
1

Exchangeability Characterizes Optimality of
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Abstract

We study online learning under logarithmic loss with regular parametric models. In this setting, each strategy corresponds to
a joint distribution on sequences. The minimax optimal strategy is the normalized maximum likelihood (NML) strategy. We show
that the sequential normalized maximum likelihood (SNML) strategy predicts minimax optimally (i.e. as NML) if and only if the
joint distribution on sequences defined by SNML is exchangeable. This property also characterizes the optimality of a Bayesian
prediction strategy. In that case, the optimal prior distribution is Jeffreys prior for a broad class of parametric models for which
the maximum likelihood estimator is asymptotically normal. The optimal prediction strategy, normalized maximum likelihood,
depends on the number n of rounds of the game, in general. However, when a Bayesian strategy is optimal, normalized maximum
likelihood becomes independent of n. Our proof uses this to exploit the asymptotics of normalized maximum likelihood. The
asymptotic normality of the maximum likelihood estimator is responsible for the necessity of Jeffreys prior.
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I. INTRODUCTION

In the online learning setup, the goal is to predict a sequence of outcomes, revealed one at a time, almost as well as a set
of experts. We consider online density estimation with log loss, where the forecaster’s prediction at each round takes the form
of a probability density over the next outcome, and the loss suffered is the negative logarithm of the forecast density of the
outcome. The aim is to minimize the regret, which is the difference between the cumulative loss of the forecaster (that is,
the sum of these negative logarithms) and that of the best expert in hindsight. The optimal strategy for sequentially assigning
probability to outcomes is known to be normalized maximum likelihood (NML) [see, for e.g., 2, 4, and see Definition 4 below].
NML suffers from two major drawbacks: the horizon n of the problem needs to be known in advance, and the strategy can
be computationally expensive since it involves marginalizing over subsequences.

In this paper, we investigate the optimality of two alternative strategies, namely the Bayesian strategy and the sequential
normalized maximum likelihood (SNML) strategy; see Definitions 5 and 6 below. Previous work has studied the asymptotic
performance of these strategies, in the limit as the number of rounds goes to infinity. (For instance, see [4, chaps 7,8] for
a discussion of the asymptotic optimality of Bayesian prediction with Jeffreys prior under certain constraints on the outcome
sequence, and see [8, Theorem 7] for asymptotic optimality of SNML, again under constraints on the outcome sequence.)
We show for a very general class of parametric models (Definition 1), that optimality of a Bayesian strategy implies that
the strategy uses Jeffreys prior. Furthermore we show that optimality of the Bayesian strategy is equivalent to optimality of
sequential normalized maximum likelihood. The major regularity condition for these parametric families is that the maximum
likelihood estimate is asymptotically normal. This classical condition holds for a broad class of parametric models.

Earlier versions of this work appeared in the AIStat and COLT conferences [5, 6]. Subsequent work [1] has led to a
characterization of the one-dimensional exponential family distributions for which the optimality property holds.

II. DEFINITIONS AND NOTATION

The goal of online learning is to predict a sequence of outcomes xt ∈ X almost as well as a set of experts. We use xt to
denote (x1, x2, · · · , xt), x0 to denote the empty sequence, and xnm to denote (xm, xm+1, · · · , xn). At round t, the forecaster’s
prediction is a conditional probability density qt(·|xt−1), where the density is with respect to a fixed measure λ on X . For
example, if X is discrete, λ could be the counting measure; for X = Rd, λ could be Lebesgue measure. The loss that the
forecaster suffers at that round is − log qt(xt | xt−1), where xt is the outcome revealed after the forecaster’s prediction. The
difference between the cumulative loss of the prediction strategy and the best expert in a reference set is called the regret. The
goal is to minimize the regret in the worst case over all possible data sequences. In this paper, we consider i.i.d. parametric
constant experts parametrized by θ ∈ Θ.

Definition 1 (Parametric Constant Model). A constant expert is an iid stochastic process, that is, a joint probability distribution
p on sequences of elements of X such that for all t > 0 and for all x in X , p

(
xt
∣∣xt−1

)
= p (xt). A parametric constant
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model (Θ, (X ,Σ), λ, pθ) is a parameter set Θ, a measurable space (X ,Σ), a measure λ on X , and a parameterized function
pθ : X → [0,∞) for which, for all θ ∈ Θ, pθ is a probability density on X with respect to λ. It defines a set of constant
experts via pθ

(
xt
∣∣xt−1

)
= pθ (xt).

For convenience, we will often refer to a parametric constant model as just pθ.
A strategy q is any sequential probability assignment qt(· | xt−1) that, given a history xt−1, defines the conditional density

of xt ∈ X with respect to the measure λ. It defines a joint distribution q on sequences of elements of X in the obvious way,

q(xn) =

n∏
t=1

qt(xt|xt−1).

In general, a strategy depends on the sequence length n. We denote such strategies by q(n).

Definition 2 (Regret). The regret of a strategy q(n) on a sequence xn of length n with respect to a parametric constant model
pθ is

R(xn, q(n)) =

n∑
t=1

− log q
(n)
t (xt|xt−1)− inf

θ∈Θ

n∑
t=1

− log pθ(xt|xt−1) = sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)

We consider a generalization of the regret of Definition 2. This is because some strategies are only defined conditioned on
a fixed initial sequence of observations xm−1. For such cases, we define the conditional regret of xn, given a fixed initial
sequence xm−1, in the following way [see 4, chap. 11].

Definition 3 (Conditional Regret). Given a sequence xm−1, the conditional regret of a strategy q(n) on a sequence xnm is

R(xnm, q
(n)|xm−1) =

n∑
t=m

− log q
(n)
t (xt|xt−1)− inf

θ∈Θ

n∑
t=1

− log pθ(xt|xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xnm | xm−1)
.

Notice that the strategy q(n) defines only the conditional distribution q(n)(xnm | xm−1). We call such a strategy a conditional
strategy. In what follows, where we consider a conditional strategy, we assume that xm−1 is such that these conditional
distributions are always well defined.

Definition 4 (NML). Given a fixed horizon n, the normalized maximum likelihood (NML) strategy is defined via the joint
probability distribution

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(y

n) dλn(yn)
,

provided that the integral in the denominator exists. For t ≤ n, the conditional probability distribution is

p
(n)
nml(xt | x

t−1) =
p

(n)
nml(x

t)

p
(n)
nml(x

t−1)
,

where p(n)
nml(x

t) and p(n)
nml(x

t−1) are marginalized joint probability distributions of p(n)
nml(x

n):

p
(n)
nml(x

t) =

∫
Xn−t

p
(n)
nml(x

n) dλn−t(xnt+1).

The regret of the NML strategy achieves the minimax bound, that is, q(n) = p
(n)
nml minimizes maxxn R(xn, q(n)) [see, for

e.g., 4, chap. 6]. Note that p(n)
nml might not be defined if the normalization is infinite. In many cases where this occurs, for a

suitable sequence xm−1 and for all n ≥ m, we can define the conditional probabilities

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(x
n)∫

Xn−m+1 supθ∈Θ pθ(x
n) dλn−m+1(xnm)

.

For these cases the conditional NML again attains the minimax bound, that is, q(n) = p
(n)
nml minimizes maxxn

m
R(xnm, q

(n) | xm−1)
[see 4, chap. 11]. In both cases, the NML strategy is an equalizer, meaning that the regrets of all sequences of length n are
equal.

Definition 5 (SNML). The sequential normalized maximum likelihood (SNML) strategy has

psnml(xt | xt−1) =
supθ∈Θ pθ(x

t)∫
X supθ∈Θ pθ(x

t) dλ(xt)
.
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Notice that this update does not depend on the sequence length. Under mild conditions, the regret of SNML is no more
than a constant (independent of n) larger than the minimax regret [8]. Once again, psnml is not defined if the integral in the
denominator is infinite. In many cases, for a sequence xm−1 and for all n ≥ m, the appropriate conditional probabilities are
properly defined. We restrict our attention to these cases.

Definition 6 (Bayesian). For a prior distribution π on Θ, the Bayesian strategy with π is defined as

pπ(xt) =

∫
θ∈Θ

pθ(x
t) dπ(θ).

The conditional probability distribution is defined in the obvious way,

pπ(xt | xt−1) =
pπ(xt)

pπ(xt−1)
.

We denote the conditional Bayesian strategy for a fixed xm−1 as pπ(xnm | xm−1).

Jeffreys prior [7] has the appealing property that it is invariant under reparameterization.

Definition 7 (Jeffreys prior). For a parametric model pθ, Jeffreys prior is the distribution over the parameter space Θ that is
proportional to

√
|I(θ)|, where I is the Fisher information at θ (that is, the variance of the score, ∂/∂θ ln pθ(X), where X

has density pθ).

Our main theorem uses the notion of exchangeability of stochastic processes.

Definition 8 (Exchangeable). A stochastic process is called exchangeable if the joint probability does not depend on the order
of observations, that is, for any n > 0, any xn ∈ Xn, and any permutation σ on {1, . . . , n}, the density of xn is the same as
the density of xn permuted by σ.

When we consider the conditional distribution p(xnm | xm−1) defined by a conditional strategy, we are interested in ex-
changeability of the conditional stochastic process, that is, invariance under any permutation that leaves xm−1 unchanged.

The asymptotic normality of the maximum likelihood estimator is the major regularity condition of the parametric models
that is required for our main result to hold.

Definition 9 (Asymptotic Normality of MLE). Consider a parametric constant model pθ. We say that the parametric model
has an asymptotically normal MLE if, for all θ0 in the interior of Θ,

√
n
(
θ̂(xn) − θ0

)
d→ N

(
0, I-1 (θ0)

)
,

where I(θ) is the Fisher information at θ, xn is a sample path of pθ0 , and θ̂(xn) is the maximum likelihood estimate of θ given
xn, that is, θ̂(xn) maximizes pθ(xn).

Asymptotic normality holds for parametric models that are appropriately regular; for typical regularity conditions, see for
example, Theorem 3.3 in [9].

For parametric models whose maximum likelihood estimates take values in a countable set, we need the notion of a lattice
MLE.

Definition 10 (Lattice MLE). Consider a parametric model pθ with θ ∈ Θ ⊆ Rd. The parametric model is said to have a
lattice MLE with diminishing step-size dn, if the dn are positive and diminish to zero as n goes to infinity and there is a real
number b such that for any θ, the possible maximum likelihood estimates for pθ from n i.i.d random variables are points Θ
that are of the form (b+ k1dn, b+ k2dn, · · · , b+ kddn), for some integers k1, k2, · · · , kd

We are now ready to state and prove our main result.

III. MAIN RESULTS

First, we show in Theorem III.1 that SNML and NML are equivalent if and only if psnml is exchangeable. This happens
only if NML is horizon-independent. We then show in Theorem III.2, that in parametric models with an asymptotically
normal MLE, the optimality of a Bayesian strategy implies that the strategy uses Jeffreys prior. Furthermore we show that the
optimality of a Bayesian strategy is equivalent to the optimality of SNML. Note that NML is the unique optimal strategy, so
when we say that some other strategy is equivalent to NML, that is the same as saying that strategy predicts optimally. In
short, either both SNML and Bayesian strategy with Jeffreys prior predict optimally or neither does.

Theorem III.1. SNML is equivalent to NML and hence is minimax optimal if and only if psnml is exchangeable.
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Proof. Fix the xm−1. Write the conditional regret under SNML in the following way.

Rsnml(x
n | xm−1)

≡ R(xnm, psnml | xm−1)

= log sup
θ∈Θ

pθ(x
n) − log psnml(x

n
m | xm−1)

= log
pθ̂(x

n)

psnml(xnm | xm−1)
,

where θ̂ is the maximum likelihood estimate of xn. Now we show that the regret of SNML is independent of xn:

psnml(x
n
m | xm−1)

= psnml(xn | xn−1)psnml(x
n−1
m | xm−1)

=
pθ̂(x

n)∫
supθ pθ(x

n−1, x) dx
psnml(x

n−1
m | xm−1).

Combining the two previous equations, we get:

Rsnml(x
n | xm−1) = log

∫
supθ pθ(x

n−1, x) dx

psnml(x
n−1
m | xm−1)

. (1)

Therefore the regret is independent of the last observation. Now, we show that if psnml is exchangeable, then the regret becomes
independent of other observations, which implies that it is an equalizer and hence equivalent to NML. Let yn = xm−1znm
be a sequence of observations where znm is different from xnm. We show that the regret of yn is equal to that of xn. Under
any permutation of xnm, sup θ∈Θ pθ (xn) does not change due to the fact that pθ(xn) =

∏n
i=1 pθ(xi). On the other hand

psnml(· | xm−1) is exchangeable meaning that psnml
(
xnm | xm−1

)
is permutation invariant. Consequently, for any permutation

σ of xn that leaves xm−1 fixed, Rsnml(xn | xm−1) = Rsnml(σ(xn) | xm−1). These two properties give us the following.

Rsnml(x
m−1, xnm | xm−1)

= Rsnml(x
m−1, xm, . . . , xn−1, ym | xm−1)

= Rsnml(x
m−1, ym, xm+1, . . . , xn−1, xm | xm−1)

= Rsnml(x
m−1, ym, xm+1, . . . , xn−1, ym+1 | xm−1)

= Rsnml(x
m−1, ym, ym+1, xm+2, . . . , xn−1, xm+1 | xm−1).

Continuing inserting ym+i at the last position and swapping it with xm+i we see that Rsnml(xn | xm−1) = Rsnml(y
n | ym−1)

(remember ym−1 = xm−1). This means that SNML is an equalizer and hence it is equivalent to conditional normalized
maximum likelihood. Now, we prove the other direction. If SNML is equivalent to NML, meaning that for any n ≥ m and
any xnm,

psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1) =

p
(n)
nml(x

n)

p
(n)
nml(x

m−1)

then SNML is exchangeable. This is because

p
(n)
nml(x

n) ∝ sup
θ

n∏
i=1

pθ(xi),

which makes the probability permutation invariant and hence exchangeable. That is for any n and xnm the conditional probability
psnml(x

n
m | xm−1) is invariant over permutations of xnm.

Theorem III.2. Suppose we have a parametric model pθ with an asymptotically normal MLE. Assume that the MLE has a
density with respect to Lebesgue measure or that the model has a lattice MLE with diminishing step-size dn. Also assume that
I(θ), the Fisher information at θ is continuous in θ, and that, for all x, pθ(x) is continuous in θ. Also fix m > 0 and xm−1,
and assume that p(n)

nml(x
n
m|xm−1) and pπ(xnm|xm−1) are well defined, where π is the Jeffreys prior. Then the following are

equivalent.
(a) NML = Bayesian:

There is a prior π on Θ such that for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(b) NML = SNML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(x

n
m|xm−1).
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(c) NML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(d) psnml(·|xm−1) is exchangeable.
(e) SNML = Bayesian:

There is a prior π on Θ such that for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

(f) SNML = Bayesian with Jeffreys prior:
If π denotes Jeffreys prior on Θ, for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

Remark III.3. A version of this theorem, applicable to exponential families, can be proved using an extension of de Finetti’s
theorem due to Diaconis and Freedman [3]. For details of this result and its proof, refer to the conference version [5].

Proof. Fix xm−1 so that all of the relevant conditional distributions are defined. We prove that (a), (b), and (c) are equivalent,
and that (d), (e), and (f) are equivalent. The equivalence of (b) and (d) is Theorem III.1.
(a)⇒ (b): NML being equivalent to a Bayesian strategy means that NML is horizon-independent. Hence for any m−1 < t ≤ n,

p
(n)
nml(xt|x

t−1) = pπ(xt|xt−1) = p
(t)
nml(xt|x

t−1) = psnml(xt|xt−1),

which means that NML is equivalent to SNML.
(b) ⇒ (c): We use the asymptotic normality property to prove this below.
(c) ⇒ (a): This is immediate.
(d) ⇒ (e): We know that (d) and (b) are equivalent, and that (b) implies (a), but (b) and (a) together imply (e).
(e) ⇒ (d): Since SNML is Bayesian, psnml(xn) =

∫ ∏n
i=1 pθ (xi) d π(θ) for some prior distribution π on Θ. As

∏n
i=1 pθ (xi)

does not depend on the order of observations, SNML is exchangeable.
(e) ⇒ (f): (e) implies (d), which implies both (b) and (c), and together these imply (f).
(f) ⇒ (e): This is immediate.
The heart of the proof is verifying that
(b) ⇒ (c):

Equivalence of SNML and NML implies the following is true for all n:

psnml(x
t | xm) = p

(n)
nml(x

t | xm)

=

∫
supθ pθ(x

t, yn−t)d λn−t(yn−t)∫
supθ pθ(x

m−1, yn−m+1)d λn−m+1 (yn−m+1)

=

∫
pθ̂(xt,yn−t)

(xt, yn−t)d λn−t (yn−t)∫
pθ̂(xm,yn−m)

(xm, yn−m)d λn−m+1 (yn−m+1)
(2)

where θ̂(xt,yn−t) is the maximum likelihood estimate upon observing the sequence (xt, yn−t) and λ is either the Lebesgue
measure as in the case where observations are continuous or the counting measure for discrete observations. We let c(θ, α) be
a hypercube with center θ and sides equal to α defined in the following way, where θ = (θ1, · · · , θd) :

c(θ, α) =
[
θ1 −

α

2
, θ1 +

α

2

)
×
[
θ2 −

α

2
, θ2 +

α

2

)
· · · ×

[
θd −

α

2
, θd +

α

2

)
(3)

Furthermore, in case of continuous MLE, we let hn = δn√
n

where δn is positive and diminishes to zero as n goes to infinity;
for the case of lattice MLE we let hn = min

(
dn,

1
n

)
and let δn =

√
n × hn. Note that, in this latter case, our construction

guarantees that δn converges to zero as n goes to infinity and that in each hypercube c(θ, hn) there is only one MLE, namely
θ, the center. Furthermore we let:

Sn(θ, xt) = {yn−t | θ̂(xt,yn−t) ∈ c(θ, hn)},

and we let:

ωn(xt, xm) =

∑
Cn(xt)

∫
Sn(θ,xt)

pθ̂(xt,yn−t)
(xt, yn−t)d λn−t(yn−t)∑

Cn(xm)

∫
Sn(θ,xm)

pθ̂(xm,yn−m)
(xm, yn−m)d λn−m (yn−m)

,
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where Cn(xt) is the largest collection of disjoint hypercubes of the form c(θ, hn) that fit in Θ with hypercube centers from
Θ̂n
xt =

{
θ ∈ Θ | ∃ yn−t s.t. θ̂(xt,yn−t) = θ

}
, i.e. Cn(xt) = ∪θ∈S c(θ, hn) for some S ⊆ Θ̂n

xt with ∪θ∈S c(θ, hn) ⊆ Θ and
∩θ∈S c(θ, hn) = ∅, and ∪θ∈S c(θ, hn) having maximum coverage of Θ. Cn(xm) is constructed similarly.

Note that due to δn converging to zero, Cn(xt) converges to the whole set Θ as n goes to infinity. Consequently
| ωn(xt, xm) − p

(n)
nml(x

t|xm) | converges to zero as n goes to infinity. Therefore it would be enough to study asymptotic
behavior of ωn(xt|xm). Now we construct a slightly different function than ωn(xt, xm) which we call γn(xt,mt):

γn(xt, xm) =

∑
Cn(xt)

∫
Sn(θ,xt)

pθ(x
t, yn−t)d λn−t(yn−t)∑

Cn(xm)

∫
Sn(θ,xm)

pθ(xm, yn−m)d λn−m (yn−m)

=

∑
Cn(xt)

∫
Sn(θ,xt)

pθ(x
t)pθ(y

n−t)d λn−t(yn−t)∑
Cn(xm)

∫
Sn(θ,xm)

pθ(xm)pθ(yn−m)d λn−m (yn−m)

=

∑
Cn(xt) pθ(x

t)
∫
Sn(θ,xt)

pθ(y
n−t)d λn−t(yn−t)∑

Cn(xm) pθ(xm)
∫
Sn(θ,xm)

pθ(yn−m)d λn−m (yn−m)

As the likelihood function pθ(xs) is continuous in θ for any sequence xs and the hypercubes diminish as n goes infinity we
get

lim
n→∞

∣∣ωn(xt, xm)− γn(xt, xm)
∣∣ = 0

This means that we only need to study asymptotic behavior of the latter function, i.e. γn(xt, xm). Now we let θ̂(xt,Y n−t)

be the random variable of the maximum likelihood estimate of n random variables all generated by pθ( · ) with the initial t
observations fixed, i.e. xt. Then∫

Sn(θ,xt)

pθ(y
n−t)d λn−t(yn−t) =pθ

(
θ̂(xt,Y n−t) ∈ c(θ, hn)

)
=pθ

(√
n
(
θ̂(xt,Y n−t) − θ

)
∈
√
n (c (θ, hn)− θ)

)
=pθ

(√
n
(
θ̂(xt,Y n−t) − θ

)
∈ c (0, δn)

)
≡Fxt(θ, δn)

Therefore

γn(xt, xm) =

∑
Cn(xt) pθ(x

t)Fxt(θ, δn)∑
Cn(xm) pθ(xm)Fxm(θ, δn)

=

∑
Cn(xt) pθ(x

t)
Fxt (θ,δn)
|c(θ,hn)| × |c(θ, hn)|∑

Cn(xm) pθ(xm)Fxm (θ,δn)
|c(θ,hn)| × |c(θ, hn)|

=

∑
Cn(xt) pθ(x

t)
Fxt (θ,δn)
1√
nd
|c(θ,δn)| × |c(θ, hn)|∑

Cn(xm) pθ(xm) Fxm (θ,δn)
1√
nd
|c(θ,δn)| × |c(θ, hn)|

=

∑
Cn(xt) pθ(x

t)
Fxt (θ,δn)
|c(θ,δn)| × |c(θ, hn)|∑

Cn(xm) pθ(xm)Fxm (θ,δn)
|c(θ,δn)| × |c(θ, hn)|
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Where |c(θ, hn)| and |c(θ, δn)| denote the volumes of c(θ, hn) and c(θ, δn) respectively. As n goes to infinity θ̂(xt,Y n−t)

becomes independent of xt, this is because

θ̂(xt,Y n−t) = argmax θ∈Θ

(∑t
i=1 log pθ(xi)

n
+

∑n
j=t+1 log pθ(Yj)

n

)
The first fraction converges to 0 as n goes to infinity. MLE’s asymptotic normality tells us that Fxt(θ, δn) converges to the
volume of a normal distribution with mean 0 and covariance matrix I−1(θ) over the cube c(θ, δn) as n goes to infinity.
Furthermore Fxt (θ,δn)

|c(θ,δn)| converges to the the density of the aforementioned normal distribution at 0 which is K
√
I(θ) for some

K. Using a Riemann integral we get:

lim
n→∞

γn(xt, xm) =

∫
pθ(x

t)
√
I(θ) dθ∫

pθ(xm)
√
I(θ) dθ

IV. EXAMPLES

Example IV.1. Consider the parametric constant model consisting of Bernoulli distributions, with X = {0, 1}, Θ = (0, 1) and

pµ(xn) = µ(
∑n

i=1 xi)(1− µ)(n−
∑n

i=1 xi),

with parameter space (0, 1). Note that this model has a lattice MLE with diminishing step-size 1/n because, for a fixed n, the
possible maximum likelihood estimates are

1

n
,

2

n
,

3

n
, . . . ,

n− 1

n
.

SNML is not defined for n = 1. However if xm−1 contains at least one 0 and one 1, the conditional SNML strategy is defined.
Fix x2 = 10. Consider x5 = (10011) and y5 = (10110). Then x5 is a permutation of y5 with the initial x2 fixed. However
psnml(x

5
3 | x2) = psnml(011 | 10) = 0.0930 6= psnml(110 | 10) = psnml(y

5
3 | y2) = 0.0932. This means that psnml( . | x2)

is not exchangeable. The MLE is the empirical average which is asymptotically normal by the central limit theorem, hence
Theorem III.2 be applied here. This theorem tells us that SNML and NML cannot be equivalent and neither is equivalent to a
Bayesian strategy.

Example IV.2. In this example, X = R, Θ = R × R+, and the parametric family is the class of one-dimensional Gaussian
distributions with unknown mean and variance µ and σ2, i.e.

pµ,σ2(x) =
1√
2π

exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
+ log σ

}
.

The MLE is

µ̂n =
1

n

n∑
i=1

xi and σ̂2
n =

1

n

n∑
i=1

(xi − µ̂n)
2
.

The conditional SNML satisfies

psnml(xn|xn−1) ∝
(
2πσ̂2

n

)−n
2 exp

{
−
∑n
i=1 (xi − µ̂n)

2

2σ̂2
n

}

=
e−

n
2 n

n
2

(2π (n− 1))
n
2

1(
σ̂2
n−1 + 1

n (xn − µ̂n−1)
2
)n

2
.

Normalizing we get:

psnml(xn|xn−1) =
Γ
(
n
2

)
Γ
(

1
2

)
Γ
(
n−1

2

) (nσ̂n−1)
− 1

2

(
1 +

(xn − µ̂n−1)
2

nσ̂2
n−1

)−n
2

.

It can be shown [8] that for n > 1

R(xn2 , psnml | x1)−R(xn−1
2 , psnml | x1)

=
n+ 1

2
log n− n

2
log(n− 1)− 1

2
log 2e+

Γ
(
n−1

2

)
Γ
(
n
2

) .

This shows that the conditional SNML is an equalizer and hence equivalent to the conditional NML. Moreover, asymptotic
normality holds for any µ ∈ R and any σ ∈ R+ and pµ,σ2(x) is continuous in µ and σ2, hence Theorem III.2 can be applied.
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This shows that conditional SNML and NML are equivalent to a conditional Bayesian strategy under Jeffreys prior. A direct
computation of the Bayesian strategy with Jeffreys prior verifies this.

Example IV.3. In this example, X = R and the parametric family is the class of one-dimensional asymmetric student-
t distributions as defined in [10] with unknown skewness parameter α ∈ (0 , 1) and fixed left and right tail parameters
v1 = v2 = 1, i.e.

pα(x) =


1
π

(
1 +

(
x

2α

)2)−1

for x ≤ 0 ,

1
π

(
1 +

(
x

2(1−α)

)2
)−1

for x > 0 .

The maximum likelihood estimator for asymmetric student-t distributions is asymptotically normal [10]. Note that additionally
for any x, pα(x) is continuous in α, hence Theorem III.2 is applicable to this example. Proposition 2 in [10] shows that
the Fisher information of pα is proportional to 1

α(1−α) . This means that Jeffreys prior is proportional to 1√
α(1−α)

. After

normalization we get 1

π
√
α(1−α)

. Calculating the regret of the Bayesian strategy under Jeffreys prior shows that for a fixed

n > 0, the regret changes for different sequences of observations. For example, for n = 3, and sequence of observations
(1, 1,−1) the maximum likelihood estimate of α is 0.4136 and the regret of the Bayesian strategy under Jeffreys prior is
1.1472. On the other hand if we observe (2, 2,−2), the maximum likelihood estimate is 0.3777 with regret 1.1851. This means
that the Bayesian strategy under Jeffreys prior is not optimal because otherwise it would have resulted in equal regrets for
sequences of equal length. Furthermore Theorem III.2 shows that no prior distribution on (0 , 1) can make the Bayesian strategy
optimal and SNML can not be optimal either.
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