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Markov Decision Processes

MDP: Managing Threatened Species

For t = 1, 2, . . . :

1 See state Xt

2 Play an action At

3 Incur loss `(Xt ,At)

4 State evolves to Xt+1 ∼ PXt ,At

Transition matrix:

P : X ×A → ∆(X )

Policy: π : X → ∆(A)

Stationary distribution: µ

Average loss: µT `.

Performance Measure:
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Markov Decision Processes

MDP: Web Customer Interactions

For t = 1, 2, . . . :

1 See state Xt of customer

2 Play an action At interaction
offer/advertisement

3 Incur loss `(Xt ,At) missed revenue

4 State evolves to Xt+1 ∼ PXt ,At

Transition matrix:

P : X ×A → ∆(X )

Policy: π : X → ∆(A)

Stationary distribution: µ

Average loss: µT `.

Performance Measure:

2 / 27



Markov Decision Processes

MDP: Managing Threatened Species

For t = 1, 2, . . . :

1 See state Xt of ecosystem

2 Play an action At intervention
anti-poaching patrols

3 Incur loss `(Xt ,At) $, extinction

4 State evolves to Xt+1 ∼ PXt ,At

Transition matrix:

P : X ×A → ∆(X )

Policy: π : X → ∆(A)

Stationary distribution: µ

Average loss: µT `.

Performance Measure:

2 / 27



Markov Decision Processes

MDP: Managing Threatened Species

For t = 1, 2, . . . :

1 See state Xt of ecosystem

2 Play an action At intervention
anti-poaching patrols

3 Incur loss `(Xt ,At) $, extinction

4 State evolves to Xt+1 ∼ PXt ,At

Transition matrix:

P : X ×A → ∆(X )

Policy: π : X → ∆(A)

Stationary distribution: µ

Average loss: µT `.

Performance Measure: Regret

RT = E
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t=1

`(Xt ,At)−min
π
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Large-Scale Sequential Decision Problems

Large MDP Problems:
When the state space X is large, we must scale back the ambition of
optimal performance.

:

In comparison to a restricted family of policies Π.
e.g., linear value function approximation.
Want a strategy that competes with the best policy.
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Outline

1. Large-Scale Policy Design

Stochastic gradient convex optimization.

Competitive with policies near the approximating class.

Without knowledge of optimal policy.

Simulation results: queueing, crowdsourcing.

2. Learning Changing Dynamics

Changing MDP; complete information.

Exponential weights strategy.

Competitive with small comparison class Π.

Computationally efficient if Π has polynomial size.

Hard for shortest path problems.
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Linear Subspace of Stationary Distributions

Large-scale policy design (with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)

Stationary distributions dual to value functions.

Consider a class of policies defined by feature matrix Φ, distribution
µ0, and parameters θ:

πθ(a|x) =
[µ0(x , a) + Φ(x ,a),:θ]+∑
a′ [µ0(x , a′) + Φ(x ,a′),:θ]+

.

Let µθ denote the stationary distribution of policy πθ.

Find θ̂ such that µ>
θ̂
` ≤ minθ∈Θ µ

>
θ `+ ε.

Large-scale policy design: Independent of size of X .
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Approach: a Reduction to Convex Optimization

Define a constraint violation function

V (θ) = ‖[µ0 + Φθ]−‖1︸ ︷︷ ︸
prob. dist.

+
∥∥∥(P − B)>(µ0 + Φθ)

∥∥∥
1︸ ︷︷ ︸

stationary

and consider the convex cost function
c(θ) = `>(µ0 + Φθ) + αV (θ).

Stochastic gradient descent: θt+1 = θt − ηgt(θt), θ̂T =
∑T

t=1 θt/T ,

. . . with cheap, unbiased stochastic subgradient estimates:

gt(θ) = `>Φ− α
Φ(xt ,at),:

q1(xt , at)
I{µ0(xt ,at)+Φ(xt ,at ),:θ<0}

+ α
(P − B)>:,x ′t

Φ

q2(x ′t)
sign((P − B)>:,x ′t Φθ).
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Performance Bounds

Main Result

For T = 1/ε4 gradient estimates, with high probability
(under a mixing assumption),

µ>
θ̂T
` ≤ min

θ∈Θ

(
µ>θ `+

V (θ)

ε
+ O(ε)

)
.

Competitive with all policies (stationary distributions) in the linear
subspace (i.e., V (θ) = 0).

Competitive with other policies; comparison more favorable near some
stationary distribution in the subspace.

Previous results of this kind:
require knowledge about optimal policy, or
require that the comparison class Π contains a near-optimal policy.
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Simulation Results: Queueing

http://alzatex.org/

(Rybko and Stolyar, 1992; de Farias and Van Roy, 2003a)
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Outline

1. Large-Scale Policy Design

Compete with a restricted family of policies Π:
Linearly parameterized approximate stationary distributions.

Linearly parameterized exponentially transformed value function.

Stochastic gradient convex optimization.

Competitive with policies in the approximating class.

Simulation results: crowdsourcing.
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Total Cost, Kullback-Leibler Penalty

Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

Consider total cost: (assume a.s. hit absorbing state with zero loss)

E
∞∑

t=1

`(Xt).

Parameterized value functions, close to a reference policy

P0 : X → ∆(X ).

Regularize with KL-divergence to P0:
(so optimization is linear; Todorov/Kappen/Fleming)

`(x ,P) = `(x) + dKL(P(·|x),P0(·|x)).

P is transition matrix under policy.
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Total Cost, Kullback-Leibler Penalty

Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

Consider a class of policies defined by feature matrix Φ, and
parameters θ:

Π =
{
GĴθ : θ ∈ Θ

}

GĴ(x) := arg min
π

(
`(x ,Pπ) + Eπ

[
Ĵ(x ′)|x

])
greedy policies

Ĵθ = − log(Φθ). log linear

Find parameters θ̂ (hence policy π̂ = GĴθ̂) such that

Jπ̂(x1) ≤ min
π∈Π

Jπ(x1) + ε

Jπ(x) := Eπ
[ ∞∑

t=1

`(Xt)

∣∣∣∣∣X1 = x

]

Large-scale policy design: Independent of size of X .
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Approach: a Reduction to Convex Optimization

Define a transformed Bellman error function

(‖ · ‖ is a 1-norm over trajectories)

V (θ) = ‖Φθ − exp(−`(x))P0Φθ‖︸ ︷︷ ︸
convex in θ

V (θ) = ‖Φθ − exp(−`(x))P0Φθ‖ =
∥∥∥exp

(
−Ĵθ

)
− exp

(
−TĴθ

)∥∥∥

TĴ(x) := min
π

(
`(x ,Pπ) + Eπ

[
Ĵ(x ′)|x

])
(dynamic prog operator)

and consider the convex cost function
c(θ) = Ĵθ + αV (θ).

Stochastic gradient descent

. . . with cheap, unbiased stochastic subgradient estimates.
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c(θ) = Ĵθ + αV (θ).

Stochastic gradient descent

. . . with cheap, unbiased stochastic subgradient estimates.

12 / 27



Approach: a Reduction to Convex Optimization

Define a transformed Bellman error function (‖ · ‖ is a 1-norm over trajectories)

V (θ) = ‖Φθ − exp(−`(x))P0Φθ‖ =
∥∥∥exp

(
−Ĵθ
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−TĴθ

)∥∥∥
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Performance Bounds

Main Result

For T = 1/ε4 gradient estimates, with high probability,

Jπ̂(x1) ≤ min
π∈Π

(
Jπ(x1) +

1

ε

∥∥∥Ĵθ − TĴθ

∥∥∥
)

+
∥∥∥Ĵθ̂ − TĴθ̂

∥∥∥
′

+ O(ε).

Competitive with all policies in the parameterized class, up to
penalties involving the Bellman errors.

Unfortunately:

require that the comparison class Π contains a near-optimal policy.
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∥∥∥
′

+ O(ε).

Competitive with all policies in the parameterized class, up to
penalties involving the Bellman errors.

Unfortunately:

require that the comparison class Π contains a near-optimal policy.

13 / 27



Performance Bounds

Main Result

For T = 1/ε4 gradient estimates, with high probability,

Jπ̂(x1) ≤ min
π∈Π

(
Jπ(x1) +

1

ε
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Simulation Results: Crowdsourcing

Classification task.

Crowdsource

: $ for labels.

Fixed budget;
minimize errors.

Bayesian model:
binary labels, i.i.d. crowd;
Yi ∼ Bernoulli(pi )

;
pi ∼ Beta.

State = posterior.

http://www.technicalinfo.net/

http://cdns2.freepik.com/

http://usafreemoney.com/

http://www.oactechnology.com/

https://developers.google.com
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Outline

1. Large-Scale Policy Design

Compete with a restricted family of policies Π:
Linearly parameterized policies.

Stochastic gradient convex optimization.

Competitive with policies near the approximating class.

Without knowledge of optimal policy.

Simulation results: queueing, crowdsourcing.

2. Learning Changing Dynamics

Changing MDP; complete information.

Exponential weights strategy.

Competitive with small comparison class Π.

Computationally efficient if Π has polynomial size.

Hard for shortest path problems.
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Changing Dynamics

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

Observe Pt , `t after round t.

Consider a comparison class: Π ⊂ {π | π : X → A}
π∗ = argminπ∈Π

∑T
t=1 `t(x

π
t , π(xπt ))

RT =
∑T

t=1 `t(xt , at)−
∑T

t=1 `t(x
π∗
t , π∗(xπ

∗
t ))

Aim for low regret: RT/T → 0

Computationally efficient low regret strategies?
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Regret Bound

Main Result

There is a strategy that (under a τ -mixing assumption) achieves

E [RT ] ≤ (4 + 2τ2)
√
T log |Π|+ log |Π| .
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Exponential weights:

Strategy for a repeated game:

Choose action a ∈ A with probability proportional to

exp(total loss a has incurred so far).

Regret (total loss versus best in hindsight) for T rounds:

O
(√

T log |A|
)
.

Long history.
Unreasonably broadly applicable:

Zero-sum games.

AdaBoost.

Bandit problems.

Linear programming.

Shortest path problems.

Fast max-flow.

Fast graph sparsification.

Model of evolution.

18 / 27



Exponential weights:

Strategy for a repeated game:

Choose action a ∈ A with probability proportional to

exp(total loss a has incurred so far).

Regret (total loss versus best in hindsight) for T rounds:

O
(√

T log |A|
)
.

Long history.
Unreasonably broadly applicable:

Zero-sum games.

AdaBoost.

Bandit problems.

Linear programming.

Shortest path problems.

Fast max-flow.

Fast graph sparsification.

Model of evolution.

18 / 27



Exponential weights:

Strategy for a repeated game:

Choose action a ∈ A with probability proportional to

exp(total loss a has incurred so far).

Regret (total loss versus best in hindsight) for T rounds:

O
(√

T log |A|
)
.

Long history.

Unreasonably broadly applicable:
Zero-sum games.

AdaBoost.

Bandit problems.

Linear programming.

Shortest path problems.

Fast max-flow.

Fast graph sparsification.

Model of evolution.

18 / 27



Exponential weights:

Strategy for a repeated game:

Choose action a ∈ A with probability proportional to

exp(total loss a has incurred so far).

Regret (total loss versus best in hindsight) for T rounds:

O
(√

T log |A|
)
.

Long history.
Unreasonably broadly applicable:

Zero-sum games.

AdaBoost.

Bandit problems.

Linear programming.

Shortest path problems.

Fast max-flow.

Fast graph sparsification.

Model of evolution.
18 / 27



Strategy:

For all policies π ∈ Π, wπ,0 = 1.
Wt =

∑
π∈Π wπ,t , pπ,t = wπ,t−1/Wt−1.

for t := 1, 2, . . . do

w.p. βt =
wπt−1,t−1

wπt−1,t−2
, πt = πt−1. Otherwise πt ∼ p.,t .

Choose action at ∼ πt(.|xt).
Observe dynamics Pt and loss `t .
Suffer `t(xt , at).
For all policies π, wπ,t = wπ,t−1 exp (−ηE [`t(x

π
t , π)]).

end for

Exponential weights on Π.

Rare, random changes to πt .
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Main Result

There is a strategy that (under a τ -mixing assumption) achieves

E [RT ] ≤ (4 + 2τ2)
√
T log |Π|+ log |Π| .

Adversarial dynamics and loss functions.

Large state and action spaces.

E [RT ] /T → 0 for T = ω(log |Π|).

Computationally efficient as long as |Π| is polynomial.

No computationally efficient algorithm in general
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Shortest Path Problem

Special case of MDP: node=state; action=edge; loss=weight.

http://www.google.com/

http://www.meondirect.com/
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Computational Efficiency

Hardness Result

Suppose there is a strategy for the online adversarial
shortest path problem that:

1 runs in time poly(n,T ), and

2 has regret RT = O(poly(n)T 1−δ) for some
constant δ > 0.

Then there is an efficient algorithm for online agnostic
parity learning with sublinear regret.
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Online Agnostic Parity Learning

Class of parity functions on {0, 1}n:
PARITIES = {PARS | S ⊂ [n], PARS(x) = ⊕i∈Sxi}

Learning problem: given xt ∈ {0, 1}n, learner predicts ŷt ∈ {0, 1},
observes the true label yt and suffers loss I{ŷt 6=yt}

RT =
∑T

t=1 I{ŷt 6=yt} −minPARS∈PARITIES
∑T

t=1 I{PARS (xt) 6=yt}

Is there an efficient (time polynomial in n,T ) learning algorithm with
sublinear regret (RT = O(poly(n)T 1−δ) for some δ > 0)?

Very well-studied.

Widely believed to be hard: used for cryptographic schemes.
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Reduction

(x, y)Adversary

Shortest Path Algorithm

Pathŷt

Conversion1

Conversion2

1a

2a

3a

4a

5a

6a

2b

3b

4b

5b

6b

Z

y 1− y

ŷt = 0 ŷt = 1

x = (1, 0, 1, 0, 1) ∈ {0, 1}5
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Online shortest path: Hard versus easy

Edges (dynamics) Weights (costs)

Adversarial Adversarial As hard as noisy parity.
Stochastic Adversarial Efficient algorithm.
Adversarial Stochastic Efficient algorithm.
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Outline

1. Large-Scale Policy Design

Compete with a restricted family of policies Π:
Linearly parameterized policies.

Stochastic gradient convex optimization.

Competitive with policies near the approximating class.

Without knowledge of optimal policy.

Simulation results: queueing, crowdsourcing.

2. Learning changing dynamics

Changing MDP; complete information.

Exponential weights strategy.

Competitive with small comparison class Π.

Computationally efficient if Π has polynomial size.

Hard for shortest path problems.
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