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ABSTRACT
Inspired by the problem of best managing the invasive mosquito

Aedes albopictus across the 17 Torres Straits islands of Australia, we
aim at solving a Markov decision process on large Susceptible-

Infected-Susceptible (SIS) networks that are highly connected.

While dynamic programming approaches can solve sequential

decision-making problems on sparsely connected networks, these

approaches are intractable for highly connected networks. Inspired

by our case study, we focus on problems where the probability of

nodes changing state is low and propose two approximate dynamic

programming approaches. The first approach is a modified version

of value iteration where only those future states that are similar to

the current state are accounted for. The second approach models

the state space as continuous instead of binary, with an on-line

algorithm that takes advantage of Bellman’s adapted equation. We

evaluate the resulting policies through simulations and provide

a priority order to manage the 17 infested Torres Strait islands.

Both algorithms show promise, with the continuous state approach

being able to scale up to high dimensionality (50 nodes). This work

provides a successful example of howAI algorithms can be designed

to tackle challenging computational sustainability problems.
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1 INTRODUCTION
Markov decision processes (MDPs) are a mathematical framework

designed to optimize sequential decisions under uncertainty given

a specific objective [1, 27]. MDPs can be solved in polynomial time

by a method called stochastic dynamic programming [13]. However,

in many real-world applications the states describing the system

are factored. That is, states are naturally defined as a combination

of sub-states. MDPs with such states are called factored MDPs.

Sub-states can correspond to different features of the system [12],

individuals in a population [30], spatial locations in a network [3]

or products in an inventory problem [26]. An essential aspect of

factored MDPs is that their number of states grows exponentially

when the number of sub-states increases. So, since stochastic

dynamic programming requires listing all reachable states [27], too

many sub-states make stochastic dynamic programming intractable.

This issue has been termed the curse of dimensionality [1].

There exist some exact MDP solvers tailored to solve factored

MDPs, e.g. SPUDD [12]. SPUDD consists of using algebraic decision

diagrams to represent policies and value functions, grouping

together states that have the same value or optimal action (see

also [31]). This approach works well when many sub-states are

conditionally independent and poorly otherwise.

In this paper, we aim at optimizing management decisions on

a particular type of factored MDP called Susceptible-Infected-

Susceptible (SIS) network. In an SIS network, each sub-state

represents a node in an interconnected network that can be

either susceptible or infected [3]. SIS networks are commonly

used to model the spread of infectious disease or parasites in

epidemiology [28, 30], meta-population dynamics of threatened, or

https://doi.org/10.1145/3209811.3209814
https://doi.org/10.1145/3209811.3209814
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Figure 1: The Torres Strait Islands. Connections between
islands depict the possibilities of transmission of the
mosquitoes towards susceptible islands. Low transmission
probabilities are not shown for readability.

invasive species in ecology [3, 20] or computer viruses in computer

science [14, 21]. Inspired by a real case study, the management

of the Asian tiger mosquito Aedes albopictus in Australia [22], we

aim at exploiting this particular structure to solve highly connected

large size SIS-MDPs, thus providing good policies on large networks

to decision makers and circumventing the curse of dimensionality.

1.1 Case study: managing invasive Aedes
albopictus

The Asian tiger mosquito, Aedes albopictus, is a highly invasive

species and a vector of several arboviruses that affect humans,

including chikungunya and dengue viruses. These invasive

mosquitos were first detected in the Torres Strait Islands, Australia,

in 2005 [29] where they persist today despite ongoing management

effort. The N = 17 inhabited islands constitute potential sources

for the introduction of Aedes albopictus into mainland Australia

through numerous human-related pathways between the islands

and towards north-east Australia (Figure 1).

Local eradication of the mosquito is possible through

management actions on islands such as treating containers

and mosquitoes with diverse insecticides. After eradication, re-

infestation can occur from connected infested islands. Since budget

is limited, not all islands can be treated simultaneously. The

objective is to select islands to manage to maximize the expected

time before the mainland becomes infested. Past attempts modeled

this problem as an MDP and used stochastic dynamic programming

(policy iteration) to find the optimal policy [22]. However, the

approach failed to circumvent the curse of dimensionality. Only 13

out of the 17 Torres Strait Islands were accommodated, providing

incomplete recommendations to managers. The main motivation of

this paper is to provide an approach to accommodate all 17 Torres

Strait Islands.

To do so, we have identified two noteworthy properties of

this system. First, the network is ‘complete’, i.e. every node can

be infested from any other node of the network. Consequently,

local optimization approaches such as graph-based MDPs [6, 18],

which only consider potential infestations from a small subset of

neighboring nodes, are not well suited to this problem. Second,

since local eradication is difficult to achieve and transmission rates

are low, the probability for each sub-state (node) to change (either

from susceptible to infested or vice versa) is small. This implies

that the MDP state at the next timestep will likely be similar to

the current state, i.e. a small number of sub-states are likely to

change. The two approximate dynamic programming approaches

we propose exploit these properties.

1.2 Approximate approaches
In the last decade, several approaches have been explored to solve

large factored MDPs, with multiple applications in computational

sustainability [6, 7, 18, 20]. Generally speaking, these approaches

can be classified into three groups [26], all of which are relevant to

our case study.

First, simulation-optimization methods consist of evaluating

a number of policies through simulations and selecting the best

one [34] (see also [16] in conservation biology). These approaches

do not anticipate what might happen in the future [26], which

is appropriate for our case study problem because states do not

change frequently. Alternative approaches use cascade models to

capture SIS dynamics, but do not involve sequential decisions [32].

Second, rolling horizon procedures (roll-out) use a prediction

of the near-future to save on potentially costly long-term

predictions [18]. Typical approaches include model predictive

control and Monte Carlo tree search [10]. Roll-out procedures have

been used in conservation biology to solve SIS-MDPs that are large

but much more weakly connected than the Torres Strait Island

system [18, 19]. Finally, some hindsight optimization approaches

can help optimize decisions on large networks, but with a focus on

exponentially large action spaces [36].

Third, approximate dynamic programming (ADP) approaches

explicitly estimate the values of states to derive optimal actions.

For example, mean-field approximation algorithms [10, 20, 23] and

approximate linear programming methods [6] approximate the

value function by decomposing it into a sum of the values of each

node. The value function is updated through local optimization, for

example, in our case, assuming that each node is only connected to

a limited number of neighbors. Therefore, these approaches are not

suited to highly connected networks, e.g. some have been reported

to "work best when nodes have fewer than five neighbors" [20].
Inspired by these three classes of approaches, we introduce

two new approximate approaches to address large and highly

connected SIS-MDP networks. Our first approach is a simplification

of Bellman’s equation where only a small subset of the future states

are considered. We demonstrate that this approach comes with

some performance guarantee and is less computationally complex

than stochastic dynamic programming. However, its complexity

is still exponential in the number of sub-states. In contrast, our

second approximate approach is a more radical approximation that

runs in linear time in the time horizon and in quadratic time in the

number of nodes, but has no performance guarantees. We assess

our algorithms on our case study and compare their solutions to
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SPUDD when possible [12], the reference exact algorithm to solve

factored MDPs.

2 MATERIAL AND METHODS
2.1 Markov decision processes
Markov decision processes (MDPs) are mathematical frameworks

for modeling sequential decision problems where the outcome is

partly stochastic and partly controlled by a decision-maker [1]. A

MDP is defined by five components < S,A, P , r ,C > [27] : (i) a state

space S , (ii) an action space A, (iii) a transition function P , (iv) an
immediate rewards function r and (v) a performance criterion C .

The decision-maker aims to direct the process towards rewarding

states. From a given state s , the decision-maker selects an action

a and receives a reward r (s,a). At the next time step, the system

transitions to a subsequent state s ′ with probability P(s ′ |s,a). The
performance criterion C specifies the objective (e.g. maximize or

minimize a sum of expected future rewards), the time horizon (finite

or infinite), the initial state s0 and whether there is a discount rate

(γ ). Here, we deal with a discounted infinite time horizon, where

we maximize:

E[
∞∑
t=0

γ t r (st ,at )|s0]. (1)

A policy π describes which decisions are made in each state, i.e.

π : S → A. Solving an MDP means finding an optimal policy π∗

that satisfies, in our case:

π∗ = argmax

π
E[

∞∑
t=0

γ t r (st ,π (st ))|s0]. (2)

Exact algorithms to solve MDPs include linear programming, value

iteration, and policy iteration [33]. We choose to use value iteration,

because its simplicity makes it easy to adapt to approximately solve

large factored MDPs.

2.2 Value iteration
Value iteration requires the introduction of a value function V ,
defined on all states s . The value V (s) corresponds to the sum

of future rewards one can expect, starting from the state s . The
value function is unknown at the start of the algorithm, and it is

customary to start with V = 0. The value function V is repeatedly

improved, for each state, with Bellman’s equation:

V ′(s) = max

a∈A

[
r (s,a) + γ

∑
s ′∈S

P(s ′ |s,a)V (s ′)
]
. (3)

Once this is evaluated for all states s ∈ S , we set V := V ′
and the

process repeats until some termination condition is met, which can

either consist of a maximum number of iterations (our choice in

this paper) or a threshold ϵ under which the maximum difference

between V to V ′
must fall (see [27]). The output policy is defined

as:

π (s) = argmax

a∈A

[
r (s,a) + γ

∑
s ′∈S

P(s ′ |s,a)V (s ′)
]
. (4)

Provided the reward is non-negative, the sequence of V is

monotonic and guaranteed to converge [33]. The outputs of value

iteration are a policy and a value function, and the value function is

guaranteed to be within
2γ ϵ
1−γ of the optimal value function with the

ϵ termination criterion [33]. We now describe Susceptible-Infected-

Susceptible networks and how they can be cast into MDPs.

2.3 Susceptible-Infected-Susceptible (SIS)
networks

SIS networks are used to model spatial systems where a species

can spread over a network [3]. Each node in the network can be

either infested (the terminology for invasive species) or susceptible

(i.e. at risk of being infested). The species can infest new nodes by

spreading. Infested nodes can be cured and re-infested.

Numbering each node from 1 to N , we denote by si the status
of node number i: si = 1 if node i is infested, 0 otherwise. A

transmission probability matrix pji describes the probability for

mosquitoes to be transmitted from any infested node j to any

susceptible node i . The probability for node i to remain ‘susceptible’

is then given by:

Pr (s ′i = 0|si = 0) =
∏
j,i

(1 − sjpji ), (5)

where s ′i is the next state of node i . So, the probability to transition

from ‘susceptible’ to ‘infested’ is 1 − ∏N
j=1(1 − sjpji ).

All nodes are able to be managed with a sub-action. The

effectiveness of a sub-action implemented on node i is denoted
by ai . It is defined as the probability of locally eradicating the

mosquitoes over one time step, which implies:

Pr (s ′i = 1|si = 1) = 1 − ai . (6)

In this paper, we address two common management objectives

for SIS models: eradication and containment. In the eradication

objective, the goal is to maximize the number of susceptible

nodes [3], so the reward is defined as:

r (s,a) =
N∑
i=1

(1 − si ). (7)

In the containment objective, the goal is to prevent the species from

reaching a node i [30], so the reward can be defined as:

r (s,a) = 1 − si =

{
0 if node i is infected;

1 otherwise,
(8)

if node i is to be protected.

2.4 SIS-MDPs
Sequential decision problems on SIS networks can be cast into

MDPs as follows (we call the resulting MDP an SIS-MDP). Each

state s describes the situation on all nodes and is of the form s =
(s1, s2, . . . , sN ). The transition function is defined as P(s ′ |s,a) =∏N

i=1 Pr (s ′i |si ,a). Any dynamic programming approach, including

value iteration, policy iteration or SPUDD, can then be applied to

solve these SIS-MDPs [33].

The main issue with this approach is that the number of states

is |S | = 2
N
, which is computationally prohibitive when N grows.

For the Torres Strait mosquito network, only up to 13 nodes have

been reported to be tractable [22]. In practice, one can distinguish

three causes of intractability, called curses of dimensionality [26].

The first curse of dimensionality is the exponential number of

states itself, which is prohibitive because the value function must
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be updated for each state (Eq. (3)). Further, each of these updates

hinges upon a sum over future states (r.h.s. in Eq. (3)), which is

equally prohibitive: this is the second curse of dimensionality. The

third curse of dimensionality is the exponential number of actions,

which does not apply in our case study because the total number of

actions is limited by a budgetary constraint (a maximum of three

islands can be managed simultaneously). Driven by this case study,

we introduce two new approximate approaches to address the first

two curses of dimensionality in SIS-MDPs.

2.5 First approximate approach: the Neighbor
algorithm

The Neighbor algorithm is a modified version of value iteration

(Algorithm 1). As mentioned in the Introduction, in our case study,

the probability for each sub-state or node to change over one time

step is low. So, future states will likely differ from the current state

by a handful of nodes at most. Indeed, denoting p as an upper

bound of the probability that any node changes, the probability

that all nodes change is less than pN . Also, the expected number

of node switches is less than Np, and since the node switches are

independent, it is unlikely that many more than Np nodes switch.

This insight is the basis for the Neighbor algorithm.

The Neighbor algorithm1
consists of approximating Bellman’s

equation (Eq. (3)) for each state by limiting the number of sub-states

K ∈ {0, . . . ,N } that can change over the next time step. By using

the Kronecker delta (δs ′i si = 1 when s ′i = si and 0 otherwise), this

can be formulated as the constraint

∑N
i=1 δs ′i si ≥ N − K on future

states s ′ ∈ S (Lines 6-7, Algorithm 1). When K is set to N , the

Neighbor algorithm is equivalent to the value iteration algorithm.

When K is less than N , fewer future states are accounted for in

the calculation of the future expected values than in the standard

value iteration. This simplification decreases the computational

complexity (see Proposition 2) but also decreases the precision (see

Proposition 1).

In addition, the number of iterations is set to the variable H
(Line 2). Similarly to K , this variable can be tuned depending on the

desired precision and computational complexity of the algorithm

(Propositions 1 and 2). In our experiments, we choseH = 10 andK =
4, for example. The policy returned by the Neighbor algorithm will

be evaluated on the real, complete problem during the simulations.

We aim to find an upper bound for the error incurred by the

Neighbor algorithm (Algorithm 1) as opposed to the optimal value

iteration. To do so, we denote by:

• πN the policy returned by the Neighbor algorithm;

• Vπ the exact value function of any policy π : S → A, i.e.

Vπ (s) = E[
∞∑
t=0

γ t r (st ,π (st ))|s0 = s]; (9)

Note that VπN is the exact value function of the policy πN ,

and likely differs from the approximate value function V
computed in the Neighbor algorithm.

1
The terminology Neighbor does not refer to nearby islands or nodes (geographically),

but to MDP states that are similar. In this regard, this algorithm shares similarities

with reduced MDP approaches (see [24] for an example).

• p is the maximum probability a node will change in one time

step:

p := max

©« max

a∈A,1≤i≤N
ai , max

1≤i≤N
(1 −

∏
j,i

(1 − pji ))
ª®¬ (10)

• Rmax := maxs ∈S,a∈A r (s,a) the maximum reward (we

assume all rewards are nonnegative);

Proposition 1. We assume that K ≥ Np. We have:

| |Vπ ∗ −VπN | |∞ (11)

≤ Rmaxγ
H

1 − γ
+
Rmaxγ exp

(
−2 (K+1−Np)2

N

)
(1 − γ )2

(12)

Proof. See Appendix. □

This proposition shows that increasing K (the maximum number

of changing sub-states) or H (the number of iterations) will reduce

the loss incurred when implementing the policy πN returned by

the Neighbor algorithm instead of the optimal policy π∗
.

Proposition 2. The Neighbor algorithm runs in O(H2
N |A|NK )

operations, as opposed to O(H4
N |A|) for value iteration.

Note that the number of actions |A| will likely depend on N as

well. Here, because the number of actions grows only polynomially

due to the budgetary constraint, we focus on the number of states

(first and second curses of dimensionality).

Proof. The first three for-loops of the algorithm are over H
iterations, 2

N
states and |A| actions. The number of times the last

for-loop is computed equals

K∑
k=0

(
N

k

)
=

K∑
k=0

O(N k ) = O(NK ) (13)

□

This proposition shows in particular that increasing the value of

K or H will increase the computational complexity of the Neighbor
algorithm. Taken together, Propositions 1 and 2 show that one can

trade off performance and computational expense by varying the

parameters K and H . The complexity is still exponential in the

number of current states but not in the number of future states. The

second curse of dimensionality is circumvented
2
. This algorithm

should run faster than value iteration, but still falls prey to the first

curse of dimensionality. Our second approximate algorithm avoids

this caveat.

The Neighbor algorithm is related to approximate dynamic

programming [26] or approximate value iteration [33]. The

difference with these classes of algorithms is that the Neighbor
algorithm does not use an approximate representation of the value

function such as a linear approximation. Instead, the approximation

occurs in the probabilities involved in Bellman’s equation (Eq.

(3)). Also, the Neighbor algorithm uses expected value calculations

instead of sampling, which is common in reinforcement learning [2,

35].

2
For increasing values of N , K needs to be increased to ensure that K ≥ Np is

satisfied, which also increases the complexity. However, we show in Appendix B

that the number of future states computed by the Neighbor algorithm is negligible

compared to that of value iteration when N grows to infinity.
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Algorithm 1 Neighbor(K ,H )

1: Initialization: V (s) = 0 f or all states s ∈ S
2: for iter = 0 : H − 1 do
3: for s ∈ S do
4: for a ∈ A do
5: Q(a) = r (s,a)
6: for s ′ ∈ S,

∑N
i=1 δs ′i si ≥ N − K do

7: Q(a) = Q(a) + γP(s ′ |s,a)V (s ′)
8: π (s) = argmaxa∈AQ(a)
9: V ′(s) = maxa∈AQ(a)
10: V (s) = V ′(s) f or all states s ∈ S

Output: Policy πN

2.6 Second approximate approach: the
Continuous algorithm

Our second approach, which we refer to as the Continuous
algorithm, is an online algorithm (Algorithm 2): it only provides an

action to implement in the current state. Thus, it avoids listing the

states altogether and overcomes the first curse of dimensionality.

This stands in contrast with the first approximate approach and

dynamic programming, which return the entire policy for all

states before implementation. The Continuous algorithm is a

rollout algorithm, i.e. the values associated to different actions

are evaluated through simulations over a moving time horizon of

fixed duration Hc [18, 33].

As in the first approximate approach, this new approach is based

on the observation that the probability for sub-states or nodes to

change over one time step is small. As a consequence, the future

MDP state will likely be similar to the previous state, if not identical.

This implies that the same action will likely be applied multiple

times. Thus, one can compare different actions by assuming that

the action chosen will never change in the future: this establishes

a first approximation (Lines 1-3, Algorithm 2). Then, the binary

sub-state of each node, i.e. si ∈ {0, 1} corresponding to susceptible

or infested, is replaced by its (continuous) probability of infestation,

i.e. si ∈ [0, 1]. Treating discrete entities as continuous in an SIS

context is common in continuous time [4] but is not common when

optimizing decisions. When si was binary, the calculations of future
infestation probabilities were written as{

Pr (s ′i = 1|si = 1) = 1 − ai ,

Pr (s ′i = 1|si = 0) = 1 − ∏N
j=1(1 − pjisj ),

(14)

where pji is the probability of transmission from j (if infested) to
i . It can now be adapted to these continuous sub-states as follows

(Line 6):

s ′i = si (1 − ai ) + (1 − si )(1 −
N∏
j=1

(1 − pjisj )). (15)

These continuous sub-states establish a second approximation. They

are considerably faster to calculate than the probability of each of

the 2
N
combination of sub-states because the number of operations

is quadratic in the number of nodes instead of exponential. However,

these estimates are based on the probability of infestation of sub-

states instead of using the precise conditional probabilistic relations

between sub-states. Over many iterations, these estimates will

diverge from the discrete case.

Similarly to the discrete case, we define the reward in the

continuous case as follows: for the eradication objective, the reward

at each time step is

∑N
i=1(1 − si ), which represents the average

number of susceptible nodes to maximize. For the containment

objective, the reward is 1 −mainland , i.e. the probability that the

mainland is infested. These rewards are used to calculate Q(a), the
cumulative ‘score’ of action a (Line 5). Note that Line 7 applies to

the containment objective only. At the end of the rolling horizon,

the action with maximum score is selected (Line 9).

Proposition 3. The Continuous algorithm runs in O(|A| |N |2Hc )
operations.

Proof. For each of the |A| actions and Hc iterations, the sub-

state of each of theN nodes is updated bymultiplyingN−1 numbers.

□

Algorithm 2 Continuous(s)

1: for a ∈ A do
2: Initialization: Q(a) = 0,mainland = 0, (s1, . . . , sN ) := s
3: for iter = 0 : Hc − 1 do
4: Q(a) = Q(a) + γ iter r (s,a)
5: for i = 1 → N do
6: s ′i = si (1 − ai ) + (1 − si )(1 −

∏N
j=1(1 − pjisj ))

7: mainland = mainland + (1 −mainland)(1 − ∏N
i=1(1 −

pi,mainlandsi )) // containment case only

8: si = s
′
i f or all 1 ≤ i ≤ N

9: a = argmaxa∈AQ(a)
10: Output: Action a

The complexity of this approach is polynomial in the problem

size, which is a considerable improvement as compared to

stochastic dynamic programming. It circumvents both curses of

dimensionality.

2.7 Performance evaluation
We can evaluate the performance of each algorithm through

simulations by implementing the recommended action at each

time step (Algorithm 3). Note that this is much faster for the

first approach because the algorithm computes the policy for all

states before the simulations, potentially at a very high one-off

computational cost (that is, it is an offline algorithm). In contrast,

the algorithm Continuous only outputs an action for one given state,

so it needs to be re-run at every time step for the updated observed

state (it is an online algorithm).

2.8 Framing the case study as an SIS-MDP
We will aim to find the optimal management of Aedes albopictus.
This decision problem is modeled as an SIS-MDP in which:

• The observable component s ∈ S specifies the presence

or absence of the mosquitoes across the N = 17 islands

(|S | = 2
N + 1 = 131, 073). The term ’+1’ corresponds to an
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Algorithm 3 EvaluatePolicy(s0)

1: t = 0

2: for i = 1 : nSimulations do
3: Initialization: s = s0,mainland = 0 // all islands are

initially infested

4: whilemainland = 0 do
5: a = π (s) or a = Continuous(s)
6: mainland := DrawMainlandState(s,a)
7: s := DrawState(s,a)
8: t := t + 1

Output: Average time: t/nSimulations

absorbing state representing the presence of mosquitoes in

the mainland.

• Each action a ∈ A describes which islands should be

managed and the type of management (light or strong).

Due to a budgetary constraint, only up to three islands

can be managed simultaneously. The set A only contains

the combinations of management actions that satisfy this

constraint.

• The transition probabilities T (s,a, s ′) accounts for the

possible local eradications and transmissions between

islands. In accordance with [22], we investigate two

transmission rates: fast and slow.

• In the case of a containment objective, the reward r (s,a)
equals 0 if the mainland is infested and 1 otherwise; in the

case of an eradication objective, the reward is the sum of

susceptible islands — the mainland is disregarded;

• In the containment case,γ should ideally be 1 so the expected

cumulative reward (value) equals the expected time before

the infestation of Australia in years. For ease of comparison

with SPUDD, we set γ = 0.99 for containment and γ = 0.95

for eradication.

3 RESULTS
We show the average result, standard deviation and computational

time on various problem instances for both the Neighbor and

Continuous algorithms (Table 1) on 10,000 simulations. We set

H = 10, K = 4 and Hc = 10 as these parameters achieved a

satisfying trade-off between computation time and performance.

We compare their performances to SPUDD (version 3.6.2). We

run our algorithms with 10 islands (for which the optimal value

was calculated using the classic stochastic dynamic programming

algorithm policy iteration in [22]), 17 islands (the full-scale problem)

and a hypothetical network of 50 islands (to test scalability), and

with different transmission parameters (high, low and random)

and management objectives (eradication and containment). On 17

islands, SPUDD cannot accommodate a highly connected network,

so for tractability we allow, for each island, transmissions only from

the five islands with the highest transmission probabilities.

Both of our proposed algorithms are tractable for up to 17 islands

for all objectives and transmissions. However, SPUDD runs out of

memory or time, for the eradication objective and the random

transmissions. The eradication objective is difficult to solve because

all islands contribute to the rewards and thus to the value function.

In contrast, the containment objective is simpler because keeping

Figure 2: The prioritization ranking shown on the Torres
Strait Islands. The recommendation is to start by managing
Thursday Island and follow the arrows if mosquitoes are
successfully eradicated. As a general rule of thumb, islands
that are closer to the mainland are to be managed with
priority. Other factors such as effectiveness of management
actions and closeness to other Torres Strait Islands also
account for this ranking.

a few key islands susceptible might be enough to achieve a good

performance. As for the random transmission case, it is harder to

solve because the islands have random attributes. The ‘low’ and

‘high’ transmission probabilities are easier, e.g. Thursday and Horn

islands have relatively high transmission probabilities to and from

other islands and all solvers manage to rapidly identify them as

management priorities.

In a limited system of 10 islands all solvers perform near-

optimally. This shows that both our approximate algorithms are

able to provide good policies and suggests that they might perform

well on larger problems as well.

When all 17 islands are included, the three solvers obtain the

same value with high transmission probabilities, with SPUDD being

much faster than the Neighbor algorithm. However, SPUDD under-

performs with ‘low’ transmission probabilities. This is because we

limited SPUDD to only consider infestation from a maximum of

five islands to ensure tractability. Under these conditions, SPUDD

outputs a policy tree depending on a handful of islands. Therefore, it

makes no recommendations about other islands, resulting in a loss

of performance. Our approximate approaches outperform SPUDD

and also show more robustness to the parameters of the problem.

Finally, only theContinuous algorithm is tractable with 50 islands,

because it overcomes both curses of dimensionality and has a

polynomial complexity (it would also be tractable for much larger

problems for the same reasons, but we did not confirm this through

experiments). In contrast, the Neighbor algorithm overcomes only

one of those issues and still has an exponential complexity.
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Instance Neighbors H = 10, K = 4 Continuous Hc = 10 SPUDD

#islands / transmission

objective (|S |/|A|)
Value ±

95% confidence

Time Value ±
95% confidence

Time Value ±
95% confidence

Time

10 / high / con-

tainment (1,025/276)

Optimal: 13.6 [22]

13.5 ± 0.3 60 s 13.6 ± 0.3 2,441 s 13.5 ± 0.3 4,631 s

10 / low

containment (1,025/276)

Optimal: 65.1 [22]

64.3 ± 1.4 59 s 64.9 ± 1.4 4,406 s 65.2 ± 1.4 10,546 s

17 / high / con-

tainment (131,073/1,123)

12.4 ± 0.3 172,222 s 12.8 ± 0.3 12,160s 12.6 ± 0.3 (*) 207 s (*)

17 / low / con-

tainment (131,073/1,123)

54.9 ± 1.2 183,572 s 57.2 ± 1.2 20,151 s 54.9 ± 1.2 (*) 955 s (*)

17 / random / con-

tainment (131,073/1,123)

16.4 ± 0.4 158,260 s 16.8 ± 0.4 13,449 s Out of

memory

17 / high / eradi-

cation (131,073/1,123)

94.6 ± 0.3 156,544 s 95.0 ± 0.3 57,100 s Out of

time

17 / low / eradi-

cation (131,073/1,123)

124.7 ± 0.4 156,479 s 125.1 ± 0.4 29,378 s Out of

time

17 / random / eradi-

cation (131,073/1,123)

78.5 ± 0.4 172,258 s 79.8 ± 0.4 64,242s Out of

memory

50 / random

containment

(2.25 × 10
15, 23, 376)

Out of

memory

5.4 ± 0.3 164,225 s

(1,000

simulations)

Out of

memory

Table 1: Average values, 95% confidence intervals and computational times of the two approximate approaches and SPUDD
on 10,000 simulations. Best values are shown in bold. (*) SPUDD was run on an approximate version of the 17-island problem
for tractability (see main text). For the offline solvers (the Neighbor algorithm and SPUDD), the computational time shown
does not include the simulation running time, which is very short. In contrast, the Continuous algorithm is online, so the
computational time is only that of the simulations (no preprocessing). The memory is set to 2GB, which is the maximum
memory supported by SPUDD. The computational time limit was set to 1 week (604,800s).

Since the Continuous algorithm performs well, we show in Table

2 and in Figure 2 which islands should be managed in priority

in the containment case according to this approach. Under the

containment objective, it recommends managing Thursday, Horn

andMulgrave Islandswith priority if they are infested. These islands

are highly populated and close to mainland Australia and therefore

have the highest probability of directly transmitting mosquitoes to

the mainland. This matches the recommendations found in [22].

4 DISCUSSION
In this manuscript, we aimed to solve an MDP on a large

and fully connected SIS network. Given the intractability

of stochastic dynamic programming, we propose two new

approximate approaches based on the observation that the

transition probabilities for each node is low. The first approach is a

modified version of value iteration where only those future states

that are similar to the current state are accounted for, with provable

performance guarantees. This drastically reduces the computational

time of Bellman’s equation at little cost on the quality of the policy.

The second approach goes further by modeling the sub-states

comprising the MDP states as continuous instead of binary, with

an adapted Bellman’s equation.

Both approaches solve all versions of this case study, which

policy iteration and SPUDD could not. The Neighbor algorithm
solves the second curse of dimensionality on future states.

The Continuous algorithm also circumvents the first curse of

dimensionality on current states. Both approaches could handle

completely connected SIS-MDP networks of size at least 17

(Neighbors) and 50 nodes (Continuous). While it was not possible

to evaluate loss of optimality on the 17-island problem because it

is intractable for established techniques, our algorithms achieved

near-optimal performance on the 10-island problem. The lower

performance of SPUDD is not surprising as SPUDD takes advantage

of conditional independence between sub-state variables [12]. In

our problem, all sub-state variables are conditionally dependent

because we are dealing with a complete network.

Although both of our new proposed approaches share some

similarities, they also differ on several points. The advantage of

the Neighbor algorithm is that it accounts for a small amount of

sub-state changes (K), while the Continuous algorithm does not.

Additionally, the Neighbor algorithm can trade-off computational

time for policy quality by increasing/decreasing the number of

iterations (H ) or the number of following states (K). The extreme

case, i.e. setting the number of changes allowed to the total amount

of nodes (K = N ), is equivalent to performing value iteration given

H is large enough. It is an offline algorithm, which is easier to

communicate to managers since the solution is calculated once. The

Continuous algorithm is online and each simulation only takes a few

seconds to run. In our case this approach is fast and outperforms

the Neighbor algorithm. However, it comes with no performance
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Ranking Island name Ranking Island name

1 Thursday 10 Coconut

2 Horn 11 Yorke

3 Mulgrave 12 Saibai

4 Sue 13 Murray

5 Banks 14 Talbot

6 Yam 15 Darnley

7 Hammond 16 Mt Cornwallis

8 Jervis 17 Stephens

9 Prince of Wales

Table 2: Priority ranking of the 17 Torres Strait Islands for
the Continuous algorithm with the containment objective
with both low and high transmission probabilities. At
each time step, only the two or three infested islands
with highest ranking are managed, due to a limited
budget. Note that this ranking is not unique: when
Thursday, Horn and Mulgrave islands are susceptible, the
Continuous algorithm recommends managing Sue, Yam
and Jervis islands with 3 light managements. However, if
Sue island becomes susceptible, the Continuous algorithm
recommends managing Banks and Yam islands with
strong and light management respectively. It is then
unclear whether Banks is more of a priority than Jervis.
Nevertheless, the prioritization ranking we present is
accurate for most islands and provides a good idea of which
islands should be managed first.

guarantees and has the disadvantage of not accounting for a change

of action in the future: it might perform poorly on systems that rely

on changing actions significantly within a short time. Finally, the

Neighbor algorithm retains exponential complexity in the number of

nodes in the network while the Continuous algorithm is polynomial.

This work provides many avenues for future research. First, we

have developed our equations for SIS-MDPs, however the Neighbor
algorithm could be applied to more general factored MDPs with

only minor changes. Second, the Continuous algorithm works well

when sub-states do not change frequently. To apply this algorithm

efficiently to more difficult cases, it may be necessary to allow

actions to change in the future. This might be achieved while

keeping computational complexity down by considering actions

for the most likely future states, using for example smart sampling

techniques. Third, the Neighbor algorithm could be converted to an

online form by only considering states that can be reached from the

current state. This would avoid running the entire algorithm prior

to simulations. Also, we have built this algorithm as approximate

version of value iteration but it would be interesting to design

and evaluate a policy iteration version. Finally, we acknowledge

that there are many algorithms that would be appropriate in this

context, e.g. Reinforcement Learning [35]. However, they do not

natively assume or exploit that sub-states do not change frequently.

Tailoring these reference algorithms for this property may lead to

considerable computational savings.

This work could be applied in multiple fields. There are many

environmental spatial problems requiring effective MDP solvers

on highly connected networks. Examples include management

of forestry at risk of wind damage [7], adaptive management

of migratory birds under sea level rise [17] or control of

invasive mammals [9] or invasive weed [5]. Other non-ecological

interconnected systems would also benefit from this work. For

example, system administrators try to keep as many machines as

possible running in a network [25] or in maximizing the reliability

of information in a military sensor network [8].

Inspired by the problem of best managing the invasive mosquito

Aedes albopictus in Australia, we aimed at solving a Markov

decision process on large Susceptible-Infected-Susceptible (SIS)

networks that are highly connected. Current exact approaches

are intractable for these types of networks. We have proposed

two approximate algorithms that can tackle such large-scale

problems and achieve promising results, and we have provided

some theoretical insights about their performances. Although our

two approximate approaches are not guaranteed to be optimal, the

resulting policies can still be used as an initial policy or a basis for

comparison with other algorithms.
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A PROOF OF PROPOSITION 1
We prove the following proposition:

Proposition 1. We assume that K ≥ Np. We have:

| |Vπ ∗ −VπN | |∞ (16)

≤ Rmaxγ
H

1 − γ
+
Rmaxγ exp

(
−2 (K+1−Np)2

N

)
(1 − γ )2

(17)

Let us denote by V N
π the value as calculated in the the Neighbor

algorithm (Algorithm 1) of any policy π : S → A, i.e. V N
π (s) =

Q(π (s)) for each s ∈ S . Let us first prove the following lemma.

Lemma 1. For any policy π : S → A and any state s ∈ S , we have:

0 ≤ Vπ (s) −V N
π (s) (18)

≤ Rmaxγ
H

1 − γ
+
Rmaxγ exp

(
−2 (K+1−Np)2

N

)
(1 − γ )2

(19)

Proof.

Vπ (s) −V N
π (s) (20)

= E

[∑
t ≥0

γ t r (st ,π (st ))|s0 = s
]

(21)

− E


∑
0≤t ≤H−1,∑N

i=1 δst+1,i st,i ≥N−K
γ t r (st ,π (st ))|s0 = s

 (22)

= E

[ ∑
t ≥H

γ t r (st ,π (st ))|s0 = s
]

(23)

+ E


∑

0≤t ≤H−1,∑N
i=1 δst+1,i st,i <N−K

γ t r (st ,π (st ))|s0 = s
 (24)

This sum is nonnegative because all rewards are nonnegative, which

proves the first inequality of the lemma. For the second inequality,

we can write:

Vπ (s) −V N
π (s) (25)

≤ RmaxE

[ ∑
t ≥H

γ t |s0 = s
]
+ (26)

RmaxE


∑

t ≥0,∑N
i=1 δst+1,i st,i <N−K

γ t |s0 = s
 (27)

=
Rmaxγ

H

1 − γ
+ (28)

Rmax
©«
∑
t ≥0

γ t − E


∑
t ≥0,∑N

i=1 δst+1,i st,i ≥N−K
γ t |s0 = s


ª®®¬ (29)

Recall that

∑N
i=1 δst+1,i st,i is the number of sub-states (nodes) that

do not change from time step t to time step t + 1. With st fixed and
st+1 following the Markov process, this sum is a random variable.

It is equivalent to a binomial distribution with N independent

experiments, each with a probability of success of 1 − p at least.

https://doi.org/10.1111/j.2041-210X.2010.00069.x
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So, the probability that a state st and its successor st+1 satisfy∑N
i=1 δst+1,i st,i ≥ N − K is, by Hoeffding’s inequality [11], no less

than

PK := 1 − exp

(
−2 (K + 1 − Np)2

N

)
(30)

This result is based on our assumption that K ≥ Np. It implies that

(PK )t is a lower bound of the probability that all states from s0 to
st satisfy this property, which are the states involved in the second

sum of Eq. (29). So,

Vπ (s) −V N
π (s) (31)

≤ Rmaxγ
H

1 − γ
+ Rmax

(∑
t ≥0

γ t −
∑
t ≥0

γ t (PK )t
)

(32)

=
Rmaxγ

H

1 − γ
+ Rmax

(
1

1 − γ
− 1

1 − γPK

)
(33)

≤ Rmaxγ
H

1 − γ
+

(
Rmaxγ (1 − PK )

(1 − γ )2

)
(34)

=
Rmaxγ

H

1 − γ
+
Rmaxγ exp

(
−2 (K+1−Np)2

N

)
(1 − γ )2

(35)

which terminates the proof of the lemma. □

Then we have, for each state s ∈ S :

0 ≤ Vπ ∗ (s) −VπN (s) (36)

≤
[
Vπ ∗ (s) −V N

π ∗ (s)
]
+

[
V N
π ∗ (s) −V N

πN (s)
]
+

[
V N
πN (s) −VπN (s)

]
(37)

The second term between brackets is non-positive because the

policy πN is optimal with regard to the value function V N
. The

first and third terms between brackets are bounded by the right

and left inequalities in Lemma 1 respectively, which yields:

Vπ ∗ (s) −VπN (s) (38)

≤ Rmaxγ
H

1 − γ
+
Rmaxγ exp

(
−2 (K+1−Np)2

N

)
(1 − γ )2

(39)

This terminates the demonstration of Proposition 1.

B FUTURE STATES IN THE NEIGHBOR
ALGORITHM

In this section, we show that, under the assumption p < 1/2, the
number of future states computed by the Neighbor algorithm is

negligible compared to that of value iteration when N grows to

infinity, for any desired precision. Let us denote by F (N ) the number

of future states computed by the Neighbor algorithm with N nodes.

Since the number of future states computed by value iteration is

2
N
, we want to find an upper bound on F (N )/2N .

Proposition 1 shows that the loss of performance due to

restricting the future states through the variable K is at most:

Rmaxγ exp

(
−2 (K+1−Np)2

N

)
(1 − γ )2

(40)

So, we can ensure that this loss is below any given threshold ρ > 0

by setting

K = Np − 1 +

√√
N log

(
Rmaxγ
(1−γ )2ρ

)
2

(41)

= Np − 1 +C
√
N , (42)

with the notation C =

√
log

(
Rmax γ
(1−γ )2ρ

)
2

.

Theorem 5.3.2 in [15] provides probabilistic bounds on coin

tosses, which can be related to bounds on sums of binomial

coefficients. This yields the following upper bound on F (N ):

F (N ) ≤ 2
N−1e−

(N−2K−2)2
4(N−K−1)

(43)

So,

F (N )
2
N ≤ 1

2

e
− (N−2K−2)2

4(N−K−1)
(44)

Further, we have

(N − 2K − 2)2
4(N − K − 1) ≥ (N − 2K − 2)2

4N
(45)

=
(N − 2(Np − 1 +C

√
N ) − 2)2

4N
(46)

=
(
√
N (1 − 2p) − 2C)2

4

N→∞−−−−−→ ∞ (47)

(48)

under the assumption that p < 1/2. This implies

F (N )
2
N

N→∞−−−−−→ 0, (49)

i.e. the number of future states computed by the Neighbor algorithm
is negligible compared to that of value iteration when N grows to

infinity.
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