
Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Computational Oracle Inequalities for Large Scale
Model Selection Problems

Peter Bartlett

University of California at Berkeley

Queensland University of Technology

SLDM, June 2012

Joint work with Alekh Agarwal, John Duchi and Clément Levrard.

Peter Bartlett Computational Oracle Inequalities



Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.
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Observation:

For many prediction problems, the amount of data available is
effectively unlimited.

Information retrieval: Web search
108 websites.
1010 pages.
109 queries/day.
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Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.

Natural language processing:
Spelling correction
Google Linguistics Data
Consortium n-gram corpus:
1011 sentences.
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Observation:
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Computer vision: Captions
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Large Scale Data Analysis

Observation:

For many prediction problems, performance is limited by
computational resources, not sample size.

Information retrieval: Web search

Natural language processing: Spelling correction

Computer vision: Captions
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Large Scale Data Analysis

Example:

Peter Norvig, “Internet-Scale Data Analysis”:
On a spelling correction problem, trivial prediction rules,
estimated with a massive dataset perform much better than
complex prediction rules (which allow only a dataset of
modest size).

Given a limited computational budget,
what is the best trade-off?

That is, should we spend our computation on gathering more
data, or on estimating richer prediction rules?
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Prediction Problem

i.i.d. Z1,Z2, . . . ,Zn,Z from Z.

Use data Z1, . . . ,Zn to choose f̂ from a class F .

Aim to ensure f̂ has small risk:

L(f ) = E`(f ,Z ),

where ` : F ×Z is a loss function.
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Prediction Problem: Examples

Aim to ensure f̂ has small risk: L(f ) = E`(f ,Z ).

Regression

Z = (X ,Y ) Y ∈ R,

`(f ,Z ) = (f (X )− Y ))2 .

Pattern Classification

Z = (X ,Y ) Y ∈ {1, . . . ,m},
`(f ,Z ) = 1 [f (X ) 6= Y ] .

Density Estimation

`(f ,Z ) = − log f (Z ).
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Approximation-Estimation Trade-Off

Define the Bayes risk, L∗ = inff L(f ), where the infimum is
over measurable f .

We can decompose the excess risk as

L(f̂ )− L∗ =

(
L(f̂ )− inf

f ∈F
L(f )

)
︸ ︷︷ ︸

estimation error

+

(
inf
f ∈F

L(f )− L∗
)

︸ ︷︷ ︸
approximation error

.

Model selection: automatically choose F to optimize this
trade-off.
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Example 1: Norm of a linear predictor

θ

Many linear classification algorithms minimize:

min
θ∈Rp

n∑
i=1

` (yi , 〈θ, xi 〉) subject to ‖θ‖2 ≤ r .

Statistical and computational complexities depend on the
bound r

Often select from a grid r1 ≤ r2 ≤ r3 ≤ . . .
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Example 1: Norm of a linear predictor

θ

Many linear classification algorithms minimize:

min
θ∈Rp

n∑
i=1

` (yi , 〈θ, xi 〉) subject to ‖θ‖2 ≤ r .

Statistical and computational complexities depend on the
bound r

Often select from a grid r1 ≤ r2 ≤ r3 ≤ . . .
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Example 2: Feature selection from an ordered set

θ ∈ Rd , select subset of {1, 2, . . . , d} where θi 6= 0

Natural ordering amongst feature complexity in many
problems

Natural language: Unigrams ≺ Bigrams ≺ · · · ≺ n-grams
Function fitting: polynomial degree, Fourier basis dim, . . .
Computer vision: hierarchy of wavelet filters

Include features in order of complexity

Statistical and computational complexities depend on
dimensionality

Want the right number of features: d1 ≤ d2 ≤ d3 ≤ . . .
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Model selection over nested hierarchies

Nested hierarchy of model classes, F1 ⊆ F2 ⊆ F3 ⊆ . . .
Examples:

Fi = {θ ∈ Rd : ‖θ‖ ≤ ri}, r1 ≤ r2 ≤ r3 ≤ . . .
Fi = {θ ∈ Rdi : ‖θ‖ ≤ 1}, d1 ≤ d2 ≤ d3 ≤ . . .

Data Z1,Z2, . . . ,Zn
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Model selection over nested hierarchies

Nested hierarchy of model classes, F1 ⊆ F2 ⊆ F3 ⊆ . . .
Data Z1,Z2, . . . ,Zn

Fk

Z1

Z2

i∗

Zn

F1
F3F2

Want i∗ that optimizes estimation-approximation trade-off

L(f̂i )− L(f ∗) = (L(f̂i )− inf
f ∈Fi

L(f ))︸ ︷︷ ︸
Estimation error

+ ( inf
f ∈Fi

L(f )− L(f ∗))︸ ︷︷ ︸
Approximation error
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The Model Selection Problem

Given function classes F1,F2, . . . ,, use the data Z1, . . . ,Zn to
choose f̂ ∈ ⋃i Fi that gives a good trade-off between the
approximation error and the estimation error.

Example: Complexity-penalized model selection.

f i
n = arg min

f ∈Fi

Ln(f ),

f̂ = minimizer of Ln(f i
n ) + γi (n),

where γi (n) is a complexity penalty and Ln is the empirical risk:

Ln(f ) =
1

n

n∑
i=1

`(f ,Zi ).
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A Simple Oracle Inequality

Theorem

Suppose that we have risk bounds for each Fi : w.p. 1− δ,

sup
f ∈Fi

|L(f )− Ln(f )| ≤ γi (n) + c

√
log 1/δ

n
.

If f̂ is chosen via complexity regularization:

f i
n = arg min

f ∈Fi

Ln(f ), f̂ = minimizer of Ln(f i
n ) + γi (n),

then with probability 1− δ,

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ + log K

n

)
.
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A Simple Oracle Inequality

Notice that, for each Fi satisfying

sup
f ∈Fi

|L(f )− Ln(f )| ≤ γi (n) + c

√
log 1/δ

n
,

we have L(f i
n ) ≤ inf

f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ

n
.

But complexity regularization gives f̂ satisfying

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ + log K

n

)
.

Thus, f̂ gives a near-optimal trade-off between the
approximation error and the (bound on) estimation error, with
only a log K penalty.
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Computation versus sample size

Complexity regularization involves computation of the
empirical risk minimizer for each Fi :

f i
n = arg min

f ∈Fi

Ln(f ), f̂ = minimizer of Ln(f i
n ) + γi (n),

So computation typically grows linearly with K .

The oracle inequality gives the best trade-off for a given
sample size:

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ + log K

n

)
.

Peter Bartlett Computational Oracle Inequalities



Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Model selection
Oracle inequalities

1 Computation is precious, not sample size
Model selection
Oracle inequalities

2 Computational oracle inequalities for nested hierarchies
Problem formulation
Algorithm
Oracle Inequality

3 Fast rates
Complexity regularization
Algorithms
Computational Oracle Inequalities

4 Removing the nesting assumption
Algorithm
Oracle Inequality

5 Summary and open problems

Peter Bartlett Computational Oracle Inequalities



Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Problem formulation
Algorithm
Oracle Inequality

Scaling of penalties with computation

Recall

γi (n) is the complexity penalty for the class Fi with sample size n.

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

computation T =⇒ sample size ni (T ) for Fi

We set pi (T ) = γi (ni (T )).
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Scaling of penalties with computation

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

In more detail:
with computation T , we can ensure that, with high probability,

sup
f ∈Fi

∣∣L(f )− Lni (T )(f )
∣∣ ≤ γi (ni (T )),

hence
L(f i

ni (T )) ≤ inf
f ∈Fi

L(f ) + O(pi (T )).
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Scaling of penalties with computation

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

Our goal: A computational oracle inequality:
f̂ compares favorably with each model, estimated using the entire
computational budget.

L(f̂ ) ≤ min
i

 inf
f ∈Fi

L(f ) + O(pi (T ))︸ ︷︷ ︸
c.f. estimate f using the entire budget

 .
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Scaling of penalties with computation

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

Our goal: A computational oracle inequality:
f̂ compares favorably with each model, estimated using the entire
computational budget.

L(f̂ ) ≤ min
i

 inf
f ∈Fi

L(f ) + O

(
pi

(
T

log T

))
︸ ︷︷ ︸

c.f. estimate f using almost the entire budget

 .
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Näıve solution: grid search

Allocate budget T/K to each model.

Use a sample of size ni (T/K ) for Fi .

Choose

f i
ni

= arg min
f ∈Fi

Lni (f ),

f̂ = minimizer of Lni (f i
ni

) + γi (ni ) .

Satisfies oracle inequality

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + pi

(
T

K

))
.

Peter Bartlett Computational Oracle Inequalities



Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Problem formulation
Algorithm
Oracle Inequality

Model selection from nested classes

Suppose that the models are ordered by inclusion:

F1 ⊆ F2 ⊆ · · · ⊆ FK .

Examples:

Fi =
{

fθ : θ ∈ Rd , ‖θ‖ ≤ ri
}
, r1 ≤ r2 ≤ · · · ≤ rK .

Fi =
{

fθ : θ ∈ Rdi , ‖θ‖ ≤ 1
}
, d1 ≤ d2 ≤ · · · ≤ dK .

Suppose that we have risk bounds for each Fi : w.p. 1− δ,

sup
f ∈Fi

|L(f )− Ln(f )| ≤ γi (n) + c

√
log 1/δ

n
.
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Exploiting structure of nested classes

Want to exploit monotonicity of risks and penalties

Excess risk, R∗i = inff ∈Fi
L(f )− L∗: Penalty, γi (n):

i

R
∗ i

i
γ
i(
n
)
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Coarse grid sets

Want to spend computation on only few classes.
Use monotonicity to interpolate for the rest.
Partition based on penalty values.

i

γ
i(
n
)

Coarse GridFj Fj+1F1F2

(1 + λ)j

(1 + λ)2

1 + λ

1

(1 + λ)(j+1)
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Coarse grids for model selection

Assume

1 Loss is bounded:
`(f ,Z ) ∈ [0,B].

2 Computation grows at least linearly with sample size:

n1(T ) = O(T ).

3 Penalty decreases no faster than 1/n:

γ1(n) = Ω

(
1

n

)
.
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Coarse grids for model selection

Then

We can ignore Fi with γi (ni (T )) > B.

We can cover all smaller classes with a coarse grid of size
s = O(log(BT )).

Definition (Coarse grid)

For S ⊆ N, a set Ŝ ⊆ S is a coarse grid of size s for S if |Ŝ | = s
and for each i ∈ S there is an index j ∈ Ŝ such that

γi

(
ni

(
T

s

))
≤ γj

(
ni

(
T

s

))
≤ 2γi

(
ni

(
T

s

))
.
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Coarse grids for model selection

Then

We can ignore Fi with γi (ni (T )) > B.

We can cover all smaller classes with a coarse grid of size
s = O(log(BT )).

Include a new class only after penalty increases sufficiently.

s = log

(
B

γ1(n1(T ))

)
= O (log BT ) suffices.

Peter Bartlett Computational Oracle Inequalities



Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Problem formulation
Algorithm
Oracle Inequality

Complexity regularization on a coarse grid

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s)(f )

f̂ = arg min
f ∈{f j :j∈Ŝ}

Lnj (T/s)(f ) + γj

(
nj

(
T

s

))
.
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Complexity regularization on a coarse grid

Theorem

For a nested hierarchy satisfying the uniform convergence bounds,
with high probability,

L(f̂ ) ≤ min
i

{
inf
f ∈Fi

L(f ) + O

(
γi

(
ni

(
T

s

)))}
≤ min

i

{
inf
f ∈Fi

L(f ) + O

(
pi

(
T

log T

))}

Computational cost of model selection scales logarithmically
with T .
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Fast Rates

Results so far rely on uniform convergence: bounds on

sup
f ∈Fi

|L(f )− Ln(f )| .

Typical fluctuations are of the order

|L(f )− Ln(f )| = O

(
1√
n

)
.

In some cases, these rates cannot be improved, and additive
penalties that scale as

sup
f ∈Fi

|L(f )− Ln(f )| = Ω

(
1√
n

)
give optimal oracle inequalities.
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Fast Rates

However, in many cases, we can obtain faster rates.
e.g., with high probability, for all f ∈ F ,

L(f )− L(f ∗) ≤ 2 (Ln(f )− Ln(f ∗)) + O

(
log n

n

)
,

where L(f ∗) = minf ∈F L(f ). In these cases, choosing

f̂ = arg min
f ∈F

Ln(f )

gives L(f ) ≤ L(f ∗) + O(log n/n).
Examples: Convex losses [Lee, B., Williamson, 1998; B., Jordan,
McAuliffe, 2006], classification with low noise [Mammen and
Tsybakov, 2004; Tsybakov, 2004].
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Oracle Inequalities with Fast Rates for Complexity
Regularization

It turns out that we can use complexity regularization to exploit
these faster rates, provided the Fi are ordered by inclusion.

Theorem (B., 2008)

For F1 ⊆ F2 ⊆ · · · and γ1(n) ≤ γ2(n) ≤ · · · , if

sup
i

sup
f ∈Fi

(L(f )− L(f ∗i )− 2 (Ln(f )− Ln(f ∗i ))− γi (n)) ≤ 0,

sup
i

sup
f ∈Fi

(Ln(f )− Ln(f ∗i )− 2 (L(f )− L(f ∗i ))− γi (n)) ≤ 0,

then L(f̂ ) ≤ inf
i

(L(f ∗i ) + 9γi (n)) ,

where f̂ minimizes Ln(f i
n ) + 7γi (n)/2 and f ∗i = arg minf ∈Fi

L(f ).
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Oracle Inequalities with Fast Rates for Complexity
Regularization

This is striking:

Ln(f i
n ) fluctuates on a scale 1/

√
n.

But adding a tiny penalty γi (n) = O(log n/n) gives L(f̂ )
within O(log n/n) of the best!

The explanation: the fluctuations for different Fi are correlated,
because the empirical minimizers are chosen using the same data.
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Computational Oracle Inequalities?

Can we obtain computational oracle inequalities with these rates?
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Computational Oracle Inequalities?

Can we obtain computational oracle inequalities with these rates?

Previous Algorithm

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s)(f )

f̂ = arg min
f ∈{f j :j∈Ŝ}

Lnj (T/s)(f ) + γj

(
nj

(
T

s

))
.
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Computational Oracle Inequalities?

Previous Algorithm

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s)(f )

f̂ = arg min
f ∈{f j :j∈Ŝ}

Lnj (T/s)(f ) + γj

(
nj

(
T

s

))
.

Obstacle: The oracle inequality relies on the use of the same data.
But to best use our computational budget, we should gather more
data for simpler classes.
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Algorithm for Fast Rates

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s2)(f )

3 Define f̂ as the f i with the largest index i such that for all
smaller j ,

Lni (f i ) + γi (ni ) ≤ inf
f ∈Fj

Lni (f ) + γj (ni ) .

The same data is used in comparing f i with functions from smaller
classes.
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Computational Oracle Inequalities

Theorem

For a nested hierarchy exhibiting fast rates, with high probability,

L(f̂ ) ≤ min
i

{
inf
f ∈Fi

L(f ) + O

(
pi

(
T

log2 T

))}
.
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Heterogeneous Models

In general, the Fi can be heterogeneous, not ordered by inclusion.

Different kernels.

Graphs in directed graphical models.

Subsets of features.

Key idea: Successively allocate computational quanta online.
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Multi-Armed Bandits for Model Selection

Want class i that minimizes

inf
f ∈Fi

L(f ) + γi (ni (T )).

Use idea of optimism in the face of uncertainty:
neatly trade off exploration and exploitation by choosing the
class with the smallest lower bound on the criterion.

it
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Multi-Armed Bandits for Model Selection

Want class i that minimizes

inf
f ∈Fi

L(f ) + γi (ni (T )).

We know it suffices to choose a class i to minimize

LTni (f i
Tni

) + γi (ni (T )).

Use the lower confidence bound:

Ln(f i
n )− γi (n)−

√
log K

n
+ γi (ni (T )),

where n is the size of the sample that we have allocated
already to class i .

Peter Bartlett Computational Oracle Inequalities



Computation versus sample size
Computational oracle inequalities for nested hierarchies

Fast rates
Removing the nesting assumption

Summary and open problems

Algorithm
Oracle Inequality

Multi-Armed Bandits for Model Selection

Assume ni (T ) is linear in T : ni (T ) = Tni .

Algorithm picks class it with smallest lower confidence bound.

Allocate additional sample of size nit to class it .

Regret analysis of upper-confidence-bound algorithm (Auer et
al., 2002) extends to give oracle inequalities.

it
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Oracle inequality under separation assumption

Define i∗ = arg min
i

(
inf
f ∈Fi

L(f ) + γi (Tni )

)
,

∆i = inf
f ∈Fi

L(f ) + γi (Tni )−
(

inf
f ∈Fi∗

L(f ) + γi∗(Tni∗)

)
.

Assume γi (n) =
ci√

n
.

Theorem

Let Ti (T ) be the number of times class i is queried. There are
constants C , κ1, κ2 such that with probability at least 1− κ1

TK4 ,

Ti (T ) ≤ C

ni

(
ci + κ2

√
log T

∆i

)2

.
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Oracle inequality under separation assumption

Define i∗ = arg min
i

(
inf
f ∈Fi

L(f ) + γi (Tni )

)
,

∆i = inf
f ∈Fi

L(f ) + γi (Tni )− inf
f ∈Fi∗

L(f ) + γi∗(Tni∗).

If we can incrementally update the choice f i
n , then the fraction

of budget that is assigned to a suboptimal class i is no more
than log T/(niT ∆2

i ).

This is essentially optimal (Lai and Robbins, 1985).
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Oracle inequality without separation

Assume that functions in {Fi} map to a vector space, and the
loss `(·, z) is convex.
Define f̂ = 1

T

∑T
t=1 ft , where algorithm produces ft ∈ Fit at

time t.

Theorem

There is a constant κ such that with probability at least 1− 2κ
TK3

L(f̂ ) = inf
i∈{1,...,K}

(
inf
f ∈Fi

L(f ) + γi (Tni )

)
+ O

(√
K max{log T , log K}

T

)
.

Linear dependence on K .
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Open problems

For nested hierarchies, the analysis relied on a coarse
multiplicative cover of the penalty values. If the penalties are
data-dependent, when is this approach possible?

What other structures on function classes lead to good
computational oracle inequalities?
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Summary

For large-scale problems, data is cheap but computation is
precious.

Computational oracle inequalities for model selection:
select a near-optimal model without wasting much
computation on other models.

A nested complexity hierarchy ensures cost logarithmic in
computational budget.

Faster rates are sometimes possible:
More complicated complexity regularization schemes ensure
cost polylogarithmic in computational budget.

If not nested, cost of model selection is linear in size of
hierarchy.
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