## Learning in Markov Decision Problems

#### Peter Bartlett

Computer Science and Statistics University of California at Berkeley

Mathematical Sciences Queensland University of Technology

> UCLA November 10, 2014

### MDP: Managing Threatened Species

For t = 1, 2, ...:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □









For t = 1, 2, ...:

- See state  $X_t$  of ecosystem
- 2 Play an action  $A_t$  intervention anti-poaching patrols
- 3 Incur loss  $\ell(X_t, A_t)$





#### MDP: Managing Threatened Species

For t = 1, 2, ...:

- See state  $X_t$  of ecosystem
- Play an action A<sub>t</sub>

anti-poaching patrols

intervention

Solution Incur loss  $\ell(X_t, A_t)$  S, extinction

• State evolves to  $X_{t+1} \sim P_{X_t,A_t}$ 

Transition matrix:

イロト 不得 とくき とくき とうき

2/27

 $P: \mathcal{X} \times \mathcal{A} \rightarrow \Delta(\mathcal{X})$ 

#### MDP: Managing Threatened Species

For t = 1, 2, ...:

- See state  $X_t$  of ecosystem
- <sup>(2)</sup> Play an action  $A_t$  intervention anti-poaching patrols
- Solution Incur loss  $\ell(X_t, A_t)$  S, extinction

• State evolves to  $X_{t+1} \sim P_{X_t,A_t}$ 

Transition matrix:

 $P: \mathcal{X} imes \mathcal{A} o \Delta(\mathcal{X})$ Policy:  $\pi: \mathcal{X} o \Delta(\mathcal{A})$ 

#### Performance Measure: Regret

$$R_T = \mathbb{E}\sum_{t=1}^T \ell(X_t, A_t) - \min_{\pi} \mathbb{E}\sum_{t=1}^T \ell(X_t^{\pi}, \pi(X_t^{\pi})).$$

### MDP: Managing Threatened Species

For t = 1, 2, ...:

- See state X<sub>t</sub> of ecosystem
- 2 Play an action  $A_t$
- 3 Incur loss  $\ell(X_t, A_t)$  \$, extinction

anti-poaching patrols

• State evolves to  $X_{t+1} \sim P_{X_t,A_t}$ 

Transition matrix:

 $P: \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})$ Policy:  $\pi : \mathcal{X} \to \Delta(\mathcal{A})$ Stationary distribution:  $\mu$ Average loss:  $\mu^T \ell$ .

#### Performance Measure: Regret

$$R_T = \mathbb{E}\sum_{t=1}^T \ell(X_t, A_t) - \min_{\pi} \mathbb{E}\sum_{t=1}^T \ell(X_t^{\pi}, \pi(X_t^{\pi})).$$

intervention

## MDP: Managing Threatened Species

For t = 1, 2, ...:

- See state  $X_t$  of ecosystem
- Play an action A<sub>t</sub>
  - anti-poaching patrols

intervention

- Solution Incur loss  $\ell(X_t, A_t)$  \$, extinction
- State evolves to  $X_{t+1} \sim P_{X_t,A_t}$

 $\begin{array}{l} \text{Transition matrix:} \\ P: \mathcal{X} \times \mathcal{A} \rightarrow \Delta(\mathcal{X}) \\ \text{Policy:} \quad \pi: \mathcal{X} \rightarrow \Delta(\mathcal{A}) \\ \text{Stationary distribution: } \mu \\ \text{Average loss:} \quad \mu^{\mathsf{T}} \ell. \end{array}$ 

#### Performance Measure: Excess Average Loss

$$\mu_{\pi}^{\mathsf{T}}\ell - \min_{\pi} \mu_{\pi}^{\mathsf{T}}\ell$$

#### Large MDP Problems:

When the state space  ${\boldsymbol{\mathcal{X}}}$  is large, we must scale back the ambition of optimal performance.

#### Large MDP Problems:

When the state space  $\mathcal{X}$  is large, we must scale back the ambition of optimal performance:

In comparison to a restricted family of policies Π.
 e.g., linear value function approximation.
 Want a strategy that competes with the best policy.

## 1. Large-Scale Policy Design

### 1. Large-Scale Policy Design

 Compete with a restricted family of policies Π: Linearly parameterized approximate stationary distributions.

### 1. Large-Scale Policy Design

 Compete with a restricted family of policies Π: Linearly parameterized exponentially transformed value function.

### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.

### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.

### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.

### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

- Changing MDP; complete information.
- Exponential weights strategy.
- Competitive with small comparison class  $\Pi$ .
- Computationally efficient if ∏ has polynomial size.
- Hard for shortest path problems.

Large-scale policy design

(with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)

• Stationary distributions dual to value functions.

#### Large-scale policy design

(with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)

- Stationary distributions dual to value functions.
- Consider a class of policies defined by feature matrix Φ, distribution μ<sub>0</sub>, and parameters θ:

$$\pi_{\theta}(\mathbf{a}|\mathbf{x}) = \frac{[\mu_0(\mathbf{x}, \mathbf{a}) + \Phi_{(\mathbf{x}, \mathbf{a}), :\theta}]_+}{\sum_{\mathbf{a}'} [\mu_0(\mathbf{x}, \mathbf{a}') + \Phi_{(\mathbf{x}, \mathbf{a}'), :\theta}]_+}$$

#### Large-scale policy design (with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)

- Stationary distributions dual to value functions.
- Consider a class of policies defined by **feature matrix**  $\Phi$ , distribution  $\mu_0$ , and parameters  $\theta$ :

$$\pi_{ heta}(a|x) = rac{[\mu_0(x,a) + \Phi_{(x,a),:} heta]_+}{\sum_{a'} [\mu_0(x,a') + \Phi_{(x,a'),:} heta]_+} \; .$$

• Let  $\mu_{\theta}$  denote the stationary distribution of policy  $\pi_{\theta}$ .

#### Large-scale policy design (with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)

- Stationary distributions dual to value functions.
- Consider a class of policies defined by **feature matrix**  $\Phi$ , distribution  $\mu_0$ , and parameters  $\theta$ :

$$\pi_{ heta}(a|x) = rac{[\mu_0(x,a) + \Phi_{(x,a),:} heta]_+}{\sum_{a'} [\mu_0(x,a') + \Phi_{(x,a'),:} heta]_+} \; .$$

- Let  $\mu_{\theta}$  denote the stationary distribution of policy  $\pi_{\theta}$ .
- Find  $\widehat{\theta}$  such that  $\mu_{\widehat{\theta}}^{\top} \ell \leq \min_{\theta \in \Theta} \mu_{\theta}^{\top} \ell + \epsilon$ .

#### Large-scale policy design (with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)

- Stationary distributions dual to value functions.
- Consider a class of policies defined by **feature matrix**  $\Phi$ , distribution  $\mu_0$ , and parameters  $\theta$ :

$$\pi_{ heta}(a|x) = rac{[\mu_0(x,a) + \Phi_{(x,a),:} heta]_+}{\sum_{a'} [\mu_0(x,a') + \Phi_{(x,a'),:} heta]_+} \; .$$

- Let  $\mu_{\theta}$  denote the stationary distribution of policy  $\pi_{\theta}$ .
- Find  $\widehat{\theta}$  such that  $\mu_{\widehat{\theta}}^{\top} \ell \leq \min_{\theta \in \Theta} \mu_{\theta}^{\top} \ell + \epsilon$ .
- Large-scale policy design: Independent of size of X.

• Define a constraint violation function

$$V(\theta) = \underbrace{\|[\mu_0 + \Phi\theta]_-\|_1}_{\text{prob. dist.}} + \underbrace{\|(P - B)^\top (\mu_0 + \Phi\theta)\|_1}_{\text{stationary}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Define a constraint violation function

$$V(\theta) = \left\| \left[ \mu_0 + \Phi \theta \right]_{-} \right\|_1 + \left\| (P - B)^\top (\mu_0 + \Phi \theta) \right\|_1$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

and consider the convex cost function  $c(\theta) = \ell^{\top}(\mu_0 + \Phi\theta) + \alpha V(\theta).$ 

• Define a constraint violation function

$$V(\theta) = \left\| \left[ \mu_0 + \Phi \theta \right]_{-} \right\|_1 + \left\| \left( P - B \right)^\top (\mu_0 + \Phi \theta) \right\|_1$$

and consider the convex cost function  $c(\theta) = \ell^{\top}(\mu_0 + \Phi\theta) + \alpha V(\theta).$ 

• Stochastic gradient descent:  $\theta_{t+1} = \theta_t - \eta g_t(\theta_t)$ ,  $\hat{\theta}_T = \sum_{t=1}^T \theta_t / T$ ,

• Define a constraint violation function

$$V(\theta) = \left\| \left[ \mu_0 + \Phi \theta \right]_{-} \right\|_1 + \left\| (P - B)^\top (\mu_0 + \Phi \theta) \right\|_1$$

and consider the convex cost function  $c(\theta) = \ell^{\top}(\mu_0 + \Phi\theta) + \alpha V(\theta).$ 

- Stochastic gradient descent:  $\theta_{t+1} = \theta_t \eta g_t(\theta_t)$ ,  $\hat{\theta}_T = \sum_{t=1}^T \theta_t / T$ ,
- ... with cheap, unbiased stochastic subgradient estimates:

$$g_t(\theta) = \ell^\top \Phi - \alpha \frac{\Phi_{(x_t, a_t),:}}{q_1(x_t, a_t)} \mathbb{I}_{\{\mu_0(x_t, a_t) + \Phi_{(x_t, a_t),:}\theta < 0\}} + \alpha \frac{(P - B)_{:,x_t'}^\top \Phi}{q_2(x_t')} \operatorname{sign}((P - B)_{:,x_t'}^\top \Phi \theta).$$

<ロ> < 部> < 注> < 注> < 注) と 注 の Q (で 6/27

#### Main Result

For  ${\cal T}=1/\epsilon^4$  gradient estimates, with high probability (under a mixing assumption),

$$\mu_{\widehat{\theta}_{\mathcal{T}}}^{\top} \ell \leq \min_{\theta \in \Theta} \left( \mu_{\theta}^{\top} \ell + \frac{V(\theta)}{\epsilon} + O(\epsilon) \right)$$

#### Main Result

For  $\mathcal{T}=1/\epsilon^4$  gradient estimates, with high probability (under a mixing assumption),

$$\mu_{\widehat{ heta}_{ au}}^{ op}\ell\leq\min_{ heta\in\Theta}\left(\mu_{ heta}^{ op}\ell+rac{V( heta)}{\epsilon}+O(\epsilon)
ight) \;.$$

• Competitive with all policies (stationary distributions) in the linear subspace (i.e.,  $V(\theta) = 0$ ).

#### Main Result

For  $\mathcal{T}=1/\epsilon^4$  gradient estimates, with high probability (under a mixing assumption),

$$\mu_{\widehat{\theta}_{\mathcal{T}}}^{\top} \ell \leq \min_{\theta \in \Theta} \left( \mu_{\theta}^{\top} \ell + \frac{V(\theta)}{\epsilon} + O(\epsilon) \right) \ .$$

- Competitive with all policies (stationary distributions) in the linear subspace (i.e.,  $V(\theta) = 0$ ).
- Competitive with other policies; comparison more favorable near some stationary distribution in the subspace.

#### Main Result

For  $\mathcal{T}=1/\epsilon^4$  gradient estimates, with high probability (under a mixing assumption),

$$\mu_{\widehat{\theta}_{\mathcal{T}}}^{\top} \ell \leq \min_{\theta \in \Theta} \left( \mu_{\theta}^{\top} \ell + \frac{V(\theta)}{\epsilon} + O(\epsilon) \right) \; .$$

- Competitive with all policies (stationary distributions) in the linear subspace (i.e.,  $V(\theta) = 0$ ).
- Competitive with other policies; comparison more favorable near some stationary distribution in the subspace.
- Previous results of this kind:
  - require knowledge about optimal policy, or
  - require that the comparison class ∏ contains a near-optimal policy.

# Simulation Results: Queueing



(Rybko and Stolyar, 1992; de Farias and Van Roy, 2003a)

## Simulation Results: Queueing







8/27
#### 1. Large-Scale Policy Design

 Compete with a restricted family of policies Π: Linearly parameterized approximate stationary distributions.

#### 1. Large-Scale Policy Design

 Compete with a restricted family of policies Π: Linearly parameterized approximate stationary distributions. Linearly parameterized exponentially transformed value function.

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized approximate stationary distributions. Linearly parameterized exponentially transformed value function.
- Stochastic gradient convex optimization.
- Competitive with policies in the approximating class.
- Simulation results: crowdsourcing.

Large-scale policy design

(with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

#### Large-scale policy design

(with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

Consider total cost:

(assume a.s. hit absorbing state with zero loss)



#### Large-scale policy design

(with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

Consider total cost:

(assume a.s. hit absorbing state with zero loss)



• Parameterized value functions, close to a reference policy

 $P_0: \mathcal{X} \to \Delta(\mathcal{X}).$ 

#### Large-scale policy design

(with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

Consider total cost:

(assume a.s. hit absorbing state with zero loss)

$$\mathbb{E}\sum_{t=1}^{\infty}\ell(X_t)$$

• Parameterized value functions, close to a reference policy

 $P_0: \mathcal{X} \to \Delta(\mathcal{X}).$ 

 Regularize with KL-divergence to P<sub>0</sub>: (so optimization is linear; Todorov/Kappen/Fleming)

 $\ell(x, P) = \ell(x) + d_{\mathcal{KL}}(P(\cdot|x), P_0(\cdot|x)).$ 

*P* is transition matrix under policy.

#### Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek) Consider a class of policies defined by feature matrix $\Phi$ and

 Consider a class of policies defined by feature matrix Φ, and parameters θ:

 $\Pi = \left\{ G\widehat{J}_{\theta} : \theta \in \Theta \right\}$   $G\widehat{J}(x) := \arg \min_{\pi} \left( \ell(x, P^{\pi}) + \mathbb{E}^{\pi} \left[ \widehat{J}(x') | x \right] \right) \quad \text{greedy policies}$   $\widehat{J}_{\theta} = -\log(\Phi\theta). \quad \text{log linear}$ 

イロン イロン イヨン イヨン 三日

# Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

 Consider a class of policies defined by feature matrix Φ, and parameters θ:

$$\begin{split} &\Pi = \Big\{ G \widehat{J}_{\theta} : \theta \in \Theta \Big\} \\ &G \widehat{J}(x) := \arg\min_{\pi} \Big( \ell(x, P^{\pi}) + \mathbb{E}^{\pi} \left[ \widehat{J}(x') | x \right] \Big) \quad \text{ greedy policies} \\ &\widehat{J}_{\theta} = -\log(\Phi \theta). \quad \text{ log linear} \end{split}$$

• Find parameters  $\widehat{ heta}$  (hence policy  $\hat{\pi} = G \widehat{J}_{\hat{ heta}}$ ) such that

$$egin{aligned} &J_{\hat{\pi}}(x_1) \leq \min_{\pi \in \Pi} J_{\pi}(x_1) + \epsilon \ &J_{\pi}(x) := \mathbb{E}^{\pi} \left[ \left. \sum_{t=1}^{\infty} \ell(X_t) \right| X_1 = x 
ight] \end{aligned}$$

## Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

 Consider a class of policies defined by feature matrix Φ, and parameters θ:

$$\begin{split} &\Pi = \Big\{ G \widehat{J}_{\theta} : \theta \in \Theta \Big\} \\ &G \widehat{J}(x) := \arg\min_{\pi} \Big( \ell(x, P^{\pi}) + \mathbb{E}^{\pi} \left[ \widehat{J}(x') | x \right] \Big) \quad \text{ greedy policies} \\ &\widehat{J}_{\theta} = -\log(\Phi \theta). \quad \text{ log linear} \end{split}$$

• Find parameters  $\widehat{\theta}$  (hence policy  $\hat{\pi}=G\widehat{J}_{\widehat{\theta}})$  such that

$$egin{aligned} &J_{\hat{\pi}}(x_1) \leq \min_{\pi \in \Pi} J_{\pi}(x_1) + \epsilon \ &J_{\pi}(x) := \mathbb{E}^{\pi} \left[ \left. \sum_{t=1}^{\infty} \ell(X_t) \right| X_1 = x 
ight] \end{aligned}$$

### Approach: a Reduction to Convex Optimization

• Define a transformed Bellman error function

$$V(\theta) = \underbrace{\|\Phi\theta - \exp(-\ell(x))P_0\Phi\theta\|}_{\text{convex in }\theta}$$

### Approach: a Reduction to Convex Optimization

• Define a transformed Bellman error function (|| · || is a 1-norm over trajectories)

$$V(\theta) = \|\Phi\theta - \exp(-\ell(x))P_0\Phi\theta\| = \left\|\exp\left(-\widehat{J}_{\theta}\right) - \exp\left(-T\widehat{J}_{\theta}\right)\right\|$$
$$T\widehat{J}(x) := \min_{\pi} \left(\ell(x, P^{\pi}) + \mathbb{E}^{\pi}\left[\widehat{J}(x')|x\right]\right) \qquad (\text{dynamic prog operator})$$

• Define a transformed Bellman error function (|| · || is a 1-norm over trajectories)

$$V(\theta) = \|\Phi\theta - \exp(-\ell(x))P_0\Phi\theta\| = \left\|\exp\left(-\widehat{J}_{\theta}\right) - \exp\left(-T\widehat{J}_{\theta}\right)\right\|$$
$$T\widehat{J}(x) := \min_{\pi} \left(\ell(x, P^{\pi}) + \mathbb{E}^{\pi}\left[\widehat{J}(x')|x\right]\right) \qquad (\text{dynamic prog operator})$$

and consider the convex cost function  $c(\theta) = \widehat{J_{\theta}} + \alpha V(\theta).$  • Define a transformed Bellman error function (|| · || is a 1-norm over trajectories)

$$V(\theta) = \|\Phi\theta - \exp(-\ell(x))P_0\Phi\theta\| = \left\|\exp\left(-\widehat{J}_{\theta}\right) - \exp\left(-T\widehat{J}_{\theta}\right)\right\|$$
$$T\widehat{J}(x) := \min_{\pi} \left(\ell(x, P^{\pi}) + \mathbb{E}^{\pi}\left[\widehat{J}(x')|x\right]\right) \qquad (\text{dynamic prog operator})$$

イロン イロン イヨン イヨン 三日

and consider the convex cost function  $c(\theta) = \widehat{J}_{\theta} + \alpha V(\theta).$ 

• Stochastic gradient descent

• Define a transformed Bellman error function (|| · || is a 1-norm over trajectories)

$$V(\theta) = \|\Phi\theta - \exp(-\ell(x))P_0\Phi\theta\| = \left\|\exp\left(-\widehat{J}_{\theta}\right) - \exp\left(-T\widehat{J}_{\theta}\right)\right\|$$
$$T\widehat{J}(x) := \min_{\pi} \left(\ell(x, P^{\pi}) + \mathbb{E}^{\pi}\left[\widehat{J}(x')|x\right]\right) \qquad (\text{dynamic prog operator})$$

and consider the convex cost function  $c(\theta) = \widehat{J}_{\theta} + \alpha V(\theta).$ 

- Stochastic gradient descent
- ... with cheap, unbiased stochastic subgradient estimates.

#### Main Result

For  $T = 1/\epsilon^4$  gradient estimates, with high probability,

$$J_{\hat{\pi}}(x_1) \leq \min_{\pi \in \Pi} \left( J_{\pi}(x_1) + rac{1}{\epsilon} \left\| \widehat{J}_{ heta} - \mathcal{T} \widehat{J}_{ heta} 
ight\| 
ight) + \left\| \widehat{J}_{\hat{ heta}} - \mathcal{T} \widehat{J}_{\hat{ heta}} 
ight\|' + O(\epsilon).$$

#### Main Result

For  $\mathcal{T}=1/\epsilon^4$  gradient estimates, with high probability,

$$J_{\hat{\pi}}(x_1) \leq \min_{\pi \in \Pi} \left( J_{\pi}(x_1) + \frac{1}{\epsilon} \left\| \widehat{J}_{\theta} - T \widehat{J}_{\theta} \right\| \right) + \left\| \widehat{J}_{\hat{\theta}} - T \widehat{J}_{\hat{\theta}} \right\|' + O(\epsilon).$$

• Competitive with all policies in the parameterized class, up to penalties involving the Bellman errors.

#### Main Result

For  $\mathcal{T}=1/\epsilon^4$  gradient estimates, with high probability,

$$J_{\widehat{\pi}}(x_1) \leq \min_{\pi \in \Pi} \left( J_{\pi}(x_1) + rac{1}{\epsilon} \left\| \widehat{J}_{ heta} - \mathcal{T} \widehat{J}_{ heta} 
ight\| 
ight) + \left\| \widehat{J}_{\widehat{ heta}} - \mathcal{T} \widehat{J}_{\widehat{ heta}} 
ight\|' + O(\epsilon).$$

- Competitive with all policies in the parameterized class, up to penalties involving the Bellman errors.
- Unfortunately:
  - require that the comparison class  $\Pi$  contains a near-optimal policy.

• Classification task.

| 64BCE25 X91 | KION 2469/ | RR9 PYAR       | FUH DINE C |
|-------------|------------|----------------|------------|
| 85% WREHS   | TINEWHIG   | ENW KX SAN HIE | (ČEŘJČĒBÚ, |
| (88H255R) - | T324 AEPS  | KAWHENEY;      | >VM16CTUFY |
| E3XNW/NE    | 121×1469月) | DXX SCHAND     | SP?KF45NT  |

- Classification task.
- Crowdsource labels.

| 14BCE25 ¥91 | KJON 2469/    | RR9 PYAR  | 334TGFTU7   |
|-------------|---------------|-----------|-------------|
| 85% WR5HS   | TIHMMATS      | ENW KY Pr | (ČERJOBBU)  |
| (88H255R) - | JT 3 Rt A EPQ | WAWH MEN; | >VM16CFUFT  |
| E3XNW/NE    | シアマヤを見り       | DXXSCHAN  | SP?KFUSN'ST |

Imp://www.schriciafia.net/ http://www.schriciafia.net/ http://www.schriciafia.net/ 14 / 27

- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.

| 64BCE25 ¥91 | KION 2489/ | RR9 PYAR   | 334ITGFTU7 |
|-------------|------------|------------|------------|
| 85% WREHS   | TIHUNATS   | ENW W FY T | (ČERJOBBÁ, |
| (88H255R) - | T3KAEPS    | X AWHENEY; | >YM16CFUFJ |
| E3XNW/NE    | シアマやき日     | DITESCHARD | SP?KFUSNST |



- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.
- Bayesian model: binary labels, i.i.d. crowd; Y<sub>i</sub> ∼ Bernoulli(p<sub>i</sub>)

| 64BCE25 ¥91 | KION 2489/ | RR9 PYAR   | 334TGFTU7     |
|-------------|------------|------------|---------------|
| 85% WREHS   | TIHMMATS   | FINITS AND | (ČEŘJČBBÁ,    |
| (88H255R) - | JT32742PD  | WAWH MEN;  | >VM16CFUFT    |
| E3XNW/NE    | 这次王昭国      | DXX SCHAND | SP ? KFUSRIST |



- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.
- Bayesian model: binary labels, i.i.d. crowd; Y<sub>i</sub> ∼ Bernoulli(p<sub>i</sub>)

| 64BCE25791  | KIN 2469/  | RR9 PYAR   | 334ITGFTU7    |
|-------------|------------|------------|---------------|
| 85% WR5HC   | TIHMATT    | ENWARS P   | (ČEŘIČBBÁ,    |
| (88H235R) - | JT324 AEPO | X AWHENEY; | >YM16CFUFJ    |
| E3XNW/NE    | シアマやの日     | DXX SCHAN  | SP ? KFUS NOT |



- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.
- Bayesian model: binary labels, i.i.d. crowd; Y<sub>i</sub> ∼ Bernoulli(p<sub>i</sub>)

| 14BEE25 X91 | KJON 2469/ | RR9 PYAR     | 334TGFTU7   |
|-------------|------------|--------------|-------------|
| 85 W WREHS  | TINNERG    | ENW WX PY Pr | (ČERJOBBÁ,  |
| (88H255R) - | JT324 AEPO | WAWHENEY;    | >YM16CFUFJ  |
| E3XNW/NE    | シンマヤを見り    | DXX SCHARD   | SP?KFUSRIST |



- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.
- Bayesian model: binary labels, i.i.d. crowd; Y<sub>i</sub> ∼ Bernoulli(p<sub>i</sub>); p<sub>i</sub> ∼ Beta.

| 64BCE25 ¥91 | KION 2489/ | RR9 PYAR   | 334ITGFTU7   |
|-------------|------------|------------|--------------|
| 85% WR5HC   | TINERHTS   | ENWARS P   | (ČERJOBBA    |
| (88H255R) - | T3KAEPS    | X AWHENEY; | 74M16CFUFJ   |
| E3XNW YOUE  | シアマやき日     | DXX SCHAN  | SP ? KFUSNST |



- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.
- Bayesian model: binary labels, i.i.d. crowd; Y<sub>i</sub> ∼ Bernoulli(p<sub>i</sub>); p<sub>i</sub> ∼ Beta.
- State = posterior.

| 64BCE25 Y91 | KION 2469/ | RR9 PVARW    | 334TGFTU7                |
|-------------|------------|--------------|--------------------------|
| 85% WREHS   | TINNERG    | ENW WX PY Pr | (Č <sup>e</sup> ŘJČĒ BÁ, |
| (88H255R) - | JT324 AEPO | WAWHENEY;    | >VM16CFUFJ               |
| E3XNW/NE    | シンマヤを見り    | DXX SCHARD   | SP?KFUSRIST              |



- Classification task.
- Crowdsource: \$ for labels.
- Fixed budget; minimize errors.
- Bayesian model: binary labels, i.i.d. crowd; Y<sub>i</sub> ∼ Bernoulli(p<sub>i</sub>); p<sub>i</sub> ∼ Beta.
- State = posterior.



#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

#### 2. Learning Changing Dynamics

• Changing MDP; complete information.

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

- Changing MDP; complete information.
- Exponential weights strategy.

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

- Changing MDP; complete information.
- Exponential weights strategy.
- Competitive with small comparison class  $\Pi$ .

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

- Changing MDP; complete information.
- Exponential weights strategy.
- Competitive with small comparison class  $\Pi$ .
- Computationally efficient if **Π** has polynomial size.

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

- Changing MDP; complete information.
- Exponential weights strategy.
- Competitive with small comparison class  $\Pi$ .
- Computationally efficient if ∏ has polynomial size.
- Hard for shortest path problems.

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

• Observe  $P_t$ ,  $\ell_t$  after round t.

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

- Observe  $P_t$ ,  $\ell_t$  after round t.
- Consider a comparison class:  $\Pi \subset \{\pi \mid \pi : \mathcal{X} \to \mathcal{A}\}$

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

- Observe  $P_t$ ,  $\ell_t$  after round t.
- Consider a comparison class:  $\Pi \subset \{\pi \mid \pi : \mathcal{X} \to \mathcal{A}\}$
- $\pi^* = \operatorname{argmin}_{\pi \in \Pi} \sum_{t=1}^T \ell_t(x_t^{\pi}, \pi(x_t^{\pi}))$
(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

- Observe  $P_t$ ,  $\ell_t$  after round t.
- Consider a comparison class:  $\Pi \subset \{\pi \mid \pi : \mathcal{X} \to \mathcal{A}\}$
- $\pi^* = \operatorname{argmin}_{\pi \in \Pi} \sum_{t=1}^{T} \ell_t(x_t^{\pi}, \pi(x_t^{\pi}))$
- $R_T = \sum_{t=1}^T \ell_t(x_t, a_t) \sum_{t=1}^T \ell_t(x_t^{\pi^*}, \pi^*(x_t^{\pi^*}))$

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

16/27

- Observe  $P_t$ ,  $\ell_t$  after round t.
- Consider a comparison class:  $\Pi \subset \{\pi \mid \pi : \mathcal{X} \to \mathcal{A}\}$
- $\pi^* = \operatorname{argmin}_{\pi \in \Pi} \sum_{t=1}^{T} \ell_t(x_t^{\pi}, \pi(x_t^{\pi}))$
- $R_T = \sum_{t=1}^T \ell_t(x_t, a_t) \sum_{t=1}^T \ell_t(x_t^{\pi^*}, \pi^*(x_t^{\pi^*}))$
- Aim for low regret:  $R_T/T \rightarrow 0$

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

- Observe  $P_t$ ,  $\ell_t$  after round t.
- Consider a comparison class:  $\Pi \subset \{\pi \mid \pi : \mathcal{X} \to \mathcal{A}\}$
- $\pi^* = \operatorname{argmin}_{\pi \in \Pi} \sum_{t=1}^{T} \ell_t(x_t^{\pi}, \pi(x_t^{\pi}))$
- $R_T = \sum_{t=1}^T \ell_t(x_t, a_t) \sum_{t=1}^T \ell_t(x_t^{\pi^*}, \pi^*(x_t^{\pi^*}))$
- Aim for low regret:  $R_T/T \rightarrow 0$
- Computationally efficient low regret strategies?

There is a strategy that (under a  $\tau$ -mixing assumption) achieves

 $\mathbb{E}[R_T] \leq (4 + 2\tau^2)\sqrt{T \log |\Pi|} + \log |\Pi|.$ 

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ (\* 17/27)

#### Strategy for a repeated game:

Choose action  $a \in \mathcal{A}$  with probability proportional to

exp(total loss a has incurred so far).

Strategy for a repeated game:

Choose action  $a \in \mathcal{A}$  with probability proportional to

exp(total loss *a* has incurred so far).

イロン イロン イヨン イヨン 三日

18 / 27

• Regret (total loss versus best in hindsight) for T rounds:  $O\left(\sqrt{T \log |\mathcal{A}|}\right).$ 

Strategy for a repeated game:

Choose action  $a \in \mathcal{A}$  with probability proportional to

exp(total loss *a* has incurred so far).

イロン イヨン イヨン イヨン 三日

18 / 27

- Regret (total loss versus best in hindsight) for T rounds:  $O\left(\sqrt{T \log |\mathcal{A}|}\right).$
- Long history.

#### Strategy for a repeated game:

Choose action  $a \in \mathcal{A}$  with probability proportional to

exp(total loss *a* has incurred so far).

- Regret (total loss versus best in hindsight) for T rounds:  $O\left(\sqrt{T \log |\mathcal{A}|}\right).$
- Long history.
- Unreasonably broadly applicable:
  - Zero-sum games.
  - AdaBoost.
  - Bandit problems.
  - Linear programming.

- Shortest path problems.
- Fast max-flow.
- Fast graph sparsification.
- Model of evolution. <sup>1</sup> ≥ <sup>2</sup> <sup>3</sup> <sup>3</sup> <sup>3</sup> <sup>3</sup> <sup>3</sup>

## Strategy:

```
For all policies \pi \in \Pi, w_{\pi,0} = 1.

W_t = \sum_{\pi \in \Pi} w_{\pi,t}, p_{\pi,t} = w_{\pi,t-1}/W_{t-1}.

for t := 1, 2, ... do

w.p. \beta_t = \frac{W_{\pi_{t-1},t-1}}{W_{\pi_{t-1},t-2}}, \pi_t = \pi_{t-1}. Otherwise \pi_t \sim p_{.,t}.

Choose action a_t \sim \pi_t(.|x_t).

Observe dynamics P_t and loss \ell_t.

Suffer \ell_t(x_t, a_t).

For all policies \pi, w_{\pi,t} = w_{\pi,t-1} \exp(-\eta \mathbb{E}[\ell_t(x_t^{\pi}, \pi)]).

end for
```

イロト 不得下 イヨト イヨト 二日

19/27

• Exponential weights on  $\Pi$ .

## Strategy:

```
For all policies \pi \in \Pi, w_{\pi,0} = 1.

W_t = \sum_{\pi \in \Pi} w_{\pi,t}, p_{\pi,t} = w_{\pi,t-1}/W_{t-1}.

for t := 1, 2, ... do

w.p. \beta_t = \frac{w_{\pi_{t-1},t-1}}{w_{\pi_{t-1},t-2}}, \pi_t = \pi_{t-1}. Otherwise \pi_t \sim p_{.,t}.

Choose action a_t \sim \pi_t(.|x_t).

Observe dynamics P_t and loss \ell_t.

Suffer \ell_t(x_t, a_t).

For all policies \pi, w_{\pi,t} = w_{\pi,t-1} \exp(-\eta \mathbb{E}[\ell_t(x_t^{\pi}, \pi)]).

end for
```

- Exponential weights on  $\Pi$ .
- Rare, random changes to  $\pi_t$ .



• Adversarial dynamics and loss functions.

# Main Result There is a strategy that (under a $\tau$ -mixing assumption) achieves $\mathbb{E}[R_T] \leq (4 + 2\tau^2)\sqrt{T \log |\Pi|} + \log |\Pi|$ .

20 / 27

- Adversarial dynamics and loss functions.
- Large state and action spaces.

There is a strategy that (under a  $\tau$ -mixing assumption) achieves

```
\mathbb{E}\left[R_{T}\right] \leq (4 + 2\tau^{2})\sqrt{T \log |\Pi|} + \log |\Pi|.
```

- Adversarial dynamics and loss functions.
- Large state and action spaces.
- $\mathbb{E}[R_T]/T \to 0$  for  $T = \omega(\log |\Pi|)$ .

There is a strategy that (under a *T*-mixing assumption) achieves

```
\mathbb{E}\left[R_{T}\right] \leq (4 + 2\tau^{2})\sqrt{T \log |\Pi|} + \log |\Pi|.
```

- Adversarial dynamics and loss functions.
- Large state and action spaces.
- $\mathbb{E}[R_T]/T \to 0$  for  $T = \omega(\log |\Pi|)$ .
- Computationally efficient as long as  $|\Pi|$  is polynomial.

There is a strategy that (under a *T*-mixing assumption) achieves

```
\mathbb{E}\left[R_{T}\right] \leq (4 + 2\tau^{2})\sqrt{T \log |\Pi|} + \log |\Pi|.
```

- Adversarial dynamics and loss functions.
- Large state and action spaces.
- $\mathbb{E}[R_T]/T \to 0$  for  $T = \omega(\log |\Pi|)$ .
- Computationally efficient as long as  $|\Pi|$  is polynomial.
- No computationally efficient algorithm in general

#### Shortest Path Problem

Special case of MDP: node=state; action=edge; loss=weight.





http://www.google.com/

## Shortest Path Problem

Special case of MDP: node=state; action=edge; loss=weight.





http://www.google.com/ http://www.meondirect.com/

## Shortest Path Problem

Special case of MDP: node=state; action=edge; loss=weight.





http://www.google.com/ http://www.meondirect.com/

#### Hardness Result

Suppose there is a strategy for the online adversarial shortest path problem that:

- runs in time poly(n, T), and
- Solution Set in the set of t

Then there is an efficient algorithm for online agnostic parity learning with sublinear regret.

 Class of parity functions on {0,1}<sup>n</sup>: PARITIES = {PAR<sub>S</sub> | S ⊂ [n], PAR<sub>S</sub>(x) = ⊕<sub>i∈S</sub>x<sub>i</sub>}

- Class of parity functions on {0,1}<sup>n</sup>: PARITIES = {PAR<sub>S</sub> | S ⊂ [n], PAR<sub>S</sub>(x) = ⊕<sub>i∈S</sub>x<sub>i</sub>}
- Learning problem: given x<sub>t</sub> ∈ {0,1}<sup>n</sup>, learner predicts ŷ<sub>t</sub> ∈ {0,1}, observes the true label y<sub>t</sub> and suffers loss I<sub>{ŷt≠yt</sub>}

- Class of parity functions on {0,1}<sup>n</sup>: PARITIES = {PAR<sub>S</sub> | S ⊂ [n], PAR<sub>S</sub>(x) = ⊕<sub>i∈S</sub>x<sub>i</sub>}
- Learning problem: given  $x_t \in \{0, 1\}^n$ , learner predicts  $\hat{y}_t \in \{0, 1\}$ , observes the true label  $y_t$  and suffers loss  $\mathbb{I}_{\{\hat{y}_t \neq y_t\}}$
- $R_T = \sum_{t=1}^{T} \mathbb{I}_{\{\hat{y}_t \neq y_t\}} \min_{\mathsf{PAR}_S \in \mathsf{PARITIES}} \sum_{t=1}^{T} \mathbb{I}_{\{\mathsf{PAR}_S(x_t) \neq y_t\}}$

- Class of parity functions on {0,1}<sup>n</sup>:
   PARITIES = {PAR<sub>S</sub> | S ⊂ [n], PAR<sub>S</sub>(x) = ⊕<sub>i∈S</sub>x<sub>i</sub>}
- Learning problem: given  $x_t \in \{0,1\}^n$ , learner predicts  $\hat{y}_t \in \{0,1\}$ , observes the true label  $y_t$  and suffers loss  $\mathbb{I}_{\{\hat{y}_t \neq y_t\}}$
- $R_T = \sum_{t=1}^T \mathbb{I}_{\{\hat{y}_t \neq y_t\}} \min_{\mathsf{PAR}_S \in \mathsf{PARITIES}} \sum_{t=1}^T \mathbb{I}_{\{\mathsf{PAR}_S(x_t) \neq y_t\}}$
- Is there an efficient (time polynomial in n, T) learning algorithm with sublinear regret (R<sub>T</sub> = O(poly(n)T<sup>1-δ</sup>) for some δ > 0)?

- Class of parity functions on {0,1}<sup>n</sup>:
   PARITIES = {PAR<sub>S</sub> | S ⊂ [n], PAR<sub>S</sub>(x) = ⊕<sub>i∈S</sub>x<sub>i</sub>}
- Learning problem: given  $x_t \in \{0,1\}^n$ , learner predicts  $\hat{y}_t \in \{0,1\}$ , observes the true label  $y_t$  and suffers loss  $\mathbb{I}_{\{\hat{y}_t \neq y_t\}}$
- $R_T = \sum_{t=1}^T \mathbb{I}_{\{\hat{y}_t \neq y_t\}} \min_{\mathsf{PAR}_S \in \mathsf{PARITIES}} \sum_{t=1}^T \mathbb{I}_{\{\mathsf{PAR}_S(x_t) \neq y_t\}}$
- Is there an efficient (time polynomial in n, T) learning algorithm with sublinear regret (R<sub>T</sub> = O(poly(n)T<sup>1-δ</sup>) for some δ > 0)?
- Very well-studied.

- Class of parity functions on {0,1}<sup>n</sup>:
   PARITIES = {PAR<sub>S</sub> | S ⊂ [n], PAR<sub>S</sub>(x) = ⊕<sub>i∈S</sub>x<sub>i</sub>}
- Learning problem: given  $x_t \in \{0,1\}^n$ , learner predicts  $\hat{y}_t \in \{0,1\}$ , observes the true label  $y_t$  and suffers loss  $\mathbb{I}_{\{\hat{y}_t \neq y_t\}}$
- $R_T = \sum_{t=1}^T \mathbb{I}_{\{\hat{y}_t \neq y_t\}} \min_{\mathsf{PAR}_S \in \mathsf{PARITIES}} \sum_{t=1}^T \mathbb{I}_{\{\mathsf{PAR}_S(x_t) \neq y_t\}}$
- Is there an efficient (time polynomial in n, T) learning algorithm with sublinear regret (R<sub>T</sub> = O(poly(n)T<sup>1-δ</sup>) for some δ > 0)?
- Very well-studied.
- Widely believed to be hard: used for cryptographic schemes.

#### Hardness Result

Suppose there is a strategy for the online adversarial shortest path problem that:

- runs in time poly(n, T), and
- Solution has regret  $R_T = O(\text{poly}(n)T^{1-\delta})$  for some constant  $\delta > 0$ .

Then there is an efficient algorithm for online agnostic parity learning with sublinear regret.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Edges (dynamics) | Weights (costs) |                          |
|------------------|-----------------|--------------------------|
| Adversarial      | Adversarial     | As hard as noisy parity. |
| Stochastic       | Adversarial     | Efficient algorithm.     |
| Adversarial      | Stochastic      | Efficient algorithm.     |

# Outline

#### 1. Large-Scale Policy Design

- Compete with a restricted family of policies Π: Linearly parameterized policies.
- Stochastic gradient convex optimization.
- Competitive with policies near the approximating class.
- Without knowledge of optimal policy.
- Simulation results: queueing, crowdsourcing.

#### 2. Learning changing dynamics

- Changing MDP; complete information.
- Exponential weights strategy.
- Competitive with small comparison class  $\Pi$ .
- Computationally efficient if ∏ has polynomial size.
- Hard for shortest path problems.