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Markov Decision Processes

MDP: Web Customer Interactions

Fort=1,2,...:
@ See state X; of customer
@ Play an action A; interaction

offer/advertisement

@ Incur loss ¢(X¢,A:)  missed revenue
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MDP: Managing Threatened Species

Fort=1,2,...:
@ See state X; of ecosystem
@ Play an action A; intervention
anti-poaching patrols
@ Incur loss £(X:, Ar) $, extinction
© State evolves to X1 ~ Px, A, )

Transition matrix:
P:XxA— A(X)

Policy: m: X = A(A)

Stationary distribution: p

Average loss: u'e.
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Markov Decision Processes

MDP: Managing Threatened Species

Fort=1,2,...: Transition matrix:

P:XxA—AX
© See state X; of ecosystem ) (X)
_ _ _ Policy: T X = A(A)
@ Play an action A; intervention . L
. . Stationary distribution: p
anti-poaching patrols T,
.. Average loss: .
@ Incur loss ¢(X¢, At) $, extinction & K

Q State evolves to X¢1 ~ Px, a,

Performance Measure: Excess Average Loss

y;rrﬁ—min,u;fﬂ
™
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Large-Scale Sequential Decision Problems

Large MDP Problems:
When the state space X is large, we must scale back the ambition of
optimal performance:
@ In comparison to a restricted family of policies 1.
e.g., linear value function approximation.
Want a strategy that competes with the best policy.
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1. Large-Scale Policy Design

@ Compete with a restricted family of policies IT:
Linearly parameterized policies.

@ Stochastic gradient convex optimization.
@ Competitive with policies near the approximating class.
@ Without knowledge of optimal policy.

@ Simulation results: queueing, crowdsourcing.

v

2. Learning Changing Dynamics

Changing MDP; complete information.

Exponential weights strategy.
Competitive with small comparison class I1.

Computationally efficient if 1 has polynomial size.

Hard for shortest path problems.
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Large-scale policy design (with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)
@ Stationary distributions dual to value functions.

o Consider a class of policies defined by feature matrix ®, distribution
o, and parameters 6:
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Linear Subspace of Stationary Distributions

Large-scale policy design (with Yasin Abbasi-Yadkori and Alan Malek. ICML2014)
@ Stationary distributions dual to value functions.

o Consider a class of policies defined by feature matrix ®, distribution
o, and parameters 6:

[NO(X? a) + q:)(x,a),:e]—i-
Za’ [MO(Xa a/) + cl>(x,a’),:9]+ '

mo(alx) =

Let ug denote the stationary distribution of policy my.
Find 6 such that ug\ﬁ < mingeo ugﬁ +e.

Large-scale policy design: Independent of size of X.



Approach: a Reduction to Convex Optimization

@ Define a constraint violation function

V(O) = [[lno+ @0) |1y + (P~ B) (o + 0)

prob. dist.

stationary



Approach: a Reduction to Convex Optimization

@ Define a constraint violation function
V(0) = lllno + O], +||(P = B) (o + 00)

and consider the convex cost function
c(9) = ET(MO + ®0) + aV(0).



Approach: a Reduction to Convex Optimization

@ Define a constraint violation function
V(0) = lllno + O], +||(P = B) (o + 00)

and consider the convex cost function
c(9) = ET(;LO + ®0) + aV(0).
@ Stochastic gradient descent: 041 = 0; — ng:(6:), 01 = 2;1 0:/T,



Approach: a Reduction to Convex Optimization

@ Define a constraint violation function
V(0) = lllno + O], +||(P = B) (o + 00)
and consider the convex cost function
c(9) = ET(,[LO + ®0) + aV(0).

@ Stochastic gradient descent: 041 = 0; — ng:(6:), 57 = Z;l 0:/T,
@ ... with cheap, unbiased stochastic subgradient estimates:

d) Xt,at
gi(0) = (T — %H{m (xt,3t)+ D, 0y, 0<0}

(P-B)! &
+aﬁ5|gn((P B) ,CDH)
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Performance Bounds

Main Result

For T = 1/¢* gradient estimates, with high probability

(under a mixing assumption),

: V(0)
T T
pg L < min (Ha ¢+ — 7 O(e)) :

V.

e Competitive with all policies (stationary distributions) in the linear
subspace (i.e., V(0) =0).

o Competitive with other policies; comparison more favorable near some
stationary distribution in the subspace.

@ Previous results of this kind:

e require knowledge about optimal policy, or
e require that the comparison class Il contains a near-optimal policy.
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1. Large-Scale Policy Design

@ Compete with a restricted family of policies I1:
Linearly parameterized approximate stationary distributions.
Linearly parameterized exponentially transformed value function.

@ Stochastic gradient convex optimization.

@ Competitive with policies in the approximating class.

@ Simulation results: crowdsourcing.
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Total Cost, Kullback-Leibler Penalty

Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)

@ Consider total cost: (assume a.s. hit absorbing state with zero loss)
oo
B 6(X,).
t=1

@ Parameterized value functions, close to a reference policy

Po : X—)A(X)

@ Regularize with KL-divergence to Py:
(so optimization is linear; Todorov/Kappen/Fleming)

U(x; P) = £(x) + dri(P(:[x), Po(-[x))-

P is transition matrix under policy.
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Large-scale policy design (with Yasin Abbasi-Yadkori, Xi Chen and Alan Malek)
o Consider a class of policies defined by feature matrix ¢, and
parameters 6:

n={cj:0co}
GJ(x) := arg min (E(x, P™) +E™ P(x’)]xD greedy policies

Jp = — log(®8). log linear

e Find parameters g(hence policy & = Gjé) such that

Ja(xa) < min Jr(x1) + €

D UXe)
t=1

o Large-scale policy design: Independent of size of X.

Jﬂ—(X) = Eﬂ- Xl = X

11/27
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TJ(x) := min (E(x, P™) +E™ P(X/)\XD (dynamic prog operator)

V(0) = (|90 — exp(—L(x)) Po®0|| =

and consAider the convex cost function
c(0) = Jop + aV(6).
@ Stochastic gradient descent
@ ... with cheap, unbiased stochastic subgradient estimates.
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Performance Bounds

For T = 1/¢* gradient estimates, with high probability,

)< i ([~ 3] 4 [ 73 ot

o Competitive with all policies in the parameterized class, up to
penalties involving the Bellman errors.

o Unfortunately:
e require that the comparison class I contains a near-optimal policy.

13 /27
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Simulation Results: Crowdsourcing

o Classification task.

w—— Subgradient
t-KG

e Crowdsource: $ for labels. st 4 .

----- uniform

o Fixed budget;
minimize errors.

@ Bayesian model:
binary labels, i.i.d. crowd;

posterior classificalion error
©

Yi ~ Bernoulli(p;); 15
pi ~ Beta. !
0.5
. 0 100 200 300 400 500
@ State = posterior. B
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Changing Dynamics

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)
Observe Py, ¢; after round t.
Consider a comparison class: M C {7 | 7: X — A}
= argmingen 3Ly GO, 7(5F))
RT =300 lelxeae) = Sy (7 ()
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Changing Dynamics

(with Yasin Abbasi-Yadkori, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari, NIPS2013)

@ Observe P;, ¢; after round t.

o Consider a comparison class: M C {7 | 7: X — A}
o 7* = argmin_p Zthl Ce(xT, m(x]))

o Rr =301 lelxe,ae) = S Ll 7 (q )

@ Aim for low regret: R7/T — 0

o Computationally efficient low regret strategies?
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Regret Bound

There is a Strategy that (under a T-mixing assumption) achieves

E[R7] < (4 +27%)y/ T log M| + log || .

17 /27
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Exponential weights:

Strategy for a repeated game:

Choose action a € A with probability proportional to

exp(total loss a has incurred so far).

@ Regret (total loss versus best in hindsight) for T rounds:

o) (\/Tlog|A|>.

@ Long history.
@ Unreasonably broadly applicable:
e Zero-sum games.

Shortest path problems.

o AdaBoost. Fast max-flow.

e Bandit problems. Fast graph sparsification.

e Linear programming. Model of evolution.
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For all policies m € I1, wy o = 1.
W = Zwen Wr t, Prt = Wrr,t—1/Wt_1.
fort . =1,2,... do

Wre_q,t—1
w.p. ft = —"—

, ¢ = mt—1. Otherwise 7t ~ p_ ;.
Wi, _1,t—2
Choose action a; ~ m¢(.|xt).
Observe dynamics P; and loss /.
Suffer gt(Xh at).
For all policies m, wy ; = w1 exp (—nE [(+(x], 7)]).
end for

o Exponential weights on T1.
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For all policies m € I1, wy o = 1.

W = Zwen Wr t, Prt = Wrr,t—1/Wt_1.
fort . =1,2,... do

W _1,t—1
w.p. By = ———

, Tt = mr—1. Otherwise 7t ~ p_¢.
Wre_1,t—2

Choose action a; ~ m¢(.|xt).

Observe dynamics P; and loss /.

Suffer ¢(xt, at).

For all policies m, wy + = wyr ¢—1exp (—nE [(¢(x], 7)]).
end for

o Exponential weights on T1.

@ Rare, random changes to .
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Regret Bound

There is a Strategy that (under a T-mixing assumption) achieves

E[R7] < (4 +27%)y/T log M| + log || .

@ Adversarial dynamics and loss functions.
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Regret Bound

There is a Strategy that (under a T-mixing assumption) achieves

E[R7] < (4 +272)y/T log M| + log |M].

Adversarial dynamics and loss functions.
Large state and action spaces.
E[R7]/T — 0 for T = w(log |M]).

Computationally efficient as long as |I1] is polynomial.

No computationally efficient algorithm in general
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Shortest Path Problem

Special case of MDP: node=state; action=edge; loss=weight.
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Computational Efficiency

Hardness Result

Suppose there is a strategy for the online adversarial
shortest path problem that:

@ runs in time poly(n, T), and
@ has regret Rt = O(poly(n) T1~%) for some
constant > 0.

Then there is an efficient algorithm for online agnostic
parity learning with sublinear regret.
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Online Agnostic Parity Learning

e Class of parity functions on {0,1}":
PARITIES = {PARs | S C [n], PARs(x) = iesxi}
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observes the true label y: and suffers loss Ii5,2,1

T - T
® Rt = Zt:l H{?t;éyt} — MINPARSePARITIES Zt:l H{PARS(xt)yéyt}

o Is there an efficient (time polynomial in n, T) learning algorithm with
sublinear regret (RT = O(poly(n) T1~9) for some ¢ > 0)?

Very well-studied.

Widely believed to be hard: used for cryptographic schemes.
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Computational Efficiency

Hardness Result

Suppose there is a strategy for the online adversarial
shortest path problem that:

@ runs in time poly(n, T), and
@ has regret Rt = O(poly(n) T1~%) for some
constant > 0.

Then there is an efficient algorithm for online agnostic
parity learning with sublinear regret.
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Online shortest path: Hard versus easy

Edges (dynamics) | Weights (costs)
Adversarial Adversarial As hard as noisy parity.
Stochastic Adversarial Efficient algorithm.
Adversarial Stochastic Efficient algorithm.
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1. Large-Scale Policy Design

@ Compete with a restricted family of policies IT:
Linearly parameterized policies.

@ Stochastic gradient convex optimization.
@ Competitive with policies near the approximating class.
@ Without knowledge of optimal policy.

@ Simulation results: queueing, crowdsourcing.

v

2. Learning changing dynamics

Changing MDP; complete information.

Exponential weights strategy.
Competitive with small comparison class I1.

Computationally efficient if 1 has polynomial size.

Hard for shortest path problems.
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