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Abstract

We study online prediction of individual se-
quences under logarithmic loss with paramet-
ric constant experts. The optimal strategy,
normalized maximum likelihood (NML), is
computationally demanding and requires the
length of the game to be known. We con-
sider two simpler strategies: sequential nor-
malized maximum likelihood (SNML), which
computes the NML forecasts at each round as
if it were the last round, and Bayesian pre-
diction. Under appropriate conditions, both
are known to achieve near-optimal regret. In
this paper, we investigate when these strate-
gies are optimal. We show that SNML is opti-
mal iff the joint distribution on sequences de-
fined by SNML is exchangeable. This prop-
erty also characterizes the optimality of a
Bayesian prediction strategy for an exponen-
tial family. The optimal prior distribution is
Jeffreys prior.

1 Introduction

The aim of online learning under logarithmic loss is
to predict a sequence of outcomes xi ∈ χ, revealed
one at a time, almost as well as a set of experts.
At round t, the forecaster’s prediction takes the form
of a conditional probability density qt(·|xt−1), where
xt−1 ≡ (x1, x2, · · · , xt−1) and the density is with re-
spect to a fixed measure λ on χ. For example, if χ is
discrete, λ could be the counting measure; for χ = <d,
λ could be Lebesgue measure. The loss that the fore-
caster suffers at that around is − log qt(xt|xt−1), where
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xt is the outcome revealed after the forecaster’s pre-
diction. The performance of the prediction strategy
is measured relative to the best in a reference set of
experts. The difference between the accumulated loss
of the prediction strategy and the best expert in the
reference set is called the regret. The goal is to min-
imize the regret in the worst case over all possible
data sequences. In this paper, we only consider i.i.d
canonical exponential families, parametrized by θ ∈ Θ,
which is a subset of the class of parametric constant
experts. A parametric constant expert is a parameter-
ized probability density pθ such that for all t > 0 and
for all x ∈ χ , pθ

(
x|xt−1

)
= pθ (x).

Let xn ≡ (x1, x2, · · · , xn), xnm ≡
(xm, xm+1, · · · , xn) and x0 ≡ (). We call any
sequential probability assignment of the form
qt(·|xt−1), a strategy. The regret of a strategy
on sequence xn with respect to a class of parametric
constant experts indexed by Θ, is defined as follows.

Definition 1 (Regret)

RΘ(xn, q(n)) =

n∑
t=1

− log qt(xt|xt−1)

− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1) = sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)

Note that any sequential probability assignment of
length n defines a joint distribution on the n out-
comes and vice versa [see Cesa-Bianchi and Lugosi,
2006, pg. 248]. In our definition of regret, q(n) de-
notes the joint probability defined by the product of
the n sequential probability assignments qt(xt|xt−1).
Note that q1(x1|x0) = q1(x1).

The optimal strategy for this problem is known to
be normalized maximum likelihood (NML) [see Grun-
wald, 2007, chap. 7] and see Definition 3 below. NML
suffers from two major drawbacks: the horizon n of the
problem needs to be known in advance, and the strat-
egy can be computationally expensive since it involves
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marginalizing over subsequences. In this paper, we
consider the optimality of two approaches that address
these difficulties: Bayesian strategies, and sequential
normalized maximum likelihood (SNML): For what
classes is SNML optimal; for what classes does there
exist a prior for which the Bayesian strategy is optimal;
and, in those cases, what is the optimal prior? For cer-
tain parametric classes of experts, Bayesian prediction
with a particular choice of prior (Jeffreys prior) has
been shown to be asymptotically optimal [see Grun-
wald, 2007, chaps 7,8]. SNML is within a constant of
the minimax regret [Kotlowski and Grunwald, 2011].
We give characterizations of the optimality of these
strategies in terms of an elementary property of the
joint distribution defined by the SNML strategy. We
show that SNML is optimal precisely when its joint
distribution is exchangeable. In the case of canonical
exponential family distributions on <d, that is,

pθ(x) = h(x) exp (xᵀθ −A(θ)) ,

where θ, x ∈ <d, h is a reference measure, and the
log normalization A ensures that pθ is a probability
distribution, we show that the optimal strategy is a
Bayesian strategy iff SNML is exchangeable and in this
case the optimal prior is Jeffreys prior.

2 Definitions and Notations

We consider a generalization of the regret of Defi-
nition 1. To motivate it consider the setting where
Θ = R and the experts take the form of a normal dis-
tribution of mean θ ∈ Θ and variance one. The regret
on a sequence of length n = 1 is

R(x1, q
(1)) =

1

2
log 2π − log q1(x1).

Furthermore, as x goes to ∞, q1(x) should go to zero
(since it is a probability distribution), so the regret can
be arbitrarily large. For such cases we define the condi-
tional regret of xn, given a fixed initial sequence xm−1,
in the following way [see Grunwald, 2007, chap. 11].

Definition 2 (Conditional Regret)

RΘ(xnm, q
(n)|xm−1)

=

n∑
t=m

− log qt(xt|xt−1)

− inf
θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xnm|xm−1)

Notice that the strategy q(n) defines only the con-
ditional distribution q(n)(xnm|xm−1). We call such a

strategy a conditional strategy. In what follows, where
we consider a conditional strategy, we assume that
xm−1 is such that these conditional distributions are
always well defined.

Definition 3 (NML) Given a fixed horizon n, the
normalized maximum likelihood (NML) strategy is de-

fined via the joint probability distribution p
(n)
nml, defined

as

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
χn

supθ∈Θ pθ(y
n) dλn(yn)

,

provided that the integral in the denominator exists.
For t ≤ n, the conditional probability distribution is

p
(n)
nml(xt|x

t−1) =
p

(n)
nml(x

t)

p
(n)
nml(x

t−1)
,

where p
(n)
nml(x

t) and p
(n)
nml(x

t−1) are marginalized joint

probability distributions of p
(n)
nml(x

n):

p
(n)
nml(x

t) =

∫
χn−t

p
(n)
nml(x

n) dλn−t(xnt+1).

The regret of the NML strategy achieves the min-

imax bound, that is, q(n) = p
(n)
nml minimizes

maxxn R
Θ(xn, q(n)). Furthermore, this strategy is an

equalizer, meaning that the regrets of all sequences of

observations of length n are equal. Note that p
(n)
nml

might not be defined if the normalization is infinite.
In some cases, there exits an m > 0, such that for all
n ≥ m, we can define the conditional probabilities

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(x
n)∫

χn−m+1 supθ∈Θ pθ(x
n) dλn−m+1(xnm)

.

For these cases the conditional NML again attains

the minimax bound, that is, q(n) = p
(n)
nml minimizes

maxxnm R
Θ(xnm, q

(n)|xm−1) [see Grunwald, 2007, chap.
11].

Definition 4 (SNML) In the sequential normalized
maximum likelihood (SNML) update, the conditional
probability distribution is defined in the following way.

psnml(xt|xt−1) ==
supθ∈Θ pθ(x

t)∫
χ

supθ∈Θ pθ(x
t) dλ(xt)

.

This update does not depend on the horizon. Under
mild conditions, the regret of SNML is no more than a
constant (independent of n) larger than the minimax
regret [Kotlowski and Grunwald, 2011]. Once again,
psnml is not defined if the integral in the denomina-
tor is infinite. In some cases, there exists an m > 0,
such that for all n ≥ m, the appropriate conditional
probabilities are properly defined.
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Definition 5 (Bayesian) In a Bayesian strategy,
the joint probability for t observations xt, is defined
in the following way:

pπ(xt) =

∫
θ∈Θ

pθ(x
t) dπ(θ)

And the conditional probability distribution is:

pπ(xt|xt−1) =
pπ(xt)

pπ(xt−1)

We denote the conditional Bayesian strategy for a fixed
xm−1 as pπ(xnm|xm−1).

We shall focus on Bayesian strategies for canonical ex-
ponential family distributions. Under mild conditions,
the regret of this strategy is no more than a constant
(independent of n) larger than the minimax regret, and
for Jeffreys prior, the regret asymptotically approaches
the minimax regret [see Grunwald, 2007, chaps. 7,8].

3 Main Results

First, we show in Theorem 3.1 that SNML and NML
are equivalent if and only if psnml is exchangeable.
This implies that NML is horizon-independent. Then,
we show in Theorem 3.2 that exchangeability of psnml
further implies the equivalence of NML, the Bayesian
strategy with Jeffreys prior, and SNML. This theorem
shows that the SNML and the Bayesian strategy with
Jeffreys prior are optimal.

A stochastic process is called exchangeable if the joint
probability does not depend on the order of observa-
tions. In other words, for any n > 0 and any permuta-
tion σ, the joint probability of the first n observations
is equal to the joint probability of the same n observa-
tions permuted under σ. When we consider the con-
ditional distribution p(xnm|xm−1) defined by a condi-
tional strategy, we are interested in exchangeability of
the conditional stochastic process, that is, invariance
under any permutation that leaves xm−1 unchanged.
Now we are ready to state and prove our main results.
The first result applies to any class (countable or un-
countable) for which the conditional strategies SNML
and NML are defined.

Theorem 3.1 SNML is equivalent to NML and hence
is minimax optimal if and only if psnml is exchange-
able.

Proof Fix the xm−1. Write the conditional regret un-

der SNML in the following way.

RΘ
snml(x

n|xm−1) ≡ RΘ(xnm, psnml|xm−1) =

log sup
θ∈Θ

pθ(x
n) − log psnml(x

n
m|xm−1) =

log
pθ̂(x

n)

psnml(xnm|xm−1)
,

where θ̂ is the maximum likelihood estimate of xn.
Now we show that the regret of SNML is independent
of xn:

psnml(x
n
m|xm−1) = psnml(xn|xn−1)psnml(x

n−1
m |xm−1)

=
pθ̂(x

n)∫
supθ pθ(x

n−1, x) dx
psnml(x

n−1
m |xm−1).

Combining the two previous equations, we get:

RΘ
snml(x

n|xm−1) = log

∫
supθ pθ(x

n−1, x) dx

psnml(x
n−1
m |xm−1)

. (1)

Therefore the regret is independent of the last obser-
vation. Now, we show that if psnml is exchangeable,
then the regret becomes independent of other observa-
tions, which implies that it is an equalizer and hence
equivalent to NML. Let yn = xm−1znm be a sequence
of observations where znm is different from xnm. We
show that the regret of yn is equal to that of xn. Un-
der any permutation of xnm, sup θ∈Θ pθ (xn) does not
change due to the fact that pθ(x

n) =
∏n
i=1 pθ(xi). On

the other hand psnml(·|xm−1) is exchangeable meaning
that psnml

(
xnm|xm−1

)
is permutation invariant. Con-

sequently, for any permutation σ of xn that leaves
xm−1 fixed, RΘ

snml(x
n|xm−1) = RΘ

snml(σ(xn)|xm−1).
These two properties give us the following.

RΘ
snml(x

m−1, xnm|xm−1) =

RΘ
snml(x

m−1, xm, . . . , xn−1, ym|xm−1) =

RΘ
snml(x

m−1, ym, xm+1, . . . , xn−1, xm|xm−1) =

RΘ
snml(x

m−1, ym, xm+1, . . . , xn−1, ym+1|xm−1) =

RΘ
snml(x

m−1, ym, ym+1, xm+2, . . . , xn−1, xm+1|xm−1).

Continuing inserting ym+i at the last position and
swapping it with xm+i we see that RΘ

snml(x
n|xm−1) =

RΘ
snml(y

n|ym−1) (remember ym−1 = xm−1). This
means that SNML is an equalizer and hence it is equiv-
alent to conditional normalized maximum likelihood.
Now, we prove the other direction. If SNML is equiv-
alent to NML, meaning that for any n ≥ m and any
xnm,

psnml(x
n
m|xm−1) = p

(n)
nml(x

n
m|xm−1) =

p
(n)
nml(x

n)

p
(n)
nml(x

m−1)

then SNML is exchangeable. This is because

p
(n)
nml(x

n) ∝ sup
θ

n∏
i=1

pθ(xi)
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which makes the probability permutation invariant
and hence exchangeable. That is for any n and xnm
the conditional probability psnml(x

n
m|xm−1) is invari-

ant over permutations of xnm.

The next theorem shows that some Bayesian strategy
is optimal for a canonical exponential family iff SNML
is exchangeable. In that case, the optimal prior is Jef-
freys prior.

Theorem 3.2 Suppose the class of parametric con-
stant experts is a canonical maximal exponential fam-
ily as defined in Lemma 3.3 below, and psnml satisfies
Equation (3). Then the following are equivalent.

(a) SNML is exchangeable

(b) SNML = NML

(c) SNML = Bayesian

(d) SNML = Bayesian with Jeffreys prior

(e) NML = Bayesian

(f) NML = Bayesian with Jeffreys prior

Proof See the appendix.

For the proof of this theorem we need a different no-
tion of exchangeability called Q-exchangeability. De
Finetti’s theorem says that a binary stochastic pro-
cess is exchangeable if and only if it is a mixture of
Bernoulli distribution, i.e. for any n > 0

p(xn) =

∫
θ∈[0,1]

θ(
∑n
i=1 xi)(1− θ)(n−

∑n
i=1 xi)π(θ) dθ

and the prior in this equation is unique. Freedman and
Diaconis extended this to exponential families [Diaco-
nis and Freedman, 1990], as follows.

Lemma 3.3 A general stochastic process p is a
mixture of a canonical maximal exponential family
pθ(x) = h(x)ex

ᵀθ -A(θ) over Θ = {θ ∈ <d|A(θ) < ∞}
where h is positive, finite, and locally integrable Borel
function on <d, if and only if ∀n > 0

p

(
x1, · · · , xn|

n∑
i=1

xi = s

)
=

∏n
i=1 h(xi)

h(n)(s)
(2)

and

p

(
h(n)

(
n∑
i=1

xi

)
<∞

)
= 1 (3)

where h(n) is the nth convolution of h, i.e.

h(n)(s) =

∫
∑n
i=1 xi=s

n∏
i=1

h(xi)d x1 · · · d xn (4)

A p satisfying (2) and (3) is called Q-exchangeable.

4 Examples

Bernoulli Distribution In this setting, the experts

are Bernoulli distributions, pµ(xn) = µ(
∑n
i=1 xi)(1 −

µ)(n−
∑n
i=1 xi) with parameter space (0, 1). Con-

verting this to the canonical form we get pθ =
exp

(∑n
i=1 xiθ − log

(
eθ + 1

))
with Θ = <, where we

use the transformation θ = ln µ
1−µ . The SNML is not

defined for n = 1. However if xm−1 contains at least
one 0 and one 1, the conditional SNML strategy is de-
fined. Fix x2 = 10. Consider x5 = (10011) and y5 =
(10110). Then x5 is a permutation of y5 with the ini-
tial x2 fixed. However psnml(x

5
3|x2) = psnml(011|01) =

0.0930 6= psnml(110|01) = psnml(y
5
3 |y2) = 0.0932.

This means that psnml( . |x2) is not exchangeable,
hence SNML and NML cannot be equivalent and nei-
ther is equivalent to a Bayesian strategy. It turns
out that the regret of SNML in this case is bet-
ter than Bayesian with Jeffreys prior but worse than
NML [Azoury and Warmuth, 2001].

Exponential Distribution The distributions are of
the form pθ(x) = 1

θ e
−x/θ with Θ = (0,∞). It is easy

to check that for n = 1, psnml(x) ∝ 1
xe
−x/x = 1

x
which does not normalize. Jeffreys prior is propor-
tional to 1/θ which does not normalize either. How-
ever for x1, subsequent conditionals for Bayesian with
Jeffreys prior and SNML will be properly defined. For
n > 1 we have

psnml(xn|xn−1) ∝ sup
θ
pθ(x

n)

=
1∑n
i=1 xi
n

e

(
−
∑n
i=1 xi∑n
i=1

xi
n

)
∝ 1

(
∑n
i=1 xi)

n

Normalizing this we get

psnml(xn|xn−1) =
(n− 1)n

(∑n−1
i=1 xi
n−1

)n−1

(
∑n
i=1 xi)

n

This shows that conditioned on x1, the joint probabil-
ity depends on the sum of the observations only. This
in turns implies exchangeability which in turn implies
that SNML and NML are equivalent. On the other
hand, since this is an instance of an exponential fam-
ily distribution satisfying the conditions of Theorem
3.2, we can conclude that SNML and NML are also
equivalent to the Bayesian strategy with Jeffreys prior,
conditioned on the first observation. It is straightfor-
ward to verify this.

Appendix

Proof of Theorem 3.2 Fix an appropriate xm−1 as
before.
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(a) ⇐⇒ (b) : We showed this in Theorem 3.1.

(b) ⇒ (c) : psnml(x
n
m|xm−1) = p

(n)
nml(x

n
m|xm−1)

For ease of notation we let q(xnm) ≡ psnml(xnm|xm−1) =

p
(n)
nml(x

n
m|xm−1). Let

∑m−1
i=1 xi = t, and let

∑n
i=m xi =

s. The maximum likelihood estimate is then θ̂ =
(OA)

−1 ( s+t
n

)
. We have

q(xnm|
n∑

i=m

xi = s) =
q(xnm)∫∑n

i=m x̄i=s
q(x̄nm) dx̄m · · · dx̄n

=
p

(n)
nml(x

n
m|xm−1)∫∑n

i=m x̄i=s
p

(n)
nml(x̄

n
m|xm−1)d x̄m · · · , d x̄n

=
p

(n)
nml(x

n)/p
(n)
nml(x

m−1)∫∑n
i=m x̄i=s

p
(n)
nml(x

m−1, x̄nm)d x̄m · · · , d x̄n/p(n)
nml(x

m−1)

=

∏n
i=m h(xi)e

(s+t)ᵀθ̂-nA(θ̂)∫∑n
i=m x̄i=s

∏n
i=m h(x̄i)e(s+t)ᵀθ̂-nA(θ̂)dx̄m · · · dx̄n

=

∏n
i=m h(xi)

h(n−m+1)(s)
.

Furthermore, psnml(h
(n−m+1)(

∑n
i=m xi) < ∞) =

1, and therefore q( . ) ≡ psnml( . |xm−1) is Q-
exchangeable and hence a mixture of h(x)ex

ᵀθ−A(θ).

q(xnm) ≡ psnml(xnm|xm−1) =

∫
pθ(x

n
m)π(θ) dθ. (5)

Now we let

π1(θ) = K × π(θ)

pθ(xm−1)
(6)

for a K > 0, so that π1 is a density. Substituting this
into Equation (5) we get:

psnml(x
n
m|xm−1) =

∫
Θ
pθ(x

n)π1(θ) dθ∫
Θ
pθ(xm−1)π1(θ) dθ

Hence, there exists a prior that makes the process
Bayesian.

(c) ⇒ (d) : We showed in the proof of the pre-
vious statement that

psnml(x
n
m|xm−1) =

∫
θ

pθ(x
n
m)π(θ)dθ

=

∫
θ
pθ(x

n)π1(θ)dθ∫
θ
pθ(xm−1)π1(θ)dθ

Now, we consider the regret of psnml(x
n−1
m |xm−1). If

the maximum likelihood estimate θ̂ lies in a fixed,
bounded, closed subset of Θ which is bounded away
from the boundary of Θ, then the regret of a Bayesian
strategy with prior w is [see Grunwald, 2007, chap. 8]:

d

2
log

n

2π
− logw(θ̂) + log

√
detI(θ̂) + o(1),

We apply this theorem to zn−m+1 ≡ xnm and π. Note

that θ̂xnm , is the maximum likelihood estimate of xnm.
The reason we can apply Grunwald’s theorem here is
twofold. First, the maximum likelihood estimate al-
ways exists because the family is full rank and A in-
vertible. Second, the parameter space Θ is open and
for any maximum likelihood estimate there should ex-
ist a bounded subset that contains the maximum like-
lihood estimate and is bounded away from the bound-
ary of the parameter space. Let’s denote the regret of
a Bayesian strategy with prior π on a sequence zp by
RΘ
π (zp) and the regret of SNML on zp by RΘ

snml(z
p).

Then

RΘ
π (zn−m+1) = RΘ

snml(x
n
m) =

d

2
log

n−m+ 1

2π

− log π(θ̂xnm) + log

√
detI(θ̂xnm) + o(1)

However, here we are calculating the conditional re-
gret. It is easy to verify the following relationship:

RΘ(xnm) = RΘ(xnm|xm−1)− log sup
θ
pθ(x

n) + log sup
θ
pθ(x

n
m)

Hence for conditional SNML we get the following,
where n1 = n−m+ 1:

RΘ
snml(x

n
m|xm−1) = RΘ

snml(x
n
m) +

log sup
θ
pθ(x

n)− log sup
θ
pθ(x

n
m)

=
d

2
log

n1

2π
− log π(θ̂xnm) + log

√
detI(θ̂xnm)

+o(1) + log
pθ̂xn (xn)

pθ̂xnm
(xnm)

(7)

If conditional SNML is Bayesian then it is exchange-
able, and hence because (a) ⇒ (b) , conditional SNML
is also equivalent to conditional NML and hence has
equal regret for all xnm. Hence the conditional regret
in (7) should not vary for fixed n and different xnm. We
denote the value of this regret as cn1

(xm−1), empha-
sizing the fact that it depends on n1 and xm−1 only.
Simplifying (7) we get

π(θ̂xnm) =
(n1

2π

)d/2
×
√

detI(θ̂xnm)

× eo(1)

cn1
(xm−1)

×
pθ̂xn (xn)

pθ̂xnm
(xnm)

(8)

Fix θ0 = θ̂xnm . We let N = kn1 (k is a positive integer).
There exists a sequence yN whose maximum likelihood
estimate is θ0. This sequence is nothing but k copies of
xnm, concatenated. The family is of full rank, therefore
A is strictly convex and its gradient invertible. This
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means θ̂Y N , the maximum likelihood of Y N , is

θ̂Y N = (OA)
−1

(∑N
i=1 yi
N

)
=

(OA)
−1

(
k ×

∑n−1
i=m xi

n1k

)

= (OA)
−1

(∑n
i=m xi
n1

)
= θ̂xnm = θ0.

As N grows to infinity then θ̂(xmY N ) → θ̂Y N = θ0.

This means that
pθ̂xn

(xn)

pθ̂xnm
(xnm) in Equation (8) converges

to pθ0(xm−1) as N →∞. Using this and Equation (8)
we get:

lim
N→∞

π(θ̂Y N ) = π(θ0)

=
√

detI(θ0)pθ0(xm−1)×

lim
N→∞

(
N

2π

)d/2
1

cN (xm−1)

Since cN (xm−1) does not depend on θ0, π(θ0) =
c(xm−1)pθ0(xm−1)

√
detI(θ0), for some function c.

Hence π(θ) ∝ pθ(x
m−1)

√
detI(θ), which in turn by

Equation (6) means π1(θ) ∝
√

detI(θ).

(d) ⇒ (e) : This is because, SNML being Bayesian
implies exchangeability of SNML and hence SNML
is equal to NML (by (a) ⇒ (b) ) which makes NML
Bayesian too.

(e) ⇒ (b) : NML being Bayesian means that there
exists a prior π, such that for any n > m and xnm we
have

p
(n)
nml(x

n
m|xm−1) =

∫
pθ(x

n)π(θ)dθ∫
pθ(xm−1)π(θ)dθ

Let A(n) =
∫

supθ pθ(x
m−1, zn−m+1) dzn−m+1.

p
(n−1)
nml (xn−1

m |xm−1) =
supθ pθ(x

n−1)

A(n− 1)

We can also get p
(n−1)
nml by marginalizing p

(n)
nml (re-

member NML is horizon independent because it is
Bayesian):

p
(n−1)
nml (xn−1

m |xm−1) =

∫
x

p
(n)
nml(x

n−1
m , x|xm−1)dx =∫

x

sup
θ

pθ(x
n−1, x)

A(n)
dx

Therefore

supθ pθ(x
n−1)

A(n− 1)
=

∫
x

sup
θ

pθ(x
n−1, x)

A(n)
dx

Hence∫
x

sup
θ
pθ(x

n−1, x) dx =
A(n)

A(n− 1)
sup
θ
pθ(x

n−1) (9)

We know from Equation (1) that the conditional regret
of xn under SNML is

RΘ
snml(x

n|xm−1) = log

( ∫
supθ pθ(x

n−1, x) dx

psnml(x
n−1
m |xm−1)

)
using Equation (9) we get

RΘ
snml(x

n|xm−1) = log[
A(n)

A(n− 1)

× supθ pθ(x
n−1)

psnml(x
n−1
m |xm−1)

]

= RΘ
snml(x

n−1|xm−1) + log
A(n)

A(n− 1)

Continuing this we get

RΘ
snml(x

n|xm−1) = RΘ
snml(x

m−1|xm−1) +
n∑

i=m

log
A(i)

A(i− 1)
=

log sup
θ
pθ(x

m−1) + log
A(n)

A(m− 1)
= logA(n)

Note that it is easy to verify that supθ pθ(x
m−1) =

A(m − 1). This shows that the conditional regret
is fixed for a fixed xm−1 and hence the conditional
SNML is an equalizer and equivalent to conditional
NML.

(e) ⇒ (f) : If NML is Bayesian then it is equal to
SNML and therefore SNML is Bayesian with Jeffreys
prior and hence so is NML. This is by (e) ⇒ (b) ⇒
(c)⇒ (d).

(f) ⇒ (e) : This is trivial because Bayesian with Jef-
freys prior is a special case of being Bayesian.
Note that (e) ⇒ (b) was proved in Theorem 5 in
[Kotlowski and Grunwald, 2011].
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