Model Selection and Computational Oracle Inequalities for Large Scale Problems

Peter Bartlett

University of California at Berkeley

Queensland University of Technology

MMDS, July 2012

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Model Selection: Click Prediction for Online Ads

- Predict click/no-click given advertisement and webpage.
- Training data from past click logs.
- e.g.: Logistic regression with 16M parameters.

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

1 Model selection

- Prediction problems
- Model selection
- Oracle inequalities
- Fast rates
- Oracle inequalities with fast rates

2 Large scale model selection

- Computational oracle inequalities
- Fast rates

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Prediction in a Probabilistic Setting

• i.i.d. Z, Z_1, \ldots, Z_n from \mathcal{Z} .

Example:

Z = (X, Y), where

X contains features of advertisement and webpage.

Y indicates 'click' or 'no click.'

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Prediction in a Probabilistic Setting

• i.i.d. Z, Z_1, \ldots, Z_n from \mathcal{Z} .

• Use data Z_1, \ldots, Z_n to choose $f_n \in \mathcal{A}$ with small risk,

 $L(f_n) = \mathbf{E}\ell(f_n, Z).$

Here, $\ell : \mathcal{A} \times \mathcal{Z} \to \mathbb{R}^+$ is a loss function. Examples:

- $\ell(f, (x, y)) = (y f(x))^2$ for $y \in \{\pm 1\}$ and $f : \mathcal{X} \to [0, 1]$: estimate probability of click.
- ② $\ell(f, (x, y)) = 1[y \neq f(x)]$ for $y \in \{\pm 1\}$ and $f : X \to \{\pm 1\}$: decide most likely class label.
- **3** $\ell(f, z) = -\log f(z)$: estimate probability density.

< ロ > < 同 > < 三 > < 三 > 、

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Prediction in a Probabilistic Setting

- i.i.d. Z, Z_1, \ldots, Z_n from \mathcal{Z} .
- Use data Z_1, \ldots, Z_n to choose $f_n \in \mathcal{A}$ with small risk,

 $L(f_n) = \mathbf{E}\ell(f_n, Z).$

Here, $\ell : \mathcal{A} \times \mathcal{Z} \to \mathbb{R}^+$ is a loss function.

- Choose *f_n* from a class *F*. Examples:
 - Linear regression:

$$F = \{ x \mapsto \theta' x : \theta \in \mathbb{R}^p \} \,.$$

2 Logistic regression:

$$F = \{ x \mapsto \sigma(\theta' x) : \theta \in \mathbb{R}^p \}.$$

Support vector machines:

F = Reproducing kernel Hilbert space.

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Approximation-Estimation Trade-Off

- Define the *Bayes risk*, $L^* = \inf_f L(f)$, where the infimum is over measurable f.
- We can decompose the excess risk as

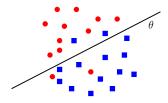
$$L(\hat{f}) - L^* = \underbrace{\left(L(\hat{f}) - \inf_{f \in F} L(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in F} L(f) - L^*\right)}_{\text{approximation error}}.$$

• Model selection: automatically choose *F* to optimize this trade-off.

(日)

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Example 1: Norm of a linear predictor

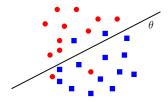


• Many linear classification algorithms minimize:

$$\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n \ell\left(y_i, \langle \theta, x_i \rangle\right) \quad \text{subject to} \quad \|\theta\|_2 \leq r.$$

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Example 1: Norm of a linear predictor



• Many linear classification algorithms minimize:

$$\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n \ell\left(y_i, \langle \theta, x_i \rangle\right) \quad \text{subject to} \quad \|\theta\|_2 \leq r.$$

- Estimation and approximation errors depend on the bound r
- Often select from a grid $r_1 \leq r_2 \leq r_3 \leq \ldots$

Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Example 2: Feature selection

• $\theta \in \mathbb{R}^p$, select subset of $\{1, 2, \dots, p\}$ where $\theta_i \neq 0$

Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Example 2: Feature selection

- $heta \in \mathbb{R}^p$, select subset of $\{1, 2, \dots, p\}$ where $heta_i \neq 0$
- Examples:
 - Natural language: Unigrams \prec Bigrams $\prec \cdots \prec$ *n*-grams
 - Function fitting: polynomial degree, Fourier basis dim, ...
 - Computer vision: hierarchy of wavelet filters

< ロ > < 同 > < 三 > <

Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Example 2: Feature selection

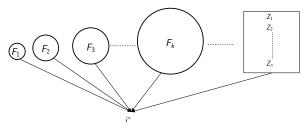
- $\theta \in \mathbb{R}^p$, select subset of $\{1, 2, \dots, p\}$ where $\theta_i \neq 0$
- Examples:
 - Natural language: Unigrams \prec Bigrams $\prec \cdots \prec$ *n*-grams
 - Function fitting: polynomial degree, Fourier basis dim, ...
 - Computer vision: hierarchy of wavelet filters
- Approximation and estimation errors depend on dimensionality.

< ロ > < 同 > < 三 > <

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

The Model Selection Problem

- Hierarchy of model classes, F_1, F_2, F_3, \ldots
- Data *Z*₁, *Z*₂, . . . , *Z_n*



Want i* that optimizes estimation-approximation trade-off

$$L(\hat{f}_i) - L(f^*) = \underbrace{(L(\hat{f}_i) - \inf_{f \in F_i} L(f))}_{\text{Estimation error}} + \underbrace{(\inf_{f \in F_i} L(f) - L(f^*))}_{\text{Approximation error}}$$

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

The Model Selection Problem

Given function classes F_1, F_2, \ldots , use the data Z_1, \ldots, Z_n to choose $\hat{f} \in \bigcup_i F_i$ that gives a good trade-off between the approximation error and the estimation error.

Example: Complexity-penalized model selection.

$$egin{aligned} &f_n^i = rg\min_{f\in F_i} L_n(f), \ &\hat{f} = ext{minimizer of } L_n(f_n^i) + \gamma_i(n), \end{aligned}$$

where $\gamma_i(n)$ is a *complexity penalty* and L_n is the empirical risk:

$$L_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f, Z_i).$$

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

A Simple Oracle Inequality

Theorem

Suppose that we have risk bounds for each F_i : w.p. $1 - \delta$,

$$\sup_{f\in F_i} |L(f) - L_n(f)| \leq \gamma_i(n) + c\sqrt{\frac{\log 1/\delta}{n}}.$$

If \hat{f} is chosen via complexity regularization:

 $f_n^i = \arg\min_{f \in F_i} L_n(f), \qquad \hat{f} = minimizer \text{ of } L_n(f_n^i) + \gamma_i(n),$

then with probability $1 - \delta$,

$$L(\hat{f}) \leq \min_{i} \left(\inf_{f \in F_{i}} L(f) + 2\gamma_{i}(n) + c\sqrt{\frac{\log 1/\delta + \log i}{n}} \right)$$

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

A Simple Oracle Inequality

• Notice that, for each F_i satisfying

$$\sup_{f \in F_i} |L(f) - L_n(f)| \le \gamma_i(n) + c\sqrt{\frac{\log 1/\delta}{n}},$$

we have $L(f_n^i) \le \inf_{f \in F_i} L(f) + 2\gamma_i(n) + c\sqrt{\frac{\log 1/\delta}{n}}.$

• But complexity regularization gives \hat{f} satisfying

$$L(\hat{f}) \leq \min_{i} \left(\inf_{f \in F_{i}} L(f) + 2\gamma_{i}(n) + c\sqrt{\frac{\log 1/\delta + \log i}{n}} \right)$$

• Thus, \hat{f} gives a near-optimal trade-off between the approximation error and the (bound on) estimation error, with only a log *i* penalty.

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Fast Rates

These oracle inequalities rely on uniform convergence: bounds on

$$\sup_{f\in F_i} |L(f) - L_n(f)|.$$

Typical fluctuations are of the order

$$|L(f)-L_n(f)|=O\left(\frac{1}{\sqrt{n}}\right).$$

In some cases, these rates cannot be improved, and additive penalties that scale as

$$\sup_{f\in F_i}|L(f)-L_n(f)|=\Omega\left(\frac{1}{\sqrt{n}}\right)$$

give optimal oracle inequalities.

< □ > < 同 >

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Fast Rates

However, in many cases, we can obtain faster rates. e.g., with high probability, for all $f \in F$,

$$L(f) - L(f^*) \leq 2(L_n(f) - L_n(f^*)) + O\left(\frac{\log n}{n}\right),$$

where $L(f^*) = \min_{f \in F} L(f)$. In these cases, choosing

$$\hat{f} = \arg\min_{f \in F} L_n(f)$$

gives $L(f) \leq L(f^*) + O(\log n/n)$. Examples: Convex losses [Lee, B., Williamson, 1998; B., Jordan, McAuliffe, 2006], classification with low noise [Mammen and Tsybakov, 2004; Tsybakov, 2004].

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Oracle Inequalities with Fast Rates for Complexity Regularization

It turns out that we can use complexity regularization to exploit these faster rates, provided the F_i are ordered by inclusion.

Theorem (B., 2008)

For $F_1 \subseteq F_2 \subseteq \cdots$ and $\gamma_1(n) \leq \gamma_2(n) \leq \cdots$, if

$$\sup_{i} \sup_{f \in F_i} \left(L(f) - L(f_i^*) - 2\left(L_n(f) - L_n(f_i^*)\right) - \gamma_i(n) \right) \leq 0,$$

 $\sup_{i} \sup_{f \in F_{i}} \left(L_{n}(f) - L_{n}(f_{i}^{*}) - 2\left(L(f) - L(f_{i}^{*})\right) - \gamma_{i}(n)\right) \leq 0,$ then $L(\hat{f}) \leq \inf_{i} \left(L(f_{i}^{*}) + 9\gamma_{i}(n)\right),$

where \hat{f} minimizes $L_n(f_n^i) + 7\gamma_i(n)/2$ and $f_i^* = \arg \min_{f \in F_i} L(f)$.

Prediction problems Model selection Oracle inequalities Fast rates Oracle inequalities with fast rates

Oracle Inequalities with Fast Rates for Complexity Regularization

This is *striking:*

- $L_n(f_n^i)$ fluctuates on a scale $1/\sqrt{n}$.
- But adding a tiny penalty γ_i(n) = O(log n/n) gives L(f̂) within O(log n/n) of the best!

The explanation: the fluctuations for different F_i are correlated, because the empirical minimizers are chosen using the *same data* and the F_i are ordered by inclusion.

< D > < A > < B > <</p>

Oracle inequalities with fast rates

- Model selection
- Prediction problems
- Model selection
- Oracle inequalities
- Fast rates
- Oracle inequalities with fast rates

2 Large scale model selection

- Computational oracle inequalities
- Fast rates

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Joint work with Alekh Agarwal, John Duchi and Clément Levrard.

Observation:

For many prediction problems, the amount of data available is *effectively unlimited*.

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is *effectively unlimited*.

Information retrieval: Web search 10^8 websites. 10^{10} pages. 10^9 queries/day.

< 日 > < 同 > < 三 > < 三 >

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is *effectively unlimited*.

Natural language processing: Spelling correction Google Linguistics Data Consortium *n*-gram corpus: 10¹¹ sentences. muamar gadafi

About 10,200 results (0.25 seconds)

Did you mean: muammar gaddafi

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is *effectively unlimited*.

Computer vision: Captions Facebook: 10¹¹ photos.

United Nations Secretary General Kofi Annan stands with U.N. Security Council President and U.S. Ambassador to the U.N. John D. Negroponte as Annan...

North Korean leader Kim Jong II, and Russian President Vladimir Putin walk after talks in Vladivostok, Friday, Aug. 23, 2002. North Korean leader Kim...

< □ > < 同 > < 三 >

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is *effectively unlimited*.

- Information retrieval: Web search
- Natural language processing: Spelling correction
- Computer vision: Captions

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Observation:

For many prediction problems, performance is limited by *computational resources*, not sample size.

- Information retrieval: Web search
- Natural language processing: Spelling correction
- Computer vision: Captions

Computational oracle inequalities Fast rates

Large Scale Data Analysis

Example:

- Peter Norvig, "Internet-Scale Data Analysis": On a spelling correction problem, trivial prediction rules, estimated with a massive dataset perform much better than complex prediction rules (which allow only a dataset of modest size).
- Given a limited computational budget,

what is the best trade-off?

That is, should we spend our computation on gathering more data, or on estimating richer prediction rules?

Model selection

- Prediction problems
- Model selection
- Oracle inequalities
- Fast rates
- Oracle inequalities with fast rates

2 Large scale model selection

- Computational oracle inequalities
- Fast rates

Computational oracle inequalities Fast rates

Computation versus sample size

Recall: Complexity-penalized model selection.

$$\begin{split} f_n^i &= \arg\min_{f\in F_i} L_n(f), \\ \hat{f} &= \text{minimizer of } L_n(f_n^i) + \gamma_i(n), \end{split}$$

where $\gamma_i(n)$ is a *complexity penalty* and L_n is the empirical risk:

$$L_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f, Z_i).$$

(日)

Computational oracle inequalities Fast rates

.

Computation versus sample size

• Complexity regularization involves computation of the empirical risk minimizer for each *F_i*:

 $f_n^i = \arg\min_{f \in F_i} L_n(f), \qquad \hat{f} = \min \operatorname{minimizer} \operatorname{of} L_n(f_n^i) + \gamma_i(n),$

So computation typically grows *linearly with number of classes*.

• The oracle inequality gives the best trade-off *for a given sample size*:

$$L(\hat{f}) \leq \min_{i} \left(\inf_{f \in F_{i}} L(f) + 2\gamma_{i}(n) + c\sqrt{\frac{\log 1/\delta + \log i}{n}} \right)$$

Computational oracle inequalities Fast rates

Scaling of penalties with computation

Recall

 $\gamma_i(n)$ is the complexity penalty for the class F_i with sample size n.

(日)

Computational oracle inequalities Fast rates

Scaling of penalties with computation

Recall

 $\gamma_i(n)$ is the complexity penalty for the class F_i with sample size n.

Define

 $p_i(T)$ as the complexity penalty for the class F_i with computational budget T.

computation
$$T \implies$$
 sample size $n_i(T)$ for F_i
We set $p_i(T) = \gamma_i(n_i(T))$.

Image: A image: A

Computational oracle inequalities Fast rates

Scaling of penalties with computation

Define

 $p_i(T)$ as the complexity penalty for the class F_i with computational budget T.

In more detail:

with computation \mathcal{T} , we can ensure that, with high probability,

$$\sup_{f\in F_i} |L(f) - L_{n_i(T)}(f)| \leq \gamma_i(n_i(T)),$$

hence

$$L(f_{n_i(T)}^i) \leq \inf_{f \in F_i} L(f) + O(p_i(T)).$$

Image: A image: A

Computational oracle inequalities Fast rates

Scaling of penalties with computation

Define

 $p_i(T)$ as the complexity penalty for the class F_i with computational budget T.

Our goal: A computational oracle inequality:

 \hat{f} compares favorably with each model, estimated using the entire computational budget.

$$L(\hat{f}) \leq \min_{i} \left(\underbrace{\inf_{f \in F_{i}} L(f) + O(p_{i}(T))}_{\text{c.f. estimate } f \text{ using the entire budget}} \right)$$

Computational oracle inequalities Fast rates

Scaling of penalties with computation

Define

 $p_i(T)$ as the complexity penalty for the class F_i with computational budget T.

Our goal: A computational oracle inequality:

 \hat{f} compares favorably with each model, estimated using the entire computational budget.

$$L(\hat{f}) \leq \min_{i} \left(\underbrace{\inf_{f \in F_{i}} L(f) + O\left(p_{i}\left(\frac{T}{\log T}\right)\right)}_{\text{c.f. estimate } f \text{ using almost the entire budget}} \right)$$

Computational oracle inequalities Fast rates

Naïve solution: grid search

- Allocate budget T/K to each model F_1, \ldots, F_K .
- Use a sample of size $n_i(T/K)$ for F_i .
- Choose

$$\begin{split} f_{n_i}^i &= \arg\min_{f\in F_i} L_{n_i}(f), \\ \hat{f} &= \text{minimizer of } L_{n_i}(f_{n_i}^i) + \gamma_i(n_i). \end{split}$$

• Satisfies oracle inequality

$$L(\hat{f}) \leq \min_{i} \left(\inf_{f \in F_{i}} L(f) + p_{i} \left(\frac{T}{K} \right) \right).$$

▲□ ► < □ ► </p>

Computational oracle inequalities Fast rates

Model selection from nested classes

• Suppose that the models are ordered by inclusion:

$$F_1 \subseteq F_2 \subseteq \cdots$$

• Examples:

•
$$F_i = \{f_\theta : \theta \in \mathbb{R}^p, \|\theta\| \le r_i\}, r_1 \le r_2 \le \cdots$$

• $F_i = \{f_\theta : \theta \in \mathbb{R}^{p_i}, \|\theta\| \le 1\}, p_1 \le p_2 \le \cdots$

• Suppose that we have risk bounds for each F_i : w.p. $1 - \delta$,

$$\sup_{f\in F_i} |L(f) - L_n(f)| \leq \gamma_i(n) + c\sqrt{\frac{\log 1/\delta}{n}}$$

▲□ ► ▲ □ ► ▲

Computational oracle inequalities Fast rates

Exploiting structure of nested classes

Want to exploit monotonicity of risks and penalties

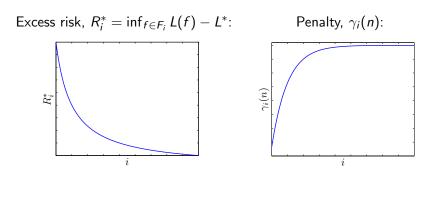
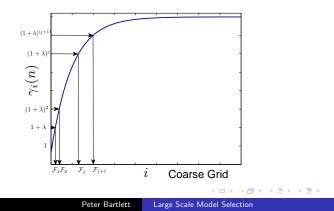


Image: A image: A

Computational oracle inequalities Fast rates

Coarse grid sets

- Want to spend computation on only few classes.
- Use monotonicity to interpolate for the rest.
- Partition based on penalty values.



Computational oracle inequalities Fast rates

Coarse grids for model selection

Assume

Loss is bounded:

$$\ell(f,Z)\in [0,B].$$

2 Computation grows at least linearly with sample size:

$$n_1(T)=O(T).$$

③ Penalty decreases no faster than 1/n:

$$\gamma_1(n) = \Omega\left(\frac{1}{n}\right)$$

Computational oracle inequalities Fast rates

Coarse grids for model selection

Then

- We can ignore F_i with $\gamma_i(n_i(T)) > B$.
- We can cover all smaller classes with a coarse grid of size $s = O(\log(BT))$.

Definition (Coarse grid)

For $S \subseteq \mathbb{N}$, a set $\hat{S} \subseteq S$ is a coarse grid of size s for S if $|\hat{S}| = s$ and for each $i \in S$ there is an index $j \in \hat{S}$ such that

$$\gamma_i\left(n_i\left(\frac{T}{s}\right)\right) \leq \gamma_j\left(n_i\left(\frac{T}{s}\right)\right) \leq 2\gamma_i\left(n_i\left(\frac{T}{s}\right)\right).$$

Computational oracle inequalities Fast rates

Coarse grids for model selection

Then

- We can ignore F_i with $\gamma_i(n_i(T)) > B$.
- We can cover all smaller classes with a coarse grid of size
 s = O(log(BT)).
- Include a new class only after penalty increases sufficiently.

•
$$s = \log\left(\frac{B}{\gamma_1(n_1(T))}\right) = O(\log BT)$$
 suffices.

Computational oracle inequalities Fast rates

Complexity regularization on a coarse grid

Given a coarse grid \hat{S} with cardinality *s*:

- Allocate budget T/s to each class in S.
- 2 Choose

$$f^{i} = \arg \min_{f \in F_{i}} L_{n_{i}(T/s)}(f)$$
$$\hat{f} = \arg \min_{f \in \{f^{j}: j \in \hat{S}\}} L_{n_{j}(T/s)}(f) + \gamma_{j}\left(n_{j}\left(\frac{T}{s}\right)\right).$$

Computational oracle inequalities Fast rates

Complexity regularization on a coarse grid

Theorem

For a nested hierarchy satisfying the uniform convergence bounds, with high probability,

$$L(\hat{f}) \leq \min_{i} \left\{ \inf_{f \in F_{i}} L(f) + O\left(\gamma_{i}\left(n_{i}\left(\frac{T}{s}\right)\right)\right) \right\}$$
$$\leq \min_{i} \left\{ \inf_{f \in F_{i}} L(f) + O\left(p_{i}\left(\frac{T}{\log T}\right)\right) \right\}$$

• Computational cost of model selection scales logarithmically with *T*.

< 17 ▶

Computational oracle inequalities

Model selection

- Prediction problems
- Model selection
- Oracle inequalities
- Fast rates
- Oracle inequalities with fast rates

2 Large scale model selection

- Computational oracle inequalities
- Fast rates

Computational oracle inequalities Fast rates

Computational Oracle Inequalities?

Can we obtain computational oracle inequalities with fast rates?

Peter Bartlett Large Scale Model Selection

Image: A image: A

Computational oracle inequalities Fast rates

Computational Oracle Inequalities?

Can we obtain computational oracle inequalities with fast rates?

Previous Algorithm

Given a coarse grid \hat{S} with cardinality *s*:

• Allocate budget T/s to each class in S.

2 Choose

$$f^{i} = \arg\min_{f \in F_{i}} L_{n_{i}(T/s)}(f)$$
$$\hat{f} = \arg\min_{f \in \{f^{j}: j \in \hat{S}\}} L_{n_{j}(T/s)}(f) + \gamma_{j}\left(n_{j}\left(\frac{T}{s}\right)\right)$$

Computational oracle inequalities Fast rates

Computational Oracle Inequalities?

Previous Algorithm

Given a coarse grid \hat{S} with cardinality *s*:

- Allocate budget T/s to each class in S.
- 2 Choose

$$f^{i} = \arg\min_{f \in F_{i}} L_{n_{i}(T/s)}(f)$$
$$\hat{f} = \arg\min_{f \in \{f^{j}: j \in \hat{S}\}} L_{n_{j}(T/s)}(f) + \gamma_{j}\left(n_{j}\left(\frac{T}{s}\right)\right).$$

Obstacle: The oracle inequality relies on the use of the *same data*. But to best use our computational budget, we should gather *more* data for simpler classes.

Computational oracle inequalities Fast rates

Algorithm for Fast Rates

Given a coarse grid \hat{S} with cardinality s:

• Allocate budget T/s to each class in S.

Ochoose

$$f^{i} = \arg\min_{f \in F_{i}} L_{n_{i}(T/s^{2})}(f)$$

Obefine f as the fⁱ with the largest index i such that for all smaller j,

$$\mathsf{L}_{\mathbf{n}_{i}}(f^{i}) + \gamma_{i}(\mathbf{n}_{i}) \leq \inf_{f \in \mathcal{F}_{j}} \mathsf{L}_{\mathbf{n}_{i}}(f) + \gamma_{j}(\mathbf{n}_{i}).$$

The same data is used in comparing f^i with functions from smaller classes.

Computational oracle inequalities Fast rates

Computational Oracle Inequalities

Theorem

For a nested hierarchy exhibiting fast rates, with high probability,

$$L(\hat{f}) \leq \min_{i} \left\{ \inf_{f \in F_{i}} L(f) + O\left(p_{i}\left(\frac{T}{\log^{2} T}\right)\right) \right\}.$$

Image: A = A

Fast rates

Model selection

- Prediction problems
- Model selection
- Oracle inequalities
- Fast rates
- Oracle inequalities with fast rates

2 Large scale model selection

- Computational oracle inequalities
- Fast rates

Open problems

- For nested hierarchies, the analysis relied on a coarse multiplicative cover of the penalty values. If the penalties are data-dependent, when is this approach possible?
- What other structures on function classes lead to good computational oracle inequalities?
- How do computational constraints affect the optimal performance in other estimation problems?

Summary

- For large-scale problems, data is cheap but computation is precious.
- Computational oracle inequalities for model selection: select a near-optimal model without wasting much computation on other models.
- A *nested* complexity hierarchy ensures cost logarithmic in computational budget.
- Faster rates are sometimes possible: More complicated complexity regularization schemes ensure cost polylogarithmic in computational budget.
- If not nested, cost of model selection is linear in size of hierarchy.