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Abstract

We study online learning under logarithmic loss with regular parametric models. We show
that a Bayesian strategy predicts optimally only if it uses Jeffreys prior. This result was
known for canonical exponential families; we extend it to parametric models for which the
maximum likelihood estimator is asymptotically normal. The optimal prediction strategy,
normalized maximum likelihood, depends on the number n of rounds of the game, in
general. However, when a Bayesian strategy is optimal, normalized maximum likelihood
becomes independent of n. Our proof uses this to exploit the asymptotics of normalized
maximum likelihood. The asymptotic normality of the maximum likelihood estimator is
responsible for the necessity of Jeffreys prior.

Keywords: Online Learning, Logarithmic Loss, Bayesian Strategy, Jeffreys Prior, Asymp-
totic Normality of Maximum Likelihood Estimator

1. Introduction

In the online learning setup, the goal is to predict a sequence of outcomes, revealed one
at a time, almost as well as a set of experts. We consider online density estimators with
log loss, where the forecaster’s prediction at each round takes the form of a probability
distribution over the next outcome, and the loss suffered is the negative logarithm of the
forecaster’s probability of the outcome. The aim is to minimize the regret, which is the
difference between the cumulative loss of the forecaster (that is, the sum of these negative
logarithms) and that of the best expert in hindsight. The optimal strategy for sequentially
assigning probability to outcomes is known to be normalized maximum likelihood (NML)
(see, for e.g., Cesa-Bianchi and Lugosi, 2006; Grunwald, 2007, and see Definition 4 below).
NML suffers from two major drawbacks: the horizon n of the problem needs to be known in
advance, and the strategy can be computationally expensive since it involves marginalizing
over subsequences. In this paper, we investigate the optimality of two alternative strategies,
namely the Bayesian strategy and the sequential normalized maximum likelihood strategy;
see Definitions 5 and 6 below. Bayesian prediction under Jeffreys prior has been shown to
be asymptotically optimal (see, for e.g., Grunwald, 2007, chaps 7,8). Moreover the regret
of SNML is within a constant of the minimax optimal (Kotlowski and Grunwald, 2011).
We show that for a very general class of parametric models (Definition 1), optimality of a
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Bayesian strategy means that the strategy uses Jeffreys prior. Furthermore we show that
optimality of the Bayesian strategy is equivalent to optimality of sequential normalized
maximum likelihood. The major regularity condition for these parametric families is that
the maximum likelihood estimate is asymptotically normal. This classical condition holds
for a broad class of parametric models.

2. Definitions and Notation

We work in the same setup of (Hedayati and Bartlett, 2012) and use their definitions and
notation. The goal is to predict a sequence of outcomes xt ∈ X , almost as well as a set
of experts. We use xt to denote (x1, x2, · · · , xt), x0 to denote the empty sequence, and
xnm to denote (xm, xm+1, · · · , xn). At round t, the forecaster’s prediction is a conditional
probability density qt(·|xt−1), where the density is with respect to a fixed measure λ on X .
For example, if X is discrete, λ could be the counting measure; for X = Rd, λ could be
Lebesgue measure. The loss that the forecaster suffers at that round is − log qt(xt | xt−1),
where xt is the outcome revealed after the forecaster’s prediction. The difference between
the cumulative loss of the prediction strategy and the best expert in a reference set is called
the regret. The goal is to minimize the regret in the worst case over all possible data
sequences. In this paper, we consider i.i.d. parametric constant experts parametrized by
θ ∈ Θ.

Definition 1 (Parametric Constant Model) A constant expert is an iid stochastic pro-
cess, that is, a joint probability distribution p on sequences of elements of X such that
for all t > 0 and for all x in X , p

(
xt
∣∣xt−1

)
= p (xt). A parametric constant model

(Θ, (X ,Σ), λ, pθ) is a parameter set Θ, a measurable space (X ,Σ), a measure λ on X , and a
parameterized function pθ : X → [0,∞) for which, for all θ ∈ Θ, pθ is a probability density
on X with respect to λ. It defines a set of constant experts via pθ

(
xt
∣∣xt−1

)
= pθ (xt).

For convenience, we will often refer to a parametric constant model as just pθ.
A strategy q is any sequential probability assignment qt(· | xt−1) that, given a history

xt−1, defines the conditional density of xt ∈ X with respect to the measure λ. It defines a
joint distribution q on sequences of elements of X in the obvious way,

q(xn) =

n∏
t=1

q(xt|xt−1).

In general, a strategy depends on the sequence length n. We denote such strategies by q(n).

Definition 2 (Regret) The regret of a strategy q(n) on sequences of length n with respect
to a parametric constant model pθ is

R(xn, q(n)) =
n∑
t=1

− log q
(n)
t (xt|xt−1)− inf

θ∈Θ

n∑
t=1

− log pθ(xt|xt−1) = sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)
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We consider a generalization of the regret of Definition 2. This is because some strategies
are only defined conditioned on a fixed initial sequence of observations xm−1. For such cases,
we define the conditional regret of xn, given a fixed initial sequence xm−1, in the following
way (see Grunwald, 2007, chap. 11).

Definition 3 (Conditional Regret)

RΘ(xnm, q
(n)|xm−1) =

n∑
t=m

− log qt(xt|xt−1)− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xnm | xm−1)
.

Notice that the strategy q(n) defines only the conditional distribution q(n)(xnm | xm−1). We
call such a strategy a conditional strategy. In what follows, where we consider a conditional
strategy, we assume that xm−1 is such that these conditional distributions are always well
defined.

Definition 4 (NML) Given a fixed horizon n, the normalized maximum likelihood (NML)
strategy is defined via the joint probability distribution

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(y

n) dλn(yn)
,

provided that the integral in the denominator exists. For t ≤ n, the conditional probability
distribution is

p
(n)
nml(xt | x

t−1) =
p

(n)
nml(x

t)

p
(n)
nml(x

t−1)
,

where p
(n)
nml(x

t) and p
(n)
nml(x

t−1) are marginalized joint probability distributions of p
(n)
nml(x

n):

p
(n)
nml(x

t) =

∫
Xn−t

p
(n)
nml(x

n) dλn−t(xnt+1).

The regret of the NML strategy achieves the minimax bound, that is, q(n) = p
(n)
nml

minimizes maxxn R(xn, q(n)) (see, for e.g., Grunwald, 2007, chap. 6). Note that p
(n)
nml might

not be defined if the normalization is infinite. In many cases, for a sequence xm−1 and for
all n ≥ m, we can define the conditional probabilities

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(x
n)∫

Xn−m+1 supθ∈Θ pθ(x
n) dλn−m+1(xnm)

.

For these cases the conditional NML again attains the minimax bound, that is, q(n) = p
(n)
nml

minimizes maxxnm R(xnm, q
(n) | xm−1) (see Grunwald, 2007, chap. 11). In both cases, the

nml strategy is an equalizer, meaning that the regrets of all sequences of length n are equal.

Definition 5 (SNML) The sequential normalized maximum likelihood (SNML) strategy
has

psnml(xt | xt−1) =
supθ∈Θ pθ(x

t)∫
X supθ∈Θ pθ(x

t) dλ(xt)
.

3



Hedayati Bartlett

Notice that this update does not depend on the horizon. Under mild conditions, the re-
gret of SNML is no more than a constant (independent of n) larger than the minimax
regret (Kotlowski and Grunwald, 2011). Once again, psnml is not defined if the integral
in the denominator is infinite. In many cases, for a sequence xm−1 and for all n ≥ m,
the appropriate conditional probabilities are properly defined. We restrict our attention to
these cases.

Definition 6 (Bayesian) For a prior distribution π on Θ, the Bayesian strategy with π
is defined as

pπ(xt) =

∫
θ∈Θ

pθ(x
t) dπ(θ).

The conditional probability distribution is defined in the obvious way,

pπ(xt | xt−1) =
pπ(xt)

pπ(xt−1)
.

We denote the conditional Bayesian strategy for a fixed xm−1 as pπ(xnm | xm−1).

Jeffreys prior (Jeffreys, 1946) has the appealing property that it is invariant under
reparameterization.

Definition 7 (Jeffreys prior) For a parametric model pθ, Jeffreys prior is the distribu-
tion over the parameter space Θ that is proportional to

√
|I(θ)|, where I is the Fisher

information at θ (that is, the variance of the score, ∂/∂θ ln pθ(X), where X has density pθ).

Our main theorem uses the notion of exchangeability of stochastic processes.

Definition 8 (Exchangeable) A stochastic process is called exchangeable if the joint
probability does not depend on the order of observations, that is, for any n > 0, any xn ∈ X n,
and any permutation σ on {1, . . . , n}, the probability of xn is the same as the probability of
xn permuted by σ.

When we consider the conditional distribution p(xnm | xm−1) defined by a conditional
strategy, we are interested in exchangeability of the conditional stochastic process, that is,
invariance under any permutation that leaves xm−1 unchanged.

The asymptotic normality of the maximum likelihood estimator is the major regularity
condition of the parametric models that is required for our main result to hold.

Definition 9 (Asymptotic Normality of MLE) Consider a parametric constant model
pθ. We say that the parametric model has an asymptotically normal MLE if, for all θ0 ∈ Θ,

√
n
(
θ̂(xn) − θ0

)
d→ N

(
0, I-1 (θ0)

)
,

where I(θ) is the Fisher information at θ, xn is a sample path of pθ0, and θ̂(xn) is the

maximum likelihood estimate of θ given xn, that is, θ̂(xn) maximizes pθ(x
n).

Asymptotic normality holds for regular parametric models; for typical regularity condi-
tions, see for example, Theorem 3.3 in (Newey and McFadden, 1994).

For parametric models whose maximum likelihood estimates take values in a countable
set, we need the notion of a lattice MLE.
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Definition 10 (Lattice MLE) Consider a parametric model pθ with θ ∈ Θ ⊆ Rd. The
parametric model is said to have a lattice MLE with diminishing step-size hn, if for any
θ, the possible maximum likelihood estimates of n i.i.d random variables generated by pθ
are points in Θ that are of the form (b + k1hn, b + k2hn, · · · , b + kdhn), for some integers
k1, k2, · · · , kd and some real numbers b and hn. Additionally hn is positive and diminishes
to zero as n goes to infinity.

We are now ready to state and prove our main result.

3. Main Result

We show that in parametric models with an asymptotically normal MLE, the optimality
of a Bayesian strategy implies that the strategy uses Jeffreys prior. Furthermore we show
that the optimality of a Bayesian strategy is equivalent to the optimality of sequential
normalized maximum likelihood. This extends the result for canonical minimal exponential
family distributions from (Hedayati and Bartlett, 2012) to regular parametric models. Note
that NML is the unique optimal strategy, so when we say that some other strategy is
equivalent to NML, that is the same as saying that strategy predicts optimally.

Theorem 11 Suppose we have a parametric model pθ with an asymptotically normal MLE.
Assume that the MLE has a density with respect to Lebesgue measure or that the model has
a lattice MLE with diminishing step-size hn. Also assume that I(θ), the Fisher information
at θ is continuous in θ, and that, for all x, pθ(x) is continuous in θ. Also fix m > 0 and

xm−1, and assume that p
(n)
nml(x

n
m|xm−1) and pπ(xnm|xm−1) are well defined, where π is the

Jeffreys prior. Then the following are equivalent.

(a) NML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(b) NML = SNML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(x

n
m|xm−1).

(c) NML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(d) psnml(·|xm−1) is exchangeable.

(e) SNML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).
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(f) SNML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

The proof is in the appendix.

4. Examples

Example 1 This example is taken from (Hedayati and Bartlett, 2012). In this setting, the
experts are Bernoulli distributions,

pµ(xn) = µ(
∑n
i=1 xi)(1− µ)(n−

∑n
i=1 xi),

with parameter space (0, 1). Note that this model has a lattice MLE with diminishing step-
size 1/n. Because for a fixed n the possible maximum likelihood estimates are

1

n
,

2

n
,

3

n
, . . . ,

n− 1

n
.

The SNML is not defined for n = 1. However if xm−1 contains at least one 0 and one 1,
the conditional SNML strategy is defined. Fix x2 = 10. Consider x5 = (10011) and y5 =
(10110). Then x5 is a permutation of y5 with the initial x2 fixed. However psnml(x

5
3 | x2) =

psnml(011 | 10) = 0.0930 6= psnml(110 | 10) = psnml(y
5
3 | y2) = 0.0932. This means that

psnml( . | x2) is not exchangeable, hence based on our main theorem SNML and NML cannot
be equivalent and neither is equivalent to a Bayesian strategy.

Example 2 In this example the parametric family is the class of one-dimensional Gaussian
distributions with unknown mean and variance µ and σ2, i.e.

pµ,σ2(x) =
1√
2π

exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
+ log σ

}
.

The MLE is

µ̂n =
1

n

n∑
i=1

xi and σ̂2
n =

1

n

n∑
i=1

(xi − µ̂n)2 .

The conditional SNML satisfies

psnml(xn|xn−1) ∝
(
2πσ̂2

n

)−n
2 exp

{
−
∑n

i=1 (xi − µ̂n)2

2σ̂2
n

}

=
e−

n
2 n

n
2

(2π (n− 1))
n
2

1(
σ̂2
n−1 + 1

n (xn − µ̂n−1)2
)n

2

.

Normalizing we get:

psnml(xn|xn−1) =
Γ
(
n
2

)
Γ
(

1
2

)
Γ
(
n−1

2

) (nσ̂n−1)−
1
2

(
1 +

(xn − µ̂n−1)2

nσ̂2
n−1

)−n
2

.
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It can be shown (Kotlowski and Grunwald, 2011) that for n > 1

R(xn2 , psnml | x1)−R(xn−1
2 , psnml | x1)

=
n+ 1

2
log n− n

2
log(n− 1)− 1

2
log 2e+

Γ
(
n−1

2

)
Γ
(
n
2

) .

This shows that the conditional SNML is an equalizer and hence equivalent to the conditional
NML. Moreover, asymptotic normality holds for any µ ∈ R and any σ ∈ R+ and pµ,σ2(x)
is continuous in µ and σ2, hence Theorem 11 can be applied. This shows that conditional
SNML and NML are equivalent to a conditional Bayesian strategy under Jeffreys prior. A
direct computation of the Bayesian strategy with Jeffreys prior verifies this. Note that since
this example is not a canonical exponential family, the results of (Hedayati and Bartlett,
2012) cannot be applied here.

Example 3 In this example, the parametric family is the class of one-dimensional asym-
metric student-t distributions as defined in (Zhu and Galbraith, 2009) with unknown skew-
ness parameter α ∈ (0 , 1) and fixed left and right tail parameters v1 = v2 = 1, i.e.

pα(x) =


1
π

(
1 +

(
x

2α

)2)−1
for x ≤ 0 ,

1
π

(
1 +

(
x

2(1−α)

)2
)−1

for x > 0 .

(Zhu and Galbraith, 2009) established asymptotic normality of maximum likelihood esti-
mators in asymmetric student-t distributions. Note that additionally for any x, pα(x) is
continuous in α, hence Theorem 11 is applicable to this example. Proposition 2 in (Zhu and
Galbraith, 2009) shows that the Fisher information of pα is proportional to 1

α(1−α) . This

means that Jeffreys prior is proportional to 1√
α(1−α)

. After normalization we get 1

π
√
α(1−α)

.

Calculating the regret of the Bayesian strategy under Jeffreys prior shows that for a fixed
n > 0, the regret changes for different sequences of observations. For example, for n = 3,
and sequence of observations (1, 1,−1) the maximum likelihood estimate of α is 0.4136 and
the regret of the Bayesian strategy under Jeffreys prior is 1.1472. On the other hand if we
observe (2, 2,−2), the maximum likelihood estimate is 0.3777 with 1.1851 for regret. This
means that the Bayesian strategy under Jeffreys prior is not optimal because otherwise it
should have resulted in equal regrets for sequences of equal length. Furthermore Theorem 11
shows that no prior distribution on (0 , 1) can make the Bayesian strategy optimal and SNML
can not be optimal either.

5. Acknowledgments
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Appendix: Proof of Theorem 11

Fix xm−1 so that all of the relevant conditional distributions are defined. We prove that
(a), (b), and (c) are equivalent, and that (d), (e), and (f) are equivalent. The equivalence
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of (b) and (d) is Theorem 1 in (Hedayati and Bartlett, 2012).
(a) ⇒ (b): NML being equivalent to a Bayesian strategy means that NML is horizon-
independent. Hence for any m− 1 < t ≤ n,

p
(n)
nml(xt|x

t−1) = pπ(xt|xt−1) = p
(t)
nml(xt|x

t−1) = psnml(xt|xt−1),

which means that NML is equivalent to SNML.
(b) ⇒ (c): We use the asymptotic normality property to prove this below.
(c) ⇒ (a): This is immediate.
(d) ⇒ (e): We know that (d) and (b) are equivalent, and that (b) implies (a), but (b) and
(a) together imply (e).
(e) ⇒ (d): Since SNML is Bayesian, psnml(x

n) =
∫ ∏n

i=1 pθ (xi) d π(θ) for some prior dis-
tribution π on Θ. As

∏n
i=1 pθ (xi) does not depend on the order of observations, SNML is

exchangeable.
(e) ⇒ (f): (e) implies (d), which implies both (b) and (c), and together these imply (f).
(f) ⇒ (e): This is immediate.
The heart of the proof is verifying that
(b) ⇒ (c): NML being equivalent to SNML means that, for all m− 1 ≤ t ≤ n,

psnml(x
t | xm−1) = p

(n)
nml(x

t | xm−1) (1)

=

∫
supθ pθ(x

t, yn−t)d λn−t(yn−t)∫
supθ pθ(x

m−1, yn−m+1)d λn−m+1 (yn−m+1)

=

∫
pθ̂(xt,yn−t)

(xt, yn−t)d λn−t
(
yn−t

)∫
pθ̂(xm−1,yn−m+1)

(xm−1, yn−m+1)d λn−m+1 (yn−m+1)
,

where θ̂(xt,yn−t) is the maximum likelihood estimate upon observing xt, yn−t. As n goes to

infinity, θ̂(xt,yn−t) converges to θ̂yn−t . This is because as n goes to infinity, 1
n

[∑t
i=1 log pθ(xi)

]
in the following equation goes to zero :

θ̂(xt,yn−t) = arg max
θ∈Θ

1

n

 t∑
i=1

log pθ(xi) +

n−t∑
j=1

log pθ(yj)

 .
Now we rewrite Equation (1) in a different form. Let Cθ0∆θ be a hypercube centered at θ0

with all sides having length h, where ∆θ = hd, is the volume of the hypercube. Define

Snxt(θ0) =
{
zn−t

∣∣∣θ̂(xt,zn−t) ∈ Cθ0∆θ/
√
nd

}
,

where Cθ0
∆θ/
√
nd

is a hypercube that has volume ∆θ/
√
nd with all sides having length equal

to h/
√
n. Let PΘ

∆θ/
√
nd

be the largest collection of disjoint hypercubes Cθ0
∆θ/
√
nd

that fit in

Θ. Note that as ∆θ goes to zero PΘ
∆θ/
√
nd

covers the whole Θ. Define

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

∫
Sn
xt

(θ0) pθ0(xt)pθ0(yn−t)d λn−t
(
yn−t

)
∑

C
θ0

∆θ/
√
nd

∫
Sn
xm−1 (θ0) pθ0(xm−1)pθ0(yn−m+1)d λn−m+1 (yn−m+1)

.
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First of all we show that

lim
n→∞

lim
∆θ→0

| gn(xt, xm−1,∆θ)− p(n)
nml(x

t | xm−1) | = 0.

Since for all n, we have psnml(x
t | xm−1) = p

(n)
nml(x

t | xm−1) this implies that gn(xt, xm−1,∆θ)
converges to psnml(x

t | xm−1). Then we show that the limit of gn(xt, xm−1,∆θ) as n goes
to infinity and ∆θ goes to zero is a Bayesian conditional under Jeffreys prior. Now, it is
easy to see the following:

p
(n)
nml(x

t | xm−1)

=

∑
C
θ0

∆θ/
√
nd

∫
Sn
xt

(θ0) pθ̂(xt,yn−t)
(xt)pθ̂(xt,yn−t)

(yn−t)d λn−t
(
yn−t

)
∑

C
θ0

∆θ/
√
nd

∫
Sn
xm−1 (θ0) pθ̂(xm−1,yn−m+1)

(xm−1)pθ̂(xm−1,yn−m+1)
(yn−m+1)d λn−m+1 (yn−m+1)

.

The only difference between this and gn(xt, xm−1,∆θ) is that instead of θ0 we have the
parameter θ̂(xm−1,yn−m+1) for each hypercube. The distance between two points in each

hypercube is at most h
√
d/n, hence∣∣∣θ0 − θ̂(xt,yn−t)

∣∣∣ ≤ h√d

n
.

As ∆θ and consequently h go to zero, θ0 converges to θ̂(xt,yn−t) for the expressions in the

numerator and to θ̂(xm−1,yn−m+1) for those in the denominator. Due to the continuity of the
likelihood for each hypercube in the numerator, we have

lim
∆θ→0

pθ0
(
xt, yn−t

)
= pθ̂(xt,yn−t)

(
xt, yn−t

)
.

Similarly, for each hypercube in the denominator we have

lim
∆θ→0

pθ0
(
xm−1, yn−m+1

)
= pθ̂(xm−1,yn−m+1)

(
xm−1, yn−m+1

)
.

Hence gn(xt, xm−1,∆θ) converges to p
(n)
nml(x

t | xm−1). Furthermore as n goes to infinity the
NML probability does not change, because it is equivalent to SNML and thus is horizon-
independent. This means limn→∞ lim∆θ→0 g

n(xt, xm−1,∆θ) = psnml(x
t | xm−1).

Next we show that the limit of gn(xt, xm−1,∆θ) as n goes to infinity and ∆θ goes to zero
is a Bayesian conditional under Jeffreys prior, which completes the proof. The following is
easy to see:

pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
=

∫
Sn
xt

(θ0)
pθ0(yn−t)d λn−t

(
yn−t

)
.

Moreover, we have

pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
= pθ0

(
θ̂(xt,Y n−t) − θ0 ∈ C0

∆θ/
√
nd

)
(2)

= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈

√
nC0

∆θ/
√
nd

)
(3)

= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
. (4)
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Hence ∫
Sn
xt

(θ0)
pθ0(yn−t)d λn−t

(
yn−t

)
= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
.

Also,

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

pθ0(xt)pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
∑

C
θ0

∆θ/
√
nd

pθ0(xm−1)pθ0

(√
n(θ̂(xm−1,Y n−m+1) − θ0) ∈ C0

∆θ

) .
Let Fnxt,θ0(.) be the cumulative distribution function of the random variable

√
n(θ̂(xt,Y n−t) − θ0)

when the data is i.i.d. and generated by pθ0(·). Define Fnxm−1,θ0
(·) similarly. With these

definitions,

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

pθ0(xt)Fnxt,θ0

(
C0

∆θ

)
∑

C
θ0

∆θ/
√
nd

pθ0(xm−1)Fn
xm−1,θ0

(
C0

∆θ

) .
Now we find the limit as ∆θ goes to zero. There are two possibilities: either the MLE has a
density with respect to Lebesgue measure or the model has a lattice MLE with diminishing
step-size hn. In the latter case, upon constructing PΘ

∆θ/
√
nd

, we choose the hypercubes so

that all points of the form (b+k1hn, b+k2hn, · · · , b+kdhn) in Θ are centers of some hyper-
cubes. Furthermore we make sure that each of these hypercubes contains at most one point
of the form (b+k1hn, b+k2hn, · · · , b+kdhn), namely the center. Let ∆θn be small enough to
make this phenomenon hold. This construction makes many hypercubes Cθ0

∆θn/
√
nd

void of

maximum likelihood points. Let us abbreviate pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
in Equation (2)

by Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
. Equation (2) shows that Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
= Fnxt,θ0

(
C0

∆θn

)
. Many

of Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
are zero, namely those with θ0 that do not correspond to a θ̂(xt,yn−t),

hence: ∑
C
θ0
∆θn√
nd

pθ0(xt)Fnxt,θ0
(
C0

∆θn

)
=
∑
C
θ0
∆θn√
nd

pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)

=
∑

θ0∈Θ̂n
xt

pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
,

where Θ̂n
xt =

{
θ ∈ Θ | ∃ yn−t s.t. θ̂(xt,yn−t) = θ

}
. Furthermore we have the following.

gn(xt, xm−1,∆θn) =

∑
θ0∈Θ̂n

xt
pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
∑

θ0∈Θ̂n
xm−1

pθ0(xm−1)Gn
xm−1,θ0

(
Cθ0

∆θ/
√
nd

) .
10



Optimality of Jeffreys Prior for Online Density Estimation

Note that Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
is the probability that θ̂(xt,Y n−t) equals θ0 where Y n−t are

n− t random variables generated by pθ0 in an i.i.d fashion.
As n goes to infinity, the distribution of θ̂(xt,Y n−t) becomes independent of xt. This is

because 1
n

∑t
i=1 log pθ(xi) converges to zero for all θ, and θ̂(xt,Y n−t) converges in probablity

to θ0. This along with the asymptotic normality of MLE implies that for all θ0 ∈ Θ̂xt,n,
Gnxt,θ0 (·) converges to the density of a multivariate normal distribution with mean θ0 and

covariance matrix I−1(θ0). A simple computation shows that the limit of Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
as n goes to infinity is

√
nd |I(θ0)| /(2π)d. Now we construct hypercubes of sides of length

hn and centers from Θ̂n
xt for the numerator and from Θ̂n

xm−1 for the denominator. Let δn be
the volume of each of these hypercubes. It is obvious that δn diminishes to zero as n goes
to infinity. Using Riemann integral and the continuity of Fisher information and likelihood
we get:

lim
n→∞

gn(xt, xm−1,∆θn) = lim
n→∞

∑
θ0∈Θ̂n

xt
pθ0(xt)Gnxt,θ0

(
Cθ0

∆θ/
√
nd

)
δn∑

θ0∈Θ̂n
xm−1

pθ0(xm−1)Gn
xm−1,θ0

(
Cθ0

∆θ/
√
nd

)
δn

=

∫
Θ pθ(x

t)
√
|I(θ)| dθ∫

Θ pθ(x
m−1)

√
|I(θ)| dθ

which shows that the strategy is Bayesian with Jeffreys prior. On the other hand if MLE
has a density with respect to Lebesgue measure then we get the following:

lim
∆θ→0

1√
nd

∑
C
θ0
∆θ√
nd

pθ0(xt)Fnxt,θ0
(
C0

∆θ

)
= lim

∆θ→0

1√
nd

∑
C
θ0

∆θ/
√
nd

pθ0(xt)

(
Fnxt,θ0

(
C0

∆θ

)
∆θ/
√
nd

)
∆θ√
nd

= lim
∆θ→0

∑
C
θ0

∆θ/
√
nd

pθ0(xt)

(
Fnxt,θ0

(
C0

∆θ

)
∆θ

)
∆θ√
nd

=

∫
Θ
pθ0(xt)fnxt,θ0(0)d θ0,

where fnxt,θ0(·) is the density of Fnxt,θ0 . This means that

gn(xt, xm−1) ≡ lim
∆θ→0

gn(xt, xm−1,∆θ) =

∫
Θ pθ0(xt)fnxt,θ0(0)d θ0∫

Θ pθ0(xm−1)fn
xm−1,θ0

(0)d θ0
. (5)

As n goes to infinity, the distribution of θ̂(xt,Y n−t) becomes independent of xt. This is

because 1
n

∑t
i=1 log pθ(xi) converges to zero for all θ, and θ̂(xt,Y n−t) converges in probablity

to θ0. This along with the asymptotic normality of MLE shows that as n goes to infinity
we get the following convergence

√
n
(
θ̂(xt,Y n−t) − θ0

)
d→ N

(
0, I−1 (θ0)

)
.

11
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Let Fθ0(·) be the cumulative distribution function of the multivariate normal distribution
with mean 0 and covariance matrix I−1(θ0). Asymptotic normality implies that

Fnxt,θ0
(
C0

∆θ

)
→ Fθ0(C0

∆θ).

This means that fnxt,θ0(θ0) converges to the density of a multivariate normal distribution

with mean 0 and covariance matrix I−1(θ0). A simple computation shows that this value
is
√
|I(θ0)| /(2π)d. Now the only concern is whether we can take the limit of n→∞ inside

the integral in Equation (5). We let knxt(θ) =

√
(2π)dfnxt,θ(0), hence Equation (5) becomes:

gn(xt, xm−1) =

∫
Θ pθ(x

t)knxt(θ)dθ∫
Θ pθ(x

m−1)kn
xm−1(θ)dθ

.

As fnxt,θ(θ) converges to
√
I(θ0)/(2π)d when n goes to infinity, knxm−1(θ) and knxt(θ) converge

to
√
| I(θ) | as n goes to infinity. Now we use Lebesgue’s dominated convergence theorem

(Weisstein, 2012b) and Fatou’s lemma (Weisstein, 2012a) to show that limit and integral
are interchangeable. Fatou’s lemma shows that :∫

Θ
pθ(x

m−1)
√
| I(θ) |dθ ≤ lim

n→∞

∫
Θ
pθ(x

m−1)knxm−1(θ)dθ.

Let

hnxt(θ) =
pθ(x

t)knxt(θ)

lims→∞
∫

Θ pθ(x
m−1)ks

xm−1(θ)dθ
.

As n goes to infinity, knxt(θ) approaches
√
| I(θ) | . Hence for ε =

√
| I(θ) | there exists an

nθ such that | knxt(θ)−
√
| I(θ) | | ≤ ε for n > nθ.

Therefore for n > nθ we have knxt(θ) ≤ 2
√
| I(θ) | , and

hnxt(θ) ≤
2pθ(x

t)
√
| I(θ) |∫

Θ pθ(x
m−1)

√
| I(θ) |dθ

.

Now let h̄nxt(θ) = hnxt(θ) for n > nθ and zero otherwise. For all n and θ ∈ Θ we have :

h̄nxt(θ) ≤
2pθ(x

t)
√
| I(θ) |∫

Θ pθ(x
m−1)

√
| I(θ) |dθ

.

It is obvious that the limits of both are equal as n goes to infinity. Furthermore, note that
h̄nxt(θ) is upper bounded by an integrable function, namely twice the conditional Bayesian
density of xt under Jeffreys prior given xm−1. We know that the conditional Bayesian
density of xt under Jeffreys prior given xm−1 is integrable from the assumption of the
theorem. Consequently Lebesgue’s dominated convergence theorem is applicable here:

lim
n→∞

gn(xt, xm−1) = lim
n→∞

∫
Θ
hnxt(θ)d θ

= lim
n→∞

∫
Θ
h̄nxt(θ)d θ

=

∫
Θ

lim
n→∞

h̄nxt(θ)d θ

=

∫
Θ pθ(x

t)
√
| I(θ) |

limn→∞
∫

Θ pθ(x
m−1)kn

xm−1(θ)dθ
.
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Also, we have

lim
n→∞

∫
Θ
pθ(x

m−1)knxm−1(θ)dθ =

∫
Θ

lim
n→∞

pθ(x
m−1)knxm−1(θ)dθ

=

∫
Θ
pθ(x

m−1)
√
| I(θ) |dθ,

because otherwise psnml(x
t | xm−1) = limn→∞ g

n(xt, xm−1) = limn→∞
∫

Θ h̄
n
xt(θ)d θ would

not be a distribution. Hence we get:

lim
n→∞

lim
∆θ→0

gn(xt, xm−1,∆θ) =

∫
Θ pθ(x

t)
√
I(θ)dθ∫

Θ pθ(x
m−1)

√
I(θ)dθ

.

Notice that the proof does not use any properties of the Fisher information matrix.
Thus, if the MLE is asymptotically normal with covariance V (θ), then an optimal Bayesian
strategy has prior proportional to

√
|V (θ)|.
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