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Linear bandits I

At roundt,
Strategy chooses, € A C R?.
Adversary chooses linear logs: A — [—1,1].
Strategy sees logs(a).

Loss islinear in action.

Aim to minimize regret:

En = EZEt(at) — 1
t=1




‘ Example: Packet routing'

Consider the problem of packet-routing in a netw@vk £'). At roundt,

Strategy chooses a paih € A c {0, 1}* from origin node to
destination node.

Adversary chooses delaysc £ = [0,1]*.
See losd; - a; (total delay).

Aim to minimize regret:

Rn :Ezgt - At —iggEzgt - Qa.
t=1 t=1

Loss islinear in action.




Linear bandits vs k-armed bandits.

This problem is closely related to the classikarmed bandit problem:
At roundt:

Strategy chooses, € A ={1,..., k}.
Adversary choose& ¢ £ = [0, 1]
See los¥;(a;).

Aim to minimize regret:

En = EZEt(at) — 1
t=1




Linear bandits vs k-armed bandits'

This is unchanged (up to a constant factor) if we instead defin

A:{el,...,ek}CRk’,
L={0:A— |-1,1]linear}.

And allowing the strategy to choogdan the convex hull of4 does not
change the regret

En = EZEt(at) — inf EZﬁt(a)
t=1 t=1

ac A

(But it might make the game easier for the strategy sinceaihgbs the information that the strategy sees.)




Finite covers'

For a compacid C R, we can construct asxcover of sizeD(1/e?),
for example, in the uniform metric

p(a,a) = a — al . = max |a; — a;].

Since we’re aiming fo)(,/n) regret, we can think afl as having
cardinality| A| = O(n%/?), solog |A| = O(dlogn).




Exponential weights for linear bandits'

Given A, distributiony on A, mixing coefficienty > 0, learning
raten > 0,

setg; uniform onA.

fort=1,2,...,n

Lpe=00=7)ag+yu
2. chooseu; ~ p;

3. observe! a;

4. updatey;i1(a) x gi(a) eXp(—W?a))’

where gt CLtCLt gt:

Et — ]EaNpt a/CIJT .




Unbiased loss estimate'

Assumespan(.A) = R? (otherwise, we can project to a lower
dimension) and that has support on d-dimensional set. So
Ey~p,aa’” has rankd.

Strategy observes' ¢; anday, So it can compute
gt = Zt_lat (&fgt) .

¢, is unbiased:

E Vt‘ft_l} = (EaNptaaT)_l (Eatwptata;r




Regret bound'

Theorem: Fornsup,. 4 ‘Z{a‘ <1,

_ ] " . 2
R, <yn + og | A| + (e — Q)UZEEaNpt (Efa) .
g t=1

So we need to contraj times the magnitude of the loss estimates,

7) Sup EtTa|
acA

and the variance term,
EEaNpt (




\ Proof I

The regret is

E Z (¢} ar — EtTa,*)] :

t=1

We've seen that, given histod¥,_1,

E {gﬂft_l} = E [E;l&tafgt‘Ft_l] = E [€t|Ft—1] .

Lemma: Some unbiased estimates involviﬁg

E [E;Fa} =

T .
E [E;Fat} =K ./Tt_l} a| =E Z pt(a)ﬁfa] .
acA




\ Proof '

So we can write the strategy’s expected cumulative loss as

EZEtTat = EZ Zpt(a,)lz a
t=1

t=1 ac A

We’'ll give up on the loss incurred in the exploration trials:

ZZ% fTa—ZZ 1 —7)gi(a) + yu(a)) I a

t=1acA t=1 ac A

—7) (Z > qt(a)ffa> +> Y wa)a

t=1 acA t=1acA

G 7
Ve

exploration




\ Proof I

For q;, we follow the standard analysis (see Adversarial Bandis)
instead of using non-negativity of tifs, we use a lower bound:

log Eexp (—n(X — EX)) < E (exp(—nX) — 1+ nX)
< (6 - 2)772EX27

where the last inequality usesp(—z) <1 —z + (e — 2)z* for z > —1.

Soif n?fa > —1forall a € A, the previous analysis shows that, for any
a* € A, the first term above satisfies

>3 ale eTa<ZeT* AL =2y S ata) ()

t=1 ac A t=1 ac A




\ Proof '

Combining, and using the fact that — v)q:(a) < p:(a),

ZZpt eTa<ZeT '

t=1acA

+ (exploration + log |A| + (e — 2)n zn: Z pt(a) (Efa)Q .

N t=1 ac A

The unbiasedness lemma gives




‘ Controlling variance I

Lemma: For L C [—1,1]#, the variance term is bounded:

- 2
EE,.,, (zfa) <d.

- 2 ~ ~
E <€tTa,> =a'E (EtEtT) a
=a'E ((E;Fatf Zt_lataépzt_l) a
<a'S'E (a,ta,f) Y ta

=o' Y .

Egmp, K (Efa)Q < Etr (aTEt_la) = tr (Et_lE (aa,T))




Controlling the magnitude of the estimator'

Lemma: Forl C [-1,1]4,

~,

(Tal < sup a’ ;0.
a,be A

= &f@t (Zt_lat)T

a/ |

T Tvy—1

< sup a’%;'b.
a,be A

We'll see that typicallysup, ,c 4 a” X7 'b < cq/7.




Regret bound'

Theorem: For L C [—1,1]4, if

_ Cd
sup a’ ;70 < =,
a,be A Y

. B log | A
settingn = \/n (e —2)d + cq)

Y = Cal]

givesR,, < 2v/n(d+ cq)log |Al.




‘ Exploration distributions I

o (Dani, Hayes, Kakade, 2008):
For 1 uniform overbarycentric spanner,

R, =0 (d\/n log |A\> -0 (dS/Q\/ﬁ) |

e (Cesa-Bianchi and Lugosi, 2009):
For several combinatorial problemd,C {0, 1}¢, i uniform overA
gives

supac 4 llall2
= 0(d
S EampfaaT]) O\

R, =0 (V/dnlog[A]) = O (dy/n)

e (Bubeck, Cesa-Bianchi and Kakade, 200¥n’s Theorem:
O (d\/n).




Barycentric spanner'

A barycentric spanner of A is a set{by, ..., by} that span®? and

satisfies:
for all a € A thereis anv € [—1, 1]¢ such thats = B, where

(Suppose thaid C RY spans]Rd.)

B:(b1 bd>-

e Every compact4 has a barycentric spanner.

e If linear functions can be efficiently optimized ovdr; then there is
an efficient algorithm for finding an approximate barycenspanner
(thatis,|o;| < 14 6; O(d?log d/d) linear optimizations).




Barycentric spanner'

Lemma: If {by,...,bq} C A maximizesdet(B), then it is a
barycentric spanner.

Proof. Fora = Ba,

|det(B)|




Barycentric spanner'

Theorem: For A C [-1,1]¢ and x uniform on a barycentri
spanner ofA4,

d2
sup a’ ¥, < —
a,be A Y

(that is,c, < d?). Hence,

R, < 2d+/2nlog|A|.

S, = gBBT i




Barycentric spanner: Proof'

sup ath_lb < sup aTBTZ,leB
a,be A a,Be[—1,1]¢

< sup aTBTEt_lBB
lell=lI81=v4d
= dAmax (B 37 ' B)

= dAmax (B'5,B7T)

d
~ Amin (B~Y(3BBT + M) B-T)
d? d?
Amin (BIBBTB-T) ~ ~

<

wheren.x () andAnin (+) denote the largest and smallest eigenvalues.




Other exploration distributions I

Txy—1 SupaEAHaH%
sup a X, b < :
a,beA ' Y Amin (Ea,\,u[aaT])

sup a” 70 < sup [|alZAmax (37
a,beA acA

_ SUPgecAa ||aH%

>\min (Zt)




John’s distribution I

Theorem: [John’s Theorem] For any convex sdtcC R¢, denote
the ellipsoid of minimal volume containing it as

E={zeR:(z—c)'M(z—c)<1}.

Thenthereisasdtu,...,u,n} C ENAofm <dd+1)/2+1
contact points and a distributignon this set such that any< R¢
can be written

o= c+d Y pile— cous— ui — o)
=1

where(-, -) is the inner product for which the minimal ellipsoid|i
the unit ball about its center (z,y) = =1 My.




John’s distribution I

This shows that

T—C= dzpi(ui —¢)(ui —¢)' M(z - c)

& F=dY pil;i; i
7

1 ~ T
& gl = zz:pzuzuz :

whered; = M'/2(u; — ¢), and similarly forz. Setting the exploration
distribution; to be the distributiom over the set of transformed contact
pointsu;, we see that, fos, b € A,

) -1 s
0 Eyyuu’b = =a'b.

d




John’s distribution I

So if we shift the origin of the sefl and of theu, (and the corresponding
Introduction of a constant component in the losses), we have

d
sup ath_lb < —,
a,be A Y

thatis,c; < d. Hence,

R, < 2v/2ndlog | A|.




‘ Exploration distributions I

o (Dani, Hayes, Kakade, 2008):
For 1 uniform overbarycentric spanner,

R, =0 (d\/n log |A\> -0 (dS/Q\/ﬁ) |

e (Cesa-Bianchi and Lugosi, 2009):
For several combinatorial problemd,C {0, 1}¢, i uniform overA
gives

supac 4 llall2
= 0(d
S EampfaaT]) O\

R, =0 (V/dnlog[A]) = O (dy/n)

e (Bubeck, Cesa-Bianchi and Kakade, 200¥n’s Theorem:
O (d\/n).
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Lower bounds'

Lower bounds from the stochastic setting suffice.

Theorem: Considerd = {£1}9, £ D {4e; : 1 < i < d}. There
IS a constant such that, for any strategy and any there is ar
I.l.d. adversary for which

R,, > cd/n.

(Here,/ndlog |A| = O(dy/n).)




‘ Lower bounds: proof'

Probabilistic method: Fix € (0,1/2) and, for eacth € {+1}¢, defineP,
onL as
1 — bse
2d
1 + bz‘é
2d

Py(e;) =

Py(—e;) =

(so that the optimad* = b). We’'ll chooseb uniformly, and show that the
expected regret under this choice is large.




‘ Lower bounds: proof'

2d




‘ Lower bounds: proof'

The regret of sub-garmeﬁfl(bi), IS at least the regret that would be
Incurred if the strategy knew that the adversary was usimgabithe P,
distributions, and also kneg; : j # ¢}. In that case, it would know

0:=FE Z lt,jat,j,

J71

and so at each round, it would seedal | Bernoulli random variablé! a;,

with mean
€

-
Notice that thel /d here is crucial: because information about itie
component only arrives once evefyounds on average, the range of
values of the unknown Bernoulli mean has shrunk. If the efgasaw the
components of; (even in the semi-bandit setting, with= {0, 1} and
feedback(¢; 1a; 1, ..., ¢ qa:.q4)), it would not suffer this disadvantage.

0 — bz'aft,z'




‘ Lower bounds: proof'

Using the same argument as we saw for the stochastic moileaébandit
case (with a little extra work to show théis unlikely to be too close t6
or 1, so that the variance of the Bernoulli is not too small), we that

ER. (b)) > 2 (1 _ ce\/ﬁ) |

d \2 d

Choosinge = d/(4c\/n) givesEE;(bi) = Q(y/n), and so

INB: A = [—1,1]¢ £ = {%e;} has lower regret, because the strategy cgn
usea; to identify which directionte; was played.]

[Open problem: when i®(d+/n) possible with an efficient strategy?]
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Full information online prediction games.

Repeated game:

Strategy plays; € A

Adversary revealg; € L

Aim to minimizeregret

R, = ;Et(at) — Erélﬁ;&(a).




Online Convex Optimization'

Choosinga; to minimize past losses can fail.

The strategy must avoid overfitting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
Improvement.




Online Convex Optimization'

1. Gradient algorithm.

2. Regularized minimization
Bregman divergence

Regularized minimizatiors minimizing latest loss and
divergence from previous decision

Constrained minimization equivalent to unconstrained plu
Bregman projection

Linearization

Mirror descent

3. Regret bound




Online Convex Optimization: Gradient Method I

a1 € A,

At41 = 114 (Clt — nvgt(at)) )

wherell 4 is the Euclidean projection oA,

II = ' — all.
A(z) = argmin [z — al

Theorem: ForG = max; ||V (as)|| and D = diam(A), the gradien
strategy withn = D /(G+/n) has regret satisfying

R, < GD+/n.




Online Convex Optimization: Gradient Method I

Example: (2-ball, 2-ball)
A={aeR?: || <1}, L={a—v-a:|v]|<1}.D=2,G<1.
Regret is no more thay/n.

(And O(y/n) is optimal.)

Example: (1-ball,cc-ball)
A=Ak),L={a—v-a:|v|| <1}
D=2,G <k

Regret is no more thatw/kn.

Since competing with the whole simplex is equivalent to cetmg with
the vertices (experts) for linear losses, this is worse thgoonential
weights (/% versuslog k).




Gradient Method: Proof I

Define ar41 = ar — NVl (a),
aty1 = I a(Gry1).

Fix a € A and consider the measure of progréss— al|.

lacsr —all® < flaer — all®

= ||la; — @\\2 -+ 772||V€t(at)||2 —2nVi(ay) - (ar — a).

By convexity,

n

Z(gt(at — 5t

t=1




Online Convex Optimization'

1. Gradient algorithm.

2. Regularized minimization
Bregman divergence

Regularized minimizatiors minimizing latest loss and
divergence from previous decision

Constrained minimization equivalent to unconstrained plu
Bregman projection

Linearization

Mirror descent

3. Regret bound




Online Convex Optimization: A Regularization Viewpoint

Supposé; is linear:4;(a) = g+ - a
Supposed = R4,

Then minimizing the regularized criterion

— ls( Zlall2
Qp+1 = arg min (nz a||>

corresponds to the gradient step

at4+1 = Q¢ — nVﬁt <Cbt>.




‘ Online Convex Optimization: Regularization'

Regularized minimization

Consider the family of strategies of the form:

t
Q41 = arg zrgé‘l <1782:1€8(a) + R(a)) .

The regularize? : R? — R is strictly convex and differentiable.
e R keeps the sequence @fs stable: it diminisheg;’s influence.

e We can view the choice af; . as trading off two competing forces:
making/;(a:+1) small, and keeping,.; close toa;.

This is a perspective that motivated many algorithms initeeature.




Properties of Regularization Methodz'

In the unconstrained casd (= R?), regularized minimization is
equivalent to minimizing the latest loss and the distandbeqrevious
decision. The appropriate notion of distance isBnegman divergence

Dg, .:
Define
dy = R,
Py = Oy 1 + nly,

SO that

ac A

a;11 = arg min <77 Zﬁs(a) + R(a))

= in ®.(a).
arggrélﬂ t(a)




Bregman Divergencﬂ

Definition: For a strictly convex, differentiable : RY — R, the
Bregman divergence wik is defined, for, b € R, as

Dg(a,b) = ®(a) — (®(b) + V®(D) - (a —D)).

Dgs(a,b) is the difference betweeh(a) and the value at of the linear
approximation ofd aboutb. (PICTURE)




Bregman Divergencﬂ

Example: Fora € R%, the squared euclidean nord(a) = 3||a|?,
has

Do(a,t) = 3lal* = (10 +b-(a~ 1))

1
— Zlla — bl
5 lla = ol%

the squared euclidean norm.




Bregman Divergencﬂ

Example: Fora € [0, c0)?, the unnormalized negative entro@a) =
2?21 a; (Ina; — 1), has

Dg(a,b) = (a;(Ina; — 1) = bi(Inb; — 1) — Inb;(a; — b;))

:Z(ailn%—l—bi—ai),

the unnormalized KL divergence.
Thus, fora € A%, ®(a) = 3, a;Ina; has




Bregman Divergencﬂ

When the domain ob is S ¢ R?, in addition to differentiability and
strict convexity, we make some more assumptions:

S IS closed, and its interior IS convex.

For a sequence approaching the boundai§,dfV®(a,,)|| — oc.

We say that such @ is aLegendre function.




‘ Bregman Divergence Propertiej

. Dy >0, Dg(a,a) = 0.
. Darp =D+ Dg.
. Forllinear,Dg.¢y = Dg.

. Bregman projection, I1% (b) = arg minge 4 D (a, b) is uniquely
defined for closed, conved C S (that intersects the interior df).

. Generalized Pythagorus: for closed, convex4, a* = T1%(b), a € A,
D<I><CL7 b) > D@(av CL*) + D<I><CL*7 b)

6. VoDg(a,b) = VP®(a) — VO(b).
. For®* the Legendre dual cb,
Vo = (Vo) ',
Dg(a,b) = Dg-(VP®(b), VO(a)).




Legendre DualI

Here, for a Legendre functioh : S — R, we define the Legendre dual as

O*(u) = ilég (u-v—®(v)).

4
same slope m
s I

s &7

biggest gap, A

sup achieved here

up/down shift of ' X
supporting line

=f(m) /

(http://maze5.net/)




Legendre Dual'

Properties:
®* Is Legendre.
dom(®*) = V& (int dom ).
Vo = (VD)
Dg(a,b) = Dg«(VP®(b), VO(a)).
O** = P,

Examples:

O =1L |2 ®* = 1| - |2 wherel/p+1/q=1.

S et o (u) = 3, ug(Inw; — 1).




Online Convex Optimization'

. Problem formulation
. Empirical minimization fails.
. Gradient algorithm.

. Regularized minimization
Bregman divergence

Regularized minimizatior= minimizing latest loss plus
divergence from previous decision

Constrained minimization equivalent to unconstrained plu
Bregman projection

Linearization
Mirror descent

5. Regret bounds




Properties of Regularization I\/Iethodil

In the unconstrained casd (= RY), regularized minimization is
equivalent to minimizing the latest loss and the distancedBian
divergence) to the previous decision.

Theorem: Definea; viaVR(ay) = 0, and set

Qr+1 = arg min (1fy(a) + Da,_, (a,a1)) .

t
Gt+1 = arg min (n;&(a) + R(Cl)) -




Properties of Regularization MethodEI

Proof. By the definition of®,,
nti(a) + De,_,(a,a:) = Pi(a) — Pe-1(a) + Do, _, (a, ).
The derivative wrt is

V&,(a) — VPi_1(a) + VDo, . (a,as)
— V(Dt(a) — VCIDt_l(a) -+ V([)t_l(a) — V(I)t_l(&t)

Setting to zero shows that

vq)t(&ﬁ—l) — V(I)t—l(&t) - = VCI)O(&l) — VR(&l) =0,

Soa; 1 minimizes®;,.




Properties of Regularization I\/Iethodil

Constrained minimization is equivalent to unconstrainegimmzation,
followed by Bregman projection:

Theorem: For

— in ®
At+1 arggrélﬂ t(a),

Qi1 = arg HEI%R% P4 (a),
a

we have

Cl,t_|_1 = Hi)lt (CNLH_l ) .




Properties of Regularization Methodil

Proof. Leta; denotell’y (a;+1). First, by definition ofa; 1,

®4(arr1) < Pilag q)-

Conversely,

Do, (ay11,Gt+1) < Do, (ars1, @rr1).

But V(I)t(CNLH_l) =0, so
Do, (a,at1) = Pi(a) — Pr(ar+1).

ThUS,(I)t(GJ:H_l) S (I)t(at_|_1).




Properties of Regularization I\/Iethodil

Example: Forlinear/,;, regularized minimization is equivalent to mi
Imizing the last loss plus the Bregman divergemst R to the previous

decision:

arg min (77 > l(a) + R(Cl))

= I (arg min (nl;(a) + Dg(a, &t))) ,

acRd

because adding a linear functiond®odoes not chang®.




Linear Loss'

We can replacé; by V/;(a;), and this leads to an upper bound on regref.

Thus, for convex losses, we can work wiittear ¢, .




‘ Regularization Methods: Mirror Descent'

Regularized minimization for linear losses can be vieweghggor
descent-taking a gradient step in a dual space:

Theorem: The decisions

t
Gert = 8T8 T (77 D 9s-a+t R(a))
s=1

can be written

ar11 = (VR) ™ (VR(ar) — ng:) -

This corresponds to first mapping fraipthroughV R, then taking a step
in the direction—g,, then mapping back througiVR)~! = VR* to

iyt




‘ Regularization Methods: Mirror Descent'

Proof. For the unconstrained minimization, we have

soVR(a;11) = VR(a;) — ng:, which can be written

ar41 = VR (VR(a:) —nge) -




Mirror Descent '
Given:

compact, convexd C R?, closed, convexs D A, n > 0,S D A,
LegendreR : S — R. Seta; € argmingc 4 R(a).
For roundt:

1. Playa;; observel, € RY.
2. Wt41 = VR* (VR(CLt) — nVEt(at))

3. ary1 = argminge 4 Dr(a, wiiq).
[Always convex optimization.]




Exponential weights as mirror descen]

ForA = A(k) andR(a) = (a; log a; — a;), this reduces to
=1
exponential weights:

VR*(u); = exp(u;),

VR(wit1)i = log(weyi,i) =logar; — nVei(ar),

Wi41,5 = G5 €XP (_Uvgt(at)i) )

Dgr(a,b) = Z (ai log % + b; — az) :

)

At41,5 X We41,5-




‘ Mirror descent regret I

Theorem: Suppose that, for all € ANint(S), ¢ € L,
VR(a) —nVi(a) € VR(int(S)). For anya € A,

n

> (b(ar) — ti(a))

t=1

Ui

< ! (R(CL) — R(a1) + ZDR* <VR(at) — Vil (ay), VR(at)>> .

t=1

Proof: Fix a € A. Since the/; are convex,

n

Z(ﬁt CLt _gt < ngt Clt Clt — Cl).

t=1




Mirror descent regret: proof I

The choice ofw,; and the fact that R~! = VR* show that
VR(wii1) = VR(ay) — nVili(ay).

Hence,

NVl (ar)" (ar —a) = (a — a;)" (VR(wis1) — VR(ayr))

= Dr(a,at) + Dr(at, wi+1) — Dr(a, weir).

Generalized Pythagorus’ inequality shows that the prmeet;
satisfies

Dr(a,wt+1) > Dr(a,at+1) + Dr(at+1, wiy1).




Mirror descent regret: proof I

n Y Via)" (a; — a)

< Z (DR(C% at) + DR(at, wt—l—l) — DR(C% wt—l—l)
t=1

- DR(C% at+1) - DR(at+1> ’wt+1))

= Dgr(a,a1) — Dgr(a,a,11) + Z (Dr(at, wiy1) — Dr(ai41, wig1))
t=1

< Dg(a,a1) + ZDR(%, W)
t=1




Mirror descent regret: proof I

= Dg(a,a1) + Z Dpr«(VR(ws1), VR(ay))

t=1

= Dp(a,a1) + Y Dr-(VR(ar) — nVei(a;), VR(a,))

t=1

= R(a) — R(a1) + »  Dp-(VR(ar) — nVi(ar), VR(ayr)).

t=1




Linear bandit setting I

See onlyl;(a:); Vi (ay) IS unseen.

Instead ofa;, strategy plays a noisy version,.

Strategy useé; (x;) to give an unbiased estimate G¥; (a;).




\ Stochastic mirror desceng
Given:

compact, conved C R4, n > 0,S O A, LegendreR : S — R.
Seta; € argmingc 4 R(a).
For roundt:

1. Playnoisy versionz; of a;; observel; (x;).
2. Compute estimatg of V/;(ay).
3. Wt41 = VR* (VR(CLt) — 77§t)

4. a;11 = argminge 4 Dr(a, weyq).




Regret of stochastic mirror descen]

Theorem: Suppose that, for all € AN int(S) and linear € L,
E[§t|at] — Vﬁt(at) andVR(CL) — ngt(a) c VR(lIlt(S))
For anya € A,

n

> (b(ar) = ti(a))

t=1

< (R(a) — R(a1) + Y EDg- (VR(at) — N9t VR(at))>

t=1

+ > Elllar — Efze|ag]|l 1ge],]-
t=1




‘ Regret: proof'

E  (b(ze) — ()

t=1

=E Z (e(we) — Liar) + be(ar) — Ci(a))

E [ (ze — at)| ar] + Ci(ar) — Li(a))

Elzt|ad]|| 1|, +EZV@ ay)' (ay — a)

t=1

Elzt|ad]|| 1|, +Ezgt (ar — a).
t=1




‘ Regret: proof'

Applying the regret bound for the (random) linear losses §! a gives

< EZ lar — Elzt|ad]|| [|gell,

+ ! <R(a) — R(a1) + > EDg+ (VR(ar) — nis, VR(CLt))) :

n t=1




Regret: Euclidean baIII

ConsiderB = {a € R? : ||a|| < 1} (with the Euclidean norm).

Ingredients:

1. Distribution ofx;, givenay:

a
e = &4 t” + (1 — & )ecer,,
¢

la

whereé; is Bernoulli||a¢||), €; is uniform+1, and/; is uniform on
{1, e ooy d}, SOE[QZ‘t|&t] — Q.

2. Estimate/; of loss/;:




Regret: Euclidean baIII

Theorem: Consider stochastic mirror descentdn= (1 — v)B,
with these choices an(a) = —log(1 — ||a||) — ||a||. Then for
nd < 1/2,

(1/7)

_ 1
Ry, < yn+ o
n

0 | (1= far)IE?]

t=1

Fory =1/y/nandn = /logn/(2nd),

R, < 3+/dn log n.

Proof: VR(a) = a/(1 — |la]|).




Linear bandits I

Open question:

What geometric properties of and £ determine the regret?

A L
convex
|-z <1
Ad—l
[ fle <1




