Linear Bandits. Peter Bartlett

- Linear bandits.
 - Exponential weights with unbiased loss estimates.
 - Controlling loss estimates and their variance.
 - * Barycentric spanner.
 - * Uniform distribution.
 - * John's distribution.
 - Lower bounds.
 - Stochastic mirror descent.
 - * Full information.
 - * Bandit information.

Linear bandits

At round t,

- Strategy chooses $a_t \in \mathcal{A} \subset \mathbb{R}^d$.
- Adversary chooses linear loss $\ell_t : \mathcal{A} \to [-1, 1]$.
- Strategy sees loss $\ell_t(a_t)$.

Loss is *linear* in action.

Aim to minimize regret:

$$\overline{R}_n = \mathbb{E}\sum_{t=1}^n \ell_t(a_t) - \inf_{a \in \mathcal{A}} \mathbb{E}\sum_{t=1}^n \ell_t(a).$$

Example: Packet routing

Consider the problem of packet-routing in a network (V, E). At round t,

- Strategy chooses a path a_t ∈ A ⊂ {0,1}^E from origin node to destination node.
- Adversary chooses delays $\ell_t \in \mathcal{L} = [0, 1]^E$.
- See loss $\ell_t \cdot a_t$ (total delay).

Aim to minimize regret:

$$\overline{R}_n = \mathbb{E}\sum_{t=1}^n \ell_t \cdot a_t - \inf_{a \in \mathcal{A}} \mathbb{E}\sum_{t=1}^n \ell_t \cdot a.$$

Loss is *linear* in action.

Linear bandits vs *k***-armed bandits**

This problem is closely related to the classical k-armed bandit problem: At round t:

- Strategy chooses $a_t \in \mathcal{A} = \{1, \ldots, k\}.$
- Adversary chooses $\ell_t \in \mathcal{L} = [0, 1]^{\mathcal{A}}$.
- See loss $\ell_t(a_t)$.

Aim to minimize regret:

$$\overline{R}_n = \mathbb{E}\sum_{t=1}^n \ell_t(a_t) - \inf_{a \in \mathcal{A}} \mathbb{E}\sum_{t=1}^n \ell_t(a).$$

Linear bandits vs *k***-armed bandits**

This is unchanged (up to a constant factor) if we instead define

$$\mathcal{A} = \{e_1, \dots, e_k\} \subset \mathbb{R}^k,$$
$$\mathcal{L} = \{\ell : \mathcal{A} \to [-1, 1] \text{ linear}\}$$

And allowing the strategy to choose a in the convex hull of \mathcal{A} does not change the regret

$$\overline{R}_n = \mathbb{E}\sum_{t=1}^n \ell_t(a_t) - \inf_{a \in \mathcal{A}} \mathbb{E}\sum_{t=1}^n \ell_t(a).$$

(But it might make the game easier for the strategy since it changes the information that the strategy sees.)

Finite covers

For a compact $\mathcal{A} \subseteq \mathbb{R}^d$, we can construct an ϵ -cover of size $O(1/\epsilon^d)$, for example, in the uniform metric

$$\rho(\hat{a}, a) = \|\hat{a} - a\|_{\infty} := \max_{i} |\hat{a}_{i} - a_{i}|.$$

Since we're aiming for $O(\sqrt{n})$ regret, we can think of \mathcal{A} as having cardinality $|\mathcal{A}| = O(n^{d/2})$, so $\log |\mathcal{A}| = O(d \log n)$.

Exponential weights for linear bandits

Given \mathcal{A} , distribution μ on \mathcal{A} , mixing coefficient $\gamma > 0$, learning rate $\eta > 0$, set q_1 uniform on \mathcal{A} . for t = 1, 2, ..., n, 1. $p_t = (1 - \gamma)q_t + \gamma \mu$ 2. choose $a_t \sim p_t$ 3. observe $\ell_t^T a_t$ 4. update $q_{t+1}(a) \propto q_t(a) \exp(-\eta \tilde{\ell}_t^T a))$, $\tilde{\ell}_t = \Sigma_t^{-1} a_t a_t^T \ell_t,$ where $\Sigma_t = \mathbb{E}_{a \sim p_t} a a^T.$

Unbiased loss estimates

- Assume span(A) = ℝ^d (otherwise, we can project to a lower dimension) and that µ has support on a d-dimensional set. So E_{a∼pt} aa^T has rank d.
- Strategy observes $a_t^T \ell_t$ and a_t , so it can compute

$$\tilde{\ell}_t = \Sigma_t^{-1} a_t \left(a_t^T \ell_t \right).$$

• $\tilde{\ell}_t$ is unbiased:

$$\mathbb{E}\left[\tilde{\ell}_t | \mathcal{F}_{t-1}\right] = \left(\mathbb{E}_{a \sim p_t} a a^T\right)^{-1} \left(\mathbb{E}_{a_t \sim p_t} a_t a_t^T\right) \ell_t = \ell_t.$$

Regret bound

Theorem: For
$$\eta \sup_{a \in \mathcal{A}} \left| \tilde{\ell}_t^T a \right| \le 1$$
,

$$\overline{R}_n \le \gamma n + \frac{\log |\mathcal{A}|}{\eta} + (e-2)\eta \sum_{t=1}^n \mathbb{E}\mathbb{E}_{a \sim p_t} \left(\tilde{\ell}_t^T a\right)^2.$$

So we need to control η times the magnitude of the loss estimates,

$$\eta \sup_{a \in \mathcal{A}} \left| \tilde{\ell}_t^T a \right|$$

and the variance term,

$$\mathbb{E}\mathbb{E}_{a\sim p_t}\left(\tilde{\ell}_t^T a\right)^2.$$

The regret is

$$\mathbb{E}\left[\sum_{t=1}^{n} \left(\ell_t^T a_t - \ell_t^T a^*\right)\right]$$

We've seen that, given history \mathcal{F}_{t-1} ,

$$\mathbb{E}\left[\tilde{\ell}_t | \mathcal{F}_{t-1}\right] = \mathbb{E}\left[\Sigma_t^{-1} a_t a_t^T \ell_t | \mathcal{F}_{t-1}\right] = \mathbb{E}\left[\ell_t | \mathcal{F}_{t-1}\right].$$

Lemma: Some unbiased estimates involving $\tilde{\ell}_t$:

$$\mathbb{E}\left[\ell_t^T a\right] = \mathbb{E}\left[\tilde{\ell}_t^T a\right],$$
$$\mathbb{E}\left[\ell_t^T a_t\right] = \mathbb{E}\left[\sum_{a \in \mathcal{A}} p_t(a) \mathbb{E}\left[\tilde{\ell}_t \middle| \mathcal{F}_{t-1}\right]^T a\right] = \mathbb{E}\left[\sum_{a \in \mathcal{A}} p_t(a)\tilde{\ell}_t^T a\right].$$

Proof

So we can write the strategy's expected cumulative loss as

$$\mathbb{E}\sum_{t=1}^{n} \ell_t^T a_t = \mathbb{E}\sum_{t=1}^{n}\sum_{a \in \mathcal{A}} p_t(a)\tilde{\ell}_t^T a.$$

We'll give up on the loss incurred in the exploration trials:

$$\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} p_t(a) \tilde{\ell}_t^T a = \sum_{t=1}^{n} \sum_{a \in \mathcal{A}} \left((1-\gamma)q_t(a) + \gamma\mu(a) \right) \tilde{\ell}_t^T a$$
$$= (1-\gamma) \left(\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} q_t(a) \tilde{\ell}_t^T a \right) + \underbrace{\gamma \sum_{t=1}^{n} \sum_{a \in \mathcal{A}} \mu(a) \tilde{\ell}_t^T a}_{\text{exploration}}.$$

Proof

For q_t , we follow the standard analysis (see Adversarial Bandits), but instead of using non-negativity of the $\tilde{\ell}$ s, we use a lower bound:

$$\log \mathbb{E} \exp\left(-\eta (X - \mathbb{E}X)\right) \le \mathbb{E} \left(\exp(-\eta X) - 1 + \eta X\right)$$
$$\le (e - 2)\eta^2 \mathbb{E}X^2,$$

where the last inequality uses $\exp(-x) \leq 1 - x + (e - 2)x^2$ for $x \geq -1$. So if $\eta \tilde{\ell}_t^T a \geq -1$ for all $a \in \mathcal{A}$, the previous analysis shows that, for any $a^* \in \mathcal{A}$, the first term above satisfies

$$\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} q_t(a) \tilde{\ell}_t^T a \leq \sum_{t=1}^{n} \tilde{\ell}_t^T a^* + \frac{\log |\mathcal{A}|}{\eta} + (e-2)\eta \sum_{t=1}^{n} \sum_{a \in \mathcal{A}} q_t(a) \left(\tilde{\ell}_t^T a\right)^2.$$

Proof

Combining, and using the fact that $(1 - \gamma)q_t(a) \leq p_t(a)$,

$$\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} p_t(a) \tilde{\ell}_t^T a \leq \sum_{t=1}^{n} \tilde{\ell}_t^T a^* + (\text{exploration}) + \frac{\log |\mathcal{A}|}{\eta} + (e-2)\eta \sum_{t=1}^{n} \sum_{a \in \mathcal{A}} p_t(a) \left(\tilde{\ell}_t^T a\right)^2.$$

The unbiasedness lemma gives

$$\overline{R}_n \le \gamma n + \frac{\log |\mathcal{A}|}{\eta} + (e-2)\eta \sum_{t=1}^n \mathbb{E}_{a \sim p_t} \left(\tilde{\ell}_t^T a\right)^2$$

Controlling variance

Lemma: For $\mathcal{L} \subset [-1, 1]^{\mathcal{A}}$, the variance term is bounded:

$$\mathbb{E}\mathbb{E}_{a \sim p_t} \left(\tilde{\ell}_t^T a\right)^2 \le d.$$

$$\mathbb{E}\left(\tilde{\ell}_{t}^{T}a\right)^{2} = a^{T}\mathbb{E}\left(\tilde{\ell}_{t}\tilde{\ell}_{t}^{T}\right)a$$

$$= a^{T}\mathbb{E}\left(\left(\ell_{t}^{T}a_{t}\right)^{2}\Sigma_{t}^{-1}a_{t}a_{t}^{T}\Sigma_{t}^{-1}\right)a$$

$$\leq a^{T}\Sigma_{t}^{-1}\mathbb{E}\left(a_{t}a_{t}^{T}\right)\Sigma_{t}^{-1}a$$

$$= a^{T}\Sigma_{t}^{-1}a.$$

$$\mathbb{E}_{a\sim p_{t}}\mathbb{E}\left(\tilde{\ell}_{t}^{T}a\right)^{2} \leq \mathbb{E}\operatorname{tr}\left(a^{T}\Sigma_{t}^{-1}a\right) = \operatorname{tr}\left(\Sigma_{t}^{-1}\mathbb{E}\left(aa^{T}\right)\right) = \operatorname{tr}\left(I\right) = d.$$

Controlling the magnitude of the estimator

Lemma: For $\mathcal{L} \subset [-1, 1]^{\mathcal{A}}$,

$$\left|\tilde{\ell}_t^T a\right| \le \sup_{a,b \in \mathcal{A}} a^T \Sigma_t^{-1} b$$

$$\begin{aligned} \left| \tilde{\ell}_t^T a \right| &= \left| a_t^T \ell_t \left(\Sigma_t^{-1} a_t \right)^T a \right| \\ &\leq \left| a_t^T \ell_t \right| \left| a_t^T \Sigma_t^{-1} a \right| \\ &\leq \sup_{a,b \in \mathcal{A}} a^T \Sigma_t^{-1} b. \end{aligned}$$

We'll see that typically $\sup_{a,b\in\mathcal{A}} a^T \Sigma_t^{-1} b \leq c_d / \gamma$.

Exploration distributions

(Dani, Hayes, Kakade, 2008):
 For μ uniform over *barycentric spanner*,

$$\overline{R}_n = O\left(d\sqrt{n\log|\mathcal{A}|}\right) = \tilde{O}\left(d^{3/2}\sqrt{n}\right).$$

• (Cesa-Bianchi and Lugosi, 2009): For several combinatorial problems, $\mathcal{A} \subseteq \{0,1\}^d$, μ uniform over \mathcal{A} gives

$$\frac{\sup_{a \in \mathcal{A}} \|a\|_2^2}{\lambda_{\min}\left(\mathbb{E}_{a \sim \mu}[aa^T]\right)} = O(d),$$

SO

$$\overline{R}_n = O\left(\sqrt{dn \log |\mathcal{A}|}\right) = \tilde{O}\left(d\sqrt{n}\right).$$

• (Bubeck, Cesa-Bianchi and Kakade, 2009): John's Theorem: $\tilde{O}(d\sqrt{n})$.

Barycentric spanner

(Suppose that $\mathcal{A} \subseteq \mathbb{R}^d$ spans \mathbb{R}^d .)

A *barycentric spanner* of \mathcal{A} is a set $\{b_1, \ldots, b_d\}$ that spans \mathbb{R}^d and satisfies:

for all $a \in \mathcal{A}$ there is an $\alpha \in [-1, 1]^d$ such that $a = B\alpha$, where $B = \begin{pmatrix} b_1 & \cdots & b_d \end{pmatrix}$.

- Every compact \mathcal{A} has a barycentric spanner.
- If linear functions can be efficiently optimized over A, then there is an efficient algorithm for finding an approximate barycentric spanner (that is, |α_i| ≤ 1 + δ; O(d² log d/δ) linear optimizations).

Barycentric spanner

Lemma: If $\{b_1, \ldots, b_d\} \subset \mathcal{A}$ maximizes det(B), then it is a barycentric spanner.

Proof. For $a = B\alpha$,

$$|\det(B)| \ge \left| \det \begin{pmatrix} a & b_2 & \cdots & b_d \end{pmatrix} \right|$$
$$= \left| \sum_i \alpha_i \det \begin{pmatrix} b_i & b_2 & \cdots & b_d \end{pmatrix} \right|$$
$$= |\alpha_1| |\det(B)|.$$

Barycentric spanner

Theorem: For $\mathcal{A} \subseteq [-1,1]^d$ and μ uniform on a barycentric spanner of \mathcal{A} ,

$$\sup_{a,b\in\mathcal{A}} a^T \Sigma_t^{-1} b \le \frac{d^2}{\gamma}$$

(that is, $c_d \leq d^2$). Hence,

 $\overline{R}_n \le 2d\sqrt{2n\log|\mathcal{A}|}.$

$$\Sigma_t = \frac{\gamma}{d} B B^T + \underbrace{(1-\gamma) \sum_{a \in \mathcal{A}} q_t(a) a a^T}_{M}.$$

Barycentric spanner: Proof

$$\begin{split} \sup_{a,b\in\mathcal{A}} a^T \Sigma_t^{-1} b &\leq \sup_{\alpha,\beta\in[-1,1]^d} \alpha^T B^T \Sigma_t^{-1} B\beta \\ &\leq \sup_{\|\alpha\|=\|\beta\|=\sqrt{d}} \alpha^T B^T \Sigma_t^{-1} B\beta \\ &= d\lambda_{\max} \left(B^T \Sigma_t^{-1} B \right) \\ &= d\lambda_{\max} \left(B^{-1} \Sigma_t B^{-T} \right)^{-1} \\ &= \frac{d}{\lambda_{\min} \left(B^{-1} \left(\frac{\gamma}{d} B B^T + M \right) B^{-T} \right)} \\ &\leq \frac{d^2}{\gamma \lambda_{\min} \left(B^{-1} B B^T B^{-T} \right)} = \frac{d^2}{\gamma}, \end{split}$$

where $\lambda_{\max}(\cdot)$ and $\lambda_{\min}(\cdot)$ denote the largest and smallest eigenvalues.

Other exploration distributions

Lemma:

$$\sup_{a,b\in\mathcal{A}} a^T \Sigma_t^{-1} b \le \frac{\sup_{a\in\mathcal{A}} \|a\|_2^2}{\gamma \lambda_{\min}\left(\mathbb{E}_{a\sim\mu}[aa^T]\right)}$$

$$\sup_{a,b\in\mathcal{A}} a^T \Sigma_t^{-1} b \leq \sup_{a\in\mathcal{A}} \|a\|_2^2 \lambda_{\max} \left(\Sigma_t^{-1}\right)$$
$$= \frac{\sup_{a\in\mathcal{A}} \|a\|_2^2}{\lambda_{\min} \left(\Sigma_t\right)}.$$
$$\lambda_{\min} \left(\Sigma_t\right) = \min_{\|v\|=1} \sum_{a\in\mathcal{A}} p_t(a) v^T a a^T v$$
$$\geq \gamma \min_{\|v\|=1} \sum_{a\in\mathcal{A}} \mu(a) v^T a a^T v = \gamma \lambda_{\min} \left(\mathbb{E}_{a\sim\mu}[aa^T]\right).$$

John's distribution

Theorem: [John's Theorem] For any convex set $\mathcal{A} \subset \mathbb{R}^d$, denote the ellipsoid of minimal volume containing it as

$$E = \{ x \in \mathbb{R}^d : (x - c)^T M (x - c) \le 1 \}.$$

Then there is a set $\{u_1, \ldots, u_m\} \subseteq E \cap \mathcal{A}$ of $m \leq d(d+1)/2 + 1$ contact points and a distribution p on this set such that any $x \in \mathbb{R}^d$ can be written

$$x = c + d \sum_{i=1}^{m} p_i \langle x - c, u_i - c \rangle (u_i - c),$$

where $\langle \cdot, \cdot \rangle$ is the inner product for which the minimal ellipsoid is the unit ball about its center c: $\langle x, y \rangle = x^T M y$.

John's distribution

This shows that

$$\begin{aligned} x - c &= d \sum_{i} p_{i} (u_{i} - c) (u_{i} - c)^{T} M (x - c) \\ \Leftrightarrow \qquad \tilde{x} &= d \sum_{i} p_{i} \tilde{u}_{i} \tilde{u}_{i}^{T} \tilde{x} \\ \Leftrightarrow \qquad \frac{1}{d} I &= \sum_{i} p_{i} \tilde{u}_{i} \tilde{u}_{i}^{T}, \end{aligned}$$

where $\tilde{u}_i = M^{1/2}(u_i - c)$, and similarly for \tilde{x} . Setting the exploration distribution μ to be the distribution p over the set of transformed contact points \tilde{u}_i , we see that, for $a, b \in \mathcal{A}$,

$$\tilde{a}^T \mathbb{E}_{u \sim \mu} u u^T \tilde{b} = \frac{1}{d} \tilde{a}^T \tilde{b}.$$

John's distribution

So if we shift the origin of the set A and of the u_i (and the corresponding introduction of a constant component in the losses), we have

$$\sup_{a,b\in\mathcal{A}} a^T \Sigma_t^{-1} b \le \frac{d}{\gamma},$$

that is, $c_d \leq d$. Hence,

 $\overline{R}_n \le 2\sqrt{2nd\log|\mathcal{A}|}.$

Exploration distributions

(Dani, Hayes, Kakade, 2008):
 For μ uniform over *barycentric spanner*,

$$\overline{R}_n = O\left(d\sqrt{n\log|\mathcal{A}|}\right) = \tilde{O}\left(d^{3/2}\sqrt{n}\right).$$

• (Cesa-Bianchi and Lugosi, 2009): For several combinatorial problems, $\mathcal{A} \subseteq \{0,1\}^d$, μ uniform over \mathcal{A} gives

$$\frac{\sup_{a \in \mathcal{A}} \|a\|_2^2}{\lambda_{\min}\left(\mathbb{E}_{a \sim \mu}[aa^T]\right)} = O(d),$$

SO

$$\overline{R}_n = O\left(\sqrt{dn \log |\mathcal{A}|}\right) = \tilde{O}\left(d\sqrt{n}\right).$$

• (Bubeck, Cesa-Bianchi and Kakade, 2009): John's Theorem: $\tilde{O}(d\sqrt{n})$.

Outline

- Linear bandits.
 - Exponential weights with unbiased loss estimates.
 - Controlling loss estimates and their variance.
 - * Barycentric spanner.
 - * Uniform distribution.
 - * John's distribution.
 - Lower bounds.
 - Stochastic mirror descent.
 - * Full information.
 - * Bandit information.

Lower bounds

Lower bounds from the stochastic setting suffice.

Theorem: Consider $\mathcal{A} = \{\pm 1\}^d$, $\mathcal{L} \supseteq \{\pm e_i : 1 \le i \le d\}$. There is a constant *c* such that, for any strategy and any *n*, there is an i.i.d. adversary for which

 $\overline{R}_n \ge cd\sqrt{n}.$

(Here, $\sqrt{nd \log |\mathcal{A}|} = O(d\sqrt{n})$.)

Probabilistic method: Fix $\epsilon \in (0, 1/2)$ and, for each $b \in \{\pm 1\}^d$, define P_b on \mathcal{L} as

$$P_b(e_i) = \frac{1 - b_i \epsilon}{2d},$$
$$P_b(-e_i) = \frac{1 + b_i \epsilon}{2d}.$$

(so that the optimal $a^* = b$). We'll choose b uniformly, and show that the expected regret under this choice is large.

$$\overline{R}_n(P_b) = \sum_{t=1}^n \sum_{i=1}^d \mathbb{E} \left[\ell_{t,i} \left(a_{t,i} - b_i \right) \right]$$
$$= \sum_{t=1}^n \sum_{i=1}^d (a_{t,i} - b_i) \left(\frac{1 - 2b_i \epsilon}{2d} - \frac{1 + 2b_i \epsilon}{2d} \right)$$
$$= \sum_{t=1}^n \sum_{i=1}^d (b_i - a_{t,i}) \frac{b_i \epsilon}{d}$$
$$= \sum_{i=1}^d \underbrace{\frac{2\epsilon}{d}}_{t=1} \sum_{t=1}^n 1[a_{t,i} \neq b_i].$$
$$\overline{R}_n^i(b_i)$$

The regret of sub-game $i, \overline{R}_n^i(b_i)$, is at least the regret that would be incurred if the strategy knew that the adversary was using one of the P_b distributions, and also knew $\{b_j : j \neq i\}$. In that case, it would know

$$\theta := \mathbb{E} \sum_{j \neq i} l_{t,j} a_{t,j},$$

and so at each round, it would see a (±1) Bernoulli random variable $\ell_t^T a_t$, with mean

$$\theta - b_i a_{t,i} \frac{\epsilon}{d}$$

Notice that the 1/d here is crucial: because information about the *i*th component only arrives once every *d* rounds on average, the range of values of the unknown Bernoulli mean has shrunk. If the strategy saw the components of ℓ_i (even in the semi-bandit setting, with $\mathcal{A} = \{0, 1\}^d$ and feedback $(\ell_{t,1}a_{t,1}, \ldots, \ell_{t,d}a_{t,d})$), it would not suffer this disadvantage.

Using the same argument as we saw for the stochastic multi-armed bandit case (with a little extra work to show that θ is unlikely to be too close to 0 or 1, so that the variance of the Bernoulli is not too small), we see that

$$\mathbb{E}\overline{R}_n^i(b_i) \ge \frac{2\epsilon n}{d} \left(\frac{1}{2} - c\frac{\epsilon\sqrt{n}}{d}\right).$$

Choosing $\epsilon = d/(4c\sqrt{n})$ gives $\mathbb{E}\overline{R}_n^i(b_i) = \Omega(\sqrt{n})$, and so $\mathbb{E}\overline{R}_n(P_b) = \Omega(d\sqrt{n})$.

[NB: $\mathcal{A} = [-1, 1]^d \mathcal{L} = \{\pm e_i\}$ has lower regret, because the strategy can use a_t to identify which direction $\pm e_i$ was played.]

[Open problem: when is $\Theta(d\sqrt{n})$ possible with an efficient strategy?]

Outline

- Linear bandits.
 - Exponential weights with unbiased loss estimates.
 - Controlling loss estimates and their variance.
 - * Barycentric spanner.
 - * Uniform distribution.
 - * John's distribution.
 - Lower bounds.
 - Stochastic mirror descent.
 - * Full information.
 - * Bandit information.

Online Convex Optimization

- Choosing a_t to minimize past losses can fail.
- The strategy must avoid overfitting.
- First approach: gradient steps.
 Stay close to previous decisions, but move in a direction of improvement.

Online Convex Optimization

- 1. Gradient algorithm.
- 2. Regularized minimization
 - Bregman divergence
 - Regularized minimization ⇔ minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection
 - Linearization
 - Mirror descent
- 3. Regret bound
Online Convex Optimization: Gradient Method

$$a_1 \in \mathcal{A},$$

$$a_{t+1} = \prod_{\mathcal{A}} \left(a_t - \eta \nabla \ell_t(a_t) \right),$$

where $\Pi_{\mathcal{A}}$ is the Euclidean projection on \mathcal{A} ,

$$\Pi_{\mathcal{A}}(x) = \arg\min_{a \in \mathcal{A}} \|x - a\|.$$

Theorem: For $G = \max_t \|\nabla \ell_t(a_t)\|$ and $D = \operatorname{diam}(\mathcal{A})$, the gradient strategy with $\eta = D/(G\sqrt{n})$ has regret satisfying

$$R_n \le GD\sqrt{n}.$$

Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball) $\mathcal{A} = \{a \in \mathbb{R}^d : ||a|| \le 1\}, \mathcal{L} = \{a \mapsto v \cdot a : ||v|| \le 1\}. D = 2, G \le 1.$ Regret is no more than $2\sqrt{n}$.

(And $O(\sqrt{n})$ is optimal.)

Example: (1-ball, ∞ -ball) $\mathcal{A} = \Delta(k), \mathcal{L} = \{a \mapsto v \cdot a : ||v||_{\infty} \leq 1\}.$ $D = 2, G \leq \sqrt{k}.$ Regret is no more than $2\sqrt{kn}.$

Since competing with the whole simplex is equivalent to competing with the vertices (experts) for linear losses, this is worse than exponential weights (\sqrt{k} versus log k).

Gradient Method: Proof

Define
$$\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t),$$

 $a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}).$

Fix $a \in \mathcal{A}$ and consider the measure of progress $||a_t - a||$.

$$||a_{t+1} - a||^2 \le ||\tilde{a}_{t+1} - a||^2$$

= $||a_t - a||^2 + \eta^2 ||\nabla \ell_t(a_t)||^2 - 2\eta \nabla_t(a_t) \cdot (a_t - a).$

By convexity,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \le \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a)$$
$$\le \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2$$

Online Convex Optimization

- 1. Gradient algorithm.
- 2. Regularized minimization
 - Bregman divergence
 - Regularized minimization ⇔ minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection
 - Linearization
 - Mirror descent
- 3. Regret bound

Online Convex Optimization: A Regularization Viewpoint

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} ||a||^2 \right)$$

corresponds to the gradient step

$$a_{t+1} = a_t - \eta \nabla \ell_t(a_t).$$

Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

The regularizer $R : \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

- R keeps the sequence of a_t s stable: it diminishes ℓ_t 's influence.
- We can view the choice of a_{t+1} as trading off two competing forces: making l_t(a_{t+1}) small, and keeping a_{t+1} close to a_t.
- This is a perspective that motivated many algorithms in the literature.

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:

Define

$$\Phi_0 = R,$$

$$\Phi_t = \Phi_{t-1} + \eta \ell_t,$$

so that

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$
$$= \arg\min_{a \in \mathcal{A}} \Phi_t(a).$$

Definition: For a strictly convex, differentiable $\Phi : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a,b) = \Phi(a) - \left(\Phi(b) + \nabla \Phi(b) \cdot (a-b)\right).$$

 $D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b. (PICTURE)

Example: For $a \in \mathbb{R}^d$, the squared euclidean norm, $\Phi(a) = \frac{1}{2} ||a||^2$, has

$$D_{\Phi}(a,b) = \frac{1}{2} ||a||^2 - \left(\frac{1}{2} ||b||^2 + b \cdot (a-b)\right)$$
$$= \frac{1}{2} ||a-b||^2,$$

the squared euclidean norm.

Example: For $a \in [0, \infty)^d$, the unnormalized negative entropy, $\Phi(a) = \sum_{i=1}^d a_i (\ln a_i - 1)$, has

$$D_{\Phi}(a,b) = \sum_{i} \left(a_{i} (\ln a_{i} - 1) - b_{i} (\ln b_{i} - 1) - \ln b_{i} (a_{i} - b_{i}) \right)$$
$$= \sum_{i} \left(a_{i} \ln \frac{a_{i}}{b_{i}} + b_{i} - a_{i} \right),$$

the unnormalized KL divergence.

Thus, for $a \in \Delta^d$, $\Phi(a) = \sum_i a_i \ln a_i$ has

$$D_{\Phi}(a,b) = \sum_{i} a_{i} \ln \frac{a_{i}}{b_{i}}$$

When the domain of Φ is $S \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make some more assumptions:

- S is closed, and its interior is convex.
- For a sequence approaching the boundary of S, $\|\nabla \Phi(a_n)\| \to \infty$.

We say that such a Φ is a *Legendre function*.

Bregman Divergence Properties

- 1. $D_{\Phi} \ge 0, D_{\Phi}(a, a) = 0.$
- 2. $D_{A+B} = D_A + D_B$.
- 3. For ℓ linear, $D_{\Phi+\ell} = D_{\Phi}$.
- 4. Bregman projection, $\Pi^{\Phi}_{\mathcal{A}}(b) = \arg \min_{a \in \mathcal{A}} D_{\Phi}(a, b)$ is uniquely defined for closed, convex $\mathcal{A} \subset \mathcal{S}$ (that intersects the interior of \mathcal{S}).
- 5. Generalized Pythagorus: for closed, convex $\mathcal{A}, a^* = \Pi^{\Phi}_{\mathcal{A}}(b), a \in \mathcal{A},$ $D_{\Phi}(a, b) \ge D_{\Phi}(a, a^*) + D_{\Phi}(a^*, b).$
- 6. $\nabla_a D_{\Phi}(a, b) = \nabla \Phi(a) \nabla \Phi(b).$
- 7. For Φ^* the Legendre dual of Φ ,

$$\nabla \Phi^* = (\nabla \Phi)^{-1},$$
$$D_{\Phi}(a, b) = D_{\Phi^*}(\nabla \Phi(b), \nabla \Phi(a)).$$

Legendre Dual

Here, for a Legendre function $\Phi : S \to \mathbb{R}$, we define the Legendre dual as

$$\Phi^*(u) = \sup_{v \in \mathcal{S}} \left(u \cdot v - \Phi(v) \right).$$

Legendre Dual

Properties:

- Φ^* is Legendre.
- $\operatorname{dom}(\Phi^*) = \nabla \Phi(\operatorname{int} \operatorname{dom} \Phi).$
- $\nabla \Phi^* = (\nabla \Phi)^{-1}$.
- $D_{\Phi}(a,b) = D_{\Phi^*}(\nabla \Phi(b), \nabla \Phi(a)).$
- $\Phi^{**} = \Phi$.

Examples:

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection
 - Linearization
 - Mirror descent
- 5. Regret bounds

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance (Bregman divergence) to the previous decision.

Theorem: Define \tilde{a}_1 via $\nabla R(\tilde{a}_1) = 0$, and set

$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right).$$

Then

$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^t \ell_s(a) + R(a) \right)$$

Proof. By the definition of Φ_t ,

$$\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t).$$

The derivative wrt a is

$$\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla_a D_{\Phi_{t-1}}(a, \tilde{a}_t)$$

= $\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla \Phi_{t-1}(a) - \nabla \Phi_{t-1}(\tilde{a}_t)$

Setting to zero shows that

$$\nabla \Phi_t(\tilde{a}_{t+1}) = \nabla \Phi_{t-1}(\tilde{a}_t) = \dots = \nabla \Phi_0(\tilde{a}_1) = \nabla R(\tilde{a}_1) = 0,$$

So \tilde{a}_{t+1} minimizes Φ_t .

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem: For

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \Phi_t(a),$$
$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a),$$

we have

$$a_{t+1} = \Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1}).$$

Proof. Let a'_{t+1} denote $\Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1})$. First, by definition of a_{t+1} , $\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1})$.

Conversely,

$$D_{\Phi_t}(a'_{t+1}, \tilde{a}_{t+1}) \le D_{\Phi_t}(a_{t+1}, \tilde{a}_{t+1}).$$

But $\nabla \Phi_t(\tilde{a}_{t+1}) = 0$, so

$$D_{\Phi_t}(a, \tilde{a}_{t+1}) = \Phi_t(a) - \Phi_t(\tilde{a}_{t+1}).$$

Thus, $\Phi_t(a'_{t+1}) \le \Phi_t(a_{t+1})$.

Example: For linear ℓ_t , regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence wrt R to the previous decision:

$$\arg\min_{a\in\mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a)\right)$$
$$= \Pi_{\mathcal{A}}^R \left(\arg\min_{a\in\mathbb{R}^d} \left(\eta \ell_t(a) + D_R(a, \tilde{a}_t)\right)\right),$$

because adding a linear function to Φ does not change D_{Φ} .

Linear Loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret. Thus, for convex losses, we can work with linear ℓ_t .

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem: The decisions

$$\tilde{a}_{t+1} = \arg\min_{a\in\mathbb{R}^d} \left(\eta \sum_{s=1}^t g_s \cdot a + R(a)\right)$$

can be written

$$\tilde{a}_{t+1} = (\nabla R)^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$

This corresponds to first mapping from \tilde{a}_t through ∇R , then taking a step in the direction $-g_t$, then mapping back through $(\nabla R)^{-1} = \nabla R^*$ to \tilde{a}_{t+1} .

Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

$$\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s,$$
$$\nabla R(\tilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s,$$

so $\nabla R(\tilde{a}_{t+1}) = \nabla R(\tilde{a}_t) - \eta g_t$, which can be written

$$\tilde{a}_{t+1} = \nabla R^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$

Mirror Descent

Given:

compact, convex $\mathcal{A} \subseteq \mathbb{R}^d$, closed, convex $\mathcal{S} \supset \mathcal{A}, \eta > 0, \mathcal{S} \supset \mathcal{A}$, Legendre $R : \mathcal{S} \to \mathbb{R}$. Set $a_1 \in \arg \min_{a \in \mathcal{A}} R(a)$. For round t:

1. Play a_t ; observe $\ell_t \in \mathbb{R}^d$.

2.
$$w_{t+1} = \nabla R^* (\nabla R(a_t) - \eta \nabla \ell_t(a_t)).$$

3.
$$a_{t+1} = \arg \min_{a \in \mathcal{A}} D_R(a, w_{t+1}).$$

[Always convex optimization.]

Exponential weights as mirror descent

kFor $\mathcal{A} = \Delta(k)$ and $R(a) = \sum_{i=1}^{\kappa} (a_i \log a_i - a_i)$, this reduces to i=1

exponential weights:

$$\nabla R(u)_i = \log a_i,$$

$$R^*(u) = \sum_i e^{u_i},$$

$$\nabla R^*(u)_i = \exp(u_i),$$

$$\nabla R(w_{t+1})_i = \log(w_{t+1,i}) = \log a_{t,i} - \eta \nabla \ell_t(a_t)_i,$$

$$w_{t+1,i} = a_{t,i} \exp\left(-\eta \nabla \ell_t(a_t)_i\right),$$

$$D_R(a,b) = \sum_i \left(a_i \log \frac{a_i}{b_i} + b_i - a_i\right),$$

$$a_{t+1,i} \propto w_{t+1,i}.$$

Mirror descent regret

Theorem: Suppose that, for all $a \in \mathcal{A} \cap \operatorname{int}(\mathcal{S}), \ell \in \mathcal{L}$, $\nabla R(a) - \eta \nabla \ell(a) \in \nabla R(\operatorname{int}(\mathcal{S}))$. For any $a \in \mathcal{A}$,

$$\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a)\right)$$

$$\leq \frac{1}{\eta} \left(R(a) - R(a_1) + \sum_{t=1}^{n} D_{R^*} \left(\nabla R(a_t) - \eta \nabla \ell_t(a_t), \nabla R(a_t) \right) \right).$$

Proof: Fix $a \in \mathcal{A}$. Since the ℓ_t are convex,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \le \sum_{t=1}^{n} \nabla \ell_t(a_t)^T (a_t - a).$$

Mirror descent regret: proof

The choice of w_{t+1} and the fact that $\nabla R^{-1} = \nabla R^*$ show that

$$\nabla R(w_{t+1}) = \nabla R(a_t) - \eta \nabla \ell_t(a_t).$$

Hence,

$$\eta \nabla \ell_t(a_t)^T(a_t - a) = (a - a_t)^T \left(\nabla R(w_{t+1}) - \nabla R(a_t) \right)$$
$$= D_R(a, a_t) + D_R(a_t, w_{t+1}) - D_R(a, w_{t+1}).$$

Generalized Pythagorus' inequality shows that the projection a_{t+1} satisfies

$$D_R(a, w_{t+1}) \ge D_R(a, a_{t+1}) + D_R(a_{t+1}, w_{t+1}).$$

Mirror descent regret: proof

$$\begin{split} \eta \sum_{t=1}^{n} \nabla \ell_t(a_t)^T(a_t - a) \\ &\leq \sum_{t=1}^{n} \left(D_R(a, a_t) + D_R(a_t, w_{t+1}) - D_R(a, w_{t+1}) \right. \\ &\quad - D_R(a, a_{t+1}) - D_R(a_{t+1}, w_{t+1}) \right) \\ &= D_R(a, a_1) - D_R(a, a_{n+1}) + \sum_{t=1}^{n} \left(D_R(a_t, w_{t+1}) - D_R(a_{t+1}, w_{t+1}) \right) \\ &\leq D_R(a, a_1) + \sum_{t=1}^{n} D_R(a_t, w_{t+1}). \end{split}$$

Mirror descent regret: proof

$$= D_R(a, a_1) + \sum_{t=1}^n D_{R^*}(\nabla R(w_{t+1}), \nabla R(a_t))$$

= $D_R(a, a_1) + \sum_{t=1}^n D_{R^*}(\nabla R(a_t) - \eta \nabla \ell_t(a_t), \nabla R(a_t))$
= $R(a) - R(a_1) + \sum_{t=1}^n D_{R^*}(\nabla R(a_t) - \eta \nabla \ell_t(a_t), \nabla R(a_t))$

Linear bandit setting

- See only $\ell_t(a_t)$; $\nabla \ell_t(a_t)$ is unseen.
- Instead of a_t , strategy plays a noisy version, x_t .
- Strategy uses $\ell_t(x_t)$ to give an unbiased estimate of $\nabla \ell_t(a_t)$.

Stochastic mirror descent

Given:

compact, convex $\mathcal{A} \subseteq \mathbb{R}^d$, $\eta > 0$, $\mathcal{S} \supset \mathcal{A}$, Legendre $R : \mathcal{S} \rightarrow \mathbb{R}$. Set $a_1 \in \arg \min_{a \in \mathcal{A}} R(a)$. For round t:

- 1. Play noisy version x_t of a_t ; observe $\ell_t(x_t)$.
- 2. Compute estimate \tilde{g}_t of $\nabla \ell_t(a_t)$.
- 3. $w_{t+1} = \nabla R^* (\nabla R(a_t) \eta \tilde{g}_t).$
- 4. $a_{t+1} = \arg \min_{a \in \mathcal{A}} D_R(a, w_{t+1}).$

Regret of stochastic mirror descent

Theorem: Suppose that, for all $a \in \mathcal{A} \cap int(\mathcal{S})$ and linear $\ell \in \mathcal{L}$, $\mathbb{E}[\tilde{g}_t|a_t] = \nabla \ell_t(a_t) \text{ and } \nabla R(a) - \eta \tilde{g}_t(a) \in \nabla R(\operatorname{int}(\mathcal{S})).$ For any $a \in \mathcal{A}$, $\sum \left(\ell_t(a_t) - \ell_t(a)\right)$ t=1 $\leq \frac{1}{\eta} \left(R(a) - R(a_1) + \sum_{t=1}^{n} \mathbb{E}D_{R^*} \left(\nabla R(a_t) - \eta \tilde{g}_t, \nabla R(a_t) \right) \right)$ + $\sum_{t=1}^{n} \mathbb{E} [||a_t - \mathbb{E} [x_t | a_t]|| ||\tilde{g}_t||_*].$

Regret: proof

$$\mathbb{E}\sum_{t=1}^{n} (\ell_{t}(x_{t}) - \ell_{t}(a))$$

$$= \mathbb{E}\sum_{t=1}^{n} (\ell_{t}(x_{t}) - \ell_{t}(a_{t}) + \ell_{t}(a_{t}) - \ell_{t}(a))$$

$$= \mathbb{E}\sum_{t=1}^{n} (\mathbb{E}\left[\ell_{t}^{T}(x_{t} - a_{t}) \mid a_{t}\right] + \ell_{t}(a_{t}) - \ell_{t}(a))$$

$$\leq \mathbb{E}\sum_{t=1}^{n} \|a_{t} - \mathbb{E}[x_{t}|a_{t}]\| \|\tilde{g}_{t}\|_{*} + \mathbb{E}\sum_{t=1}^{n} \nabla \ell_{t}(a_{t})^{T}(a_{t} - a)$$

$$= \mathbb{E}\sum_{t=1}^{n} \|a_{t} - \mathbb{E}[x_{t}|a_{t}]\| \|\tilde{g}_{t}\|_{*} + \mathbb{E}\sum_{t=1}^{n} \tilde{g}_{t}^{T}(a_{t} - a).$$

Regret: proof

Applying the regret bound for the (random) linear losses $a \mapsto \tilde{g}_t^T a$ gives

$$\leq \mathbb{E} \sum_{t=1}^{n} \|a_t - \mathbb{E}[x_t|a_t]\| \|\tilde{g}_t\|_* + \frac{1}{\eta} \left(R(a) - R(a_1) + \sum_{t=1}^{n} \mathbb{E} D_{R^*} \left(\nabla R(a_t) - \eta \tilde{g}_t, \nabla R(a_t) \right) \right).$$

Regret: Euclidean ball

Consider $B = \{a \in \mathbb{R}^d : ||a|| \le 1\}$ (with the Euclidean norm).

Ingredients:

1. Distribution of x_t , given a_t :

$$x_t = \xi_t \frac{a_t}{\|a_t\|} + (1 - \xi_t)\epsilon_t e_{I_t},$$

where ξ_t is Bernoulli($||a_t||$), ϵ_t is uniform ± 1 , and I_t is uniform on $\{1, \ldots, d\}$, so $\mathbb{E}[x_t|a_t] = a_t$.

2. Estimate $\tilde{\ell}_t$ of loss ℓ_t :

$$\tilde{\ell}_t = d \frac{1 - \xi_t}{1 - \|a_t\|} x_t^T \ell_t x_t,$$

so $\mathbb{E}[\tilde{\ell}_t | a_t] = \ell_t$.

Regret: Euclidean ball

Theorem: Consider stochastic mirror descent on $\mathcal{A} = (1 - \gamma)B$, with these choices and $R(a) = -\log(1 - ||a||) - ||a||$. Then for $\eta d \leq 1/2$, $\overline{R}_n \leq \gamma n + \frac{\log(1/\gamma)}{\eta} + \eta \sum_{t=1}^n \mathbb{E}\left[(1 - ||a_t||) \|\tilde{\ell}_t\|^2\right].$ For $\gamma = 1/\sqrt{n}$ and $\eta = \sqrt{\log n/(2nd)}$, $\overline{R}_n \leq 3\sqrt{dn \log n}.$

Proof: $\nabla R(a) = a/(1 - ||a||).$
Linear bandits

Open question:

What geometric properties of \mathcal{A} and \mathcal{L} determine the regret?

\mathcal{A}	${\cal L}$	\overline{R}_n
convex	$\ell: \mathcal{A} \to [-1, 1]$	$\tilde{O}(d\sqrt{n})$
$\ \cdot\ _2 \le 1$	$\ \cdot\ _2 \le 1$	$\tilde{O}(\sqrt{dn})$
Δ^{d-1}	$\ \cdot\ _{\infty} \le 1$	$\tilde{O}(\sqrt{dn})$
$\ \cdot\ _{\infty} \le 1$	$\{\pm e_i : 1 \le i \le d\}$	$\Omega(d\sqrt{n})$