t=1

∇ℓt(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2
2η

+
η

2

n∑

t=1

‖∇ℓt(at)‖2
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Online Convex Optimization

1. Gradient algorithm.

2. Regularized minimization

• Bregman divergence

• Regularized minimization⇔ minimizing latest loss and

divergence from previous decision

• Constrained minimization equivalent to unconstrained plus

Bregman projection

• Linearization

• Mirror descent

3. Regret bound
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Online Convex Optimization: A Regularization Viewpoint

• Supposeℓt is linear:ℓt(a) = gt · a.

• SupposeA = R
d.

• Then minimizing the regularized criterion

at+1 = argmin
a∈A

(

η
t∑

s=1

ℓs(a) +
1

2
‖a‖2

)

corresponds to the gradient step

at+1 = at − η∇ℓt(at).
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Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

at+1 = argmin
a∈A

(

η
t∑

s=1

ℓs(a) +R(a)

)

.

The regularizerR : Rd → R is strictly convex and differentiable.

• R keeps the sequence ofats stable: it diminishesℓt’s influence.

• We can view the choice ofat+1 as trading off two competing forces:

makingℓt(at+1) small, and keepingat+1 close toat.

• This is a perspective that motivated many algorithms in the literature.
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Properties of Regularization Methods

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance tothe previous
decision. The appropriate notion of distance is theBregman divergence
DΦt−1

:

Define

Φ0 = R,

Φt = Φt−1 + ηℓt,

so that

at+1 = argmin
a∈A

(

η
t∑

s=1

ℓs(a) + R(a)

)

= argmin
a∈A

Φt(a).
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Bregman Divergence

Definition: For a strictly convex, differentiableΦ : Rd → R, the

Bregman divergence wrtΦ is defined, fora, b ∈ R
d, as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a, b) is the difference betweenΦ(a) and the value ata of the linear

approximation ofΦ aboutb. (PICTURE)
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Bregman Divergence

Example: For a ∈ R
d, the squared euclidean norm,Φ(a) = 1

2‖a‖2,

has

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)

=
1

2
‖a− b‖2,

the squared euclidean norm.
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Bregman Divergence

Example: Fora ∈ [0,∞)d, the unnormalized negative entropy,Φ(a) =
∑d

i=1 ai (ln ai − 1), has

DΦ(a, b) =
∑

i

(ai(ln ai − 1)− bi(ln bi − 1)− ln bi(ai − bi))

=
∑

i

(

ai ln
ai
bi

+ bi − ai

)

,

the unnormalized KL divergence.

Thus, fora ∈ ∆d, Φ(a) =
∑

i ai ln ai has

DΦ(a, b) =
∑

i

ai ln
ai
bi
.
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Bregman Divergence

When the domain ofΦ is S ⊂ R
d, in addition to differentiability and

strict convexity, we make some more assumptions:

• S is closed, and its interior is convex.

• For a sequence approaching the boundary ofS, ‖∇Φ(an)‖ → ∞.

We say that such aΦ is aLegendre function.
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Bregman Divergence Properties

1. DΦ ≥ 0, DΦ(a, a) = 0.

2. DA+B = DA +DB.

3. Forℓ linear,DΦ+ℓ = DΦ.

4. Bregman projection, ΠΦ
A(b) = argmina∈ADΦ(a, b) is uniquely

defined for closed, convexA ⊂ S (that intersects the interior ofS).

5. Generalized Pythagorus: for closed, convexA, a∗ = ΠΦ
A(b), a ∈ A,

DΦ(a, b) ≥ DΦ(a, a
∗) +DΦ(a

∗, b).

6. ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

7. ForΦ∗ the Legendre dual ofΦ,

∇Φ∗ = (∇Φ)
−1

,

DΦ(a, b) = DΦ∗(∇Φ(b),∇Φ(a)).
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Legendre Dual

Here, for a Legendre functionΦ : S → R, we define the Legendre dual as

Φ∗(u) = sup
v∈S

(u · v − Φ(v)) .

(http://maze5.net/)
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Legendre Dual

Properties:

• Φ∗ is Legendre.

• dom(Φ∗) = ∇Φ(int domΦ).

• ∇Φ∗ = (∇Φ)
−1.

• DΦ(a, b) = DΦ∗(∇Φ(b),∇Φ(a)).

• Φ∗∗ = Φ.

Examples:

• Φ = 1
2‖ · ‖2p: Φ∗ = 1

2‖ · ‖2q, where1/p+ 1/q = 1.

• Φ(a) =
∑d

i=1 e
ai : Φ∗(u) =

∑

i ui(lnui − 1).
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Online Convex Optimization

1. Problem formulation

2. Empirical minimization fails.

3. Gradient algorithm.

4. Regularized minimization

• Bregman divergence

• Regularized minimization⇔ minimizing latest loss plus
divergence from previous decision

• Constrained minimization equivalent to unconstrained plus
Bregman projection

• Linearization

• Mirror descent

5. Regret bounds
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Properties of Regularization Methods

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance (Bregman

divergence) to the previous decision.

Theorem: Defineã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(
ηℓt(a) +DΦt−1

(a, ãt)
)
.

Then

ãt+1 = arg min
a∈Rd

(

η
t∑

s=1

ℓs(a) +R(a)

)

.
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Properties of Regularization Methods

Proof. By the definition ofΦt,

ηℓt(a) +DΦt−1
(a, ãt) = Φt(a)− Φt−1(a) +DΦt−1

(a, ãt).

The derivative wrta is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1
(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizesΦt.
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Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,

followed by Bregman projection:

Theorem: For

at+1 = argmin
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt

A (ãt+1).
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Properties of Regularization Methods

Proof. Let a′t+1 denoteΠΦt

A (ãt+1). First, by definition ofat+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,

DΦt
(a′t+1, ãt+1) ≤ DΦt

(at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt
(a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus,Φt(a
′
t+1) ≤ Φt(at+1).
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Properties of Regularization Methods

Example: For linearℓt, regularized minimization is equivalent to min-

imizing the last loss plus the Bregman divergencewrt R to the previous

decision:

argmin
a∈A

(

η
t∑

s=1

ℓs(a) +R(a)

)

= ΠR
A

(

arg min
a∈Rd

(ηℓt(a) +DR(a, ãt))

)

,

because adding a linear function toΦ does not changeDΦ.
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Linear Loss

We can replaceℓt by∇ℓt(at), and this leads to an upper bound on regret.

Thus, for convex losses, we can work withlinearℓt.
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Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed asmirror

descent—taking a gradient step in a dual space:

Theorem: The decisions

ãt+1 = arg min
a∈Rd

(

η
t∑

s=1

gs · a+R(a)

)

can be written

ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from̃at through∇R, then taking a step

in the direction−gt, then mapping back through(∇R)−1 = ∇R∗ to

ãt+1.
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Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs,

∇R(ãt) = −η
t−1∑

s=1

gs,

so∇R(ãt+1) = ∇R(ãt)− ηgt, which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .
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Mirror Descent

Given:

compact, convexA ⊆ R
d, closed, convexS ⊃ A, η > 0, S ⊃ A,

LegendreR : S → R. Seta1 ∈ argmina∈AR(a).

For roundt:

1. Playat; observeℓt ∈ R
d.

2. wt+1 = ∇R∗ (∇R(at)− η∇ℓt(at)).

3. at+1 = argmina∈ADR(a, wt+1).

[Always convex optimization.]
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Exponential weights as mirror descent

ForA = ∆(k) andR(a) =
k∑

i=1

(ai log ai − ai), this reduces to

exponential weights:

∇R(u)i = log ai,

R∗(u) =
∑

i

eui ,

∇R∗(u)i = exp(ui),

∇R(wt+1)i = log(wt+1,i) = log at,i − η∇ℓt(at)i,

wt+1,i = at,i exp (−η∇ℓt(at)i) ,

DR(a, b) =
∑

i

(

ai log
ai
bi

+ bi − ai

)

,

at+1,i ∝ wt+1,i.
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Mirror descent regret

Theorem: Suppose that, for alla ∈ A ∩ int(S), ℓ ∈ L,

∇R(a)− η∇ℓ(a) ∈ ∇R(int(S)). For anya ∈ A,

n∑

t=1

(ℓt(at)− ℓt(a))

≤ 1

η

(

R(a)−R(a1) +
n∑

t=1

DR∗

(

∇R(at)− η∇ℓt(at),∇R(at)
)
)

.

Proof: Fix a ∈ A. Since theℓt are convex,

n∑

t=1

(ℓt(at)− ℓt(a)) ≤
n∑

t=1

∇ℓt(at)
T (at − a).
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Mirror descent regret: proof

The choice ofwt+1 and the fact that∇R−1 = ∇R∗ show that

∇R(wt+1) = ∇R(at)− η∇ℓt(at).

Hence,

η∇ℓt(at)
T (at − a) = (a− at)

T (∇R(wt+1)−∇R(at))

= DR(a, at) +DR(at, wt+1)−DR(a, wt+1).

Generalized Pythagorus’ inequality shows that the projection at+1

satisfies

DR(a, wt+1) ≥ DR(a, at+1) +DR(at+1, wt+1).
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Mirror descent regret: proof

η
n∑

t=1

∇ℓt(at)
T (at − a)

≤
n∑

t=1

(

DR(a, at) +DR(at, wt+1)−DR(a, wt+1)

−DR(a, at+1)−DR(at+1, wt+1)
)

= DR(a, a1)−DR(a, an+1) +

n∑

t=1

(DR(at, wt+1)−DR(at+1, wt+1))

≤ DR(a, a1) +
n∑

t=1

DR(at, wt+1).
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Mirror descent regret: proof

= DR(a, a1) +

n∑

t=1

DR∗(∇R(wt+1),∇R(at))

= DR(a, a1) +
n∑

t=1

DR∗(∇R(at)− η∇ℓt(at),∇R(at))

= R(a)− R(a1) +
n∑

t=1

DR∗(∇R(at)− η∇ℓt(at),∇R(at)).
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Linear bandit setting

• See onlyℓt(at); ∇ℓt(at) is unseen.

• Instead ofat, strategy plays a noisy version,xt.

• Strategy usesℓt(xt) to give an unbiased estimate of∇ℓt(at).
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Stochastic mirror descent

Given:

compact, convexA ⊆ R
d, η > 0, S ⊃ A, LegendreR : S → R.

Seta1 ∈ argmina∈AR(a).

For roundt:

1. Playnoisy versionxt of at; observeℓt(xt).

2. Compute estimatẽgt of ∇ℓt(at).

3. wt+1 = ∇R∗ (∇R(at)− ηg̃t).

4. at+1 = argmina∈ADR(a, wt+1).
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Regret of stochastic mirror descent

Theorem: Suppose that, for alla ∈ A ∩ int(S) and linearℓ ∈ L,

E[g̃t|at] = ∇ℓt(at) and∇R(a)− ηg̃t(a) ∈ ∇R(int(S)).
For anya ∈ A,

n∑

t=1

(ℓt(at)− ℓt(a))

≤ 1

η

(

R(a)−R(a1) +
n∑

t=1

EDR∗

(

∇R(at)− ηg̃t,∇R(at)
)
)

+
n∑

t=1

E [‖|at − E[xt|at]‖ ‖g̃t‖∗] .
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Regret: proof

E

n∑

t=1

(ℓt(xt)− ℓt(a))

= E

n∑

t=1

(ℓt(xt)− ℓt(at) + ℓt(at)− ℓt(a))

= E

n∑

t=1

(
E
[
ℓTt (xt − at)

∣
∣ at
]
+ ℓt(at)− ℓt(a)

)

≤ E

n∑

t=1

‖at − E[xt|at]‖ ‖g̃t‖∗ + E

n∑

t=1

∇ℓt(at)
T (at − a)

= E

n∑

t=1

‖at − E[xt|at]‖ ‖g̃t‖∗ + E

n∑

t=1

g̃Tt (at − a).
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Regret: proof

Applying the regret bound for the (random) linear lossesa 7→ g̃Tt a gives

≤ E

n∑

t=1

‖at − E[xt|at]‖ ‖g̃t‖∗

+
1

η

(

R(a)− R(a1) +
n∑

t=1

EDR∗ (∇R(at)− ηg̃t,∇R(at))

)

.
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Regret: Euclidean ball

ConsiderB = {a ∈ R
d : ‖a‖ ≤ 1} (with the Euclidean norm).

Ingredients:

1. Distribution ofxt, givenat:

xt = ξt
at
‖at‖

+ (1− ξt)ǫteIt ,

whereξt is Bernoulli(‖at‖), ǫt is uniform±1, andIt is uniform on

{1, . . . , d}, soE[xt|at] = at.

2. Estimatẽℓt of lossℓt:

ℓ̃t = d
1− ξt

1− ‖at‖
xT
t ℓtxt,

soE[ℓ̃t|at] = ℓt.
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Regret: Euclidean ball

Theorem: Consider stochastic mirror descent onA = (1− γ)B,

with these choices andR(a) = − log(1 − ‖a‖) − ‖a‖. Then for

ηd ≤ 1/2,

Rn ≤ γn+
log(1/γ)

η
+ η

n∑

t=1

E

[

(1− ‖at‖)‖ℓ̃t‖2
]

.

Forγ = 1/
√
n andη =

√

logn/(2nd),

Rn ≤ 3
√

dn logn.

Proof:∇R(a) = a/(1− ‖a‖).
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Linear bandits

Open question:

What geometric properties ofA andL determine the regret?

A L Rn

convex ℓ : A → [−1, 1] Õ(d
√
n)

‖ · ‖2 ≤ 1 ‖ · ‖2 ≤ 1 Õ(
√
dn)

∆d−1 ‖ · ‖∞ ≤ 1 Õ(
√
dn)

‖ · ‖∞ ≤ 1 {±ei : 1 ≤ i ≤ d} Ω(d
√
n)
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