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RANDOMIZED SMOOTHING FOR STOCHASTIC OPTIMIZATION∗

JOHN C. DUCHI† , PETER L. BARTLETT‡ , AND MARTIN J. WAINWRIGHT§

Abstract. We analyze convergence rates of stochastic optimization algorithms for nonsmooth
convex optimization problems. By combining randomized smoothing techniques with accelerated
gradient methods, we obtain convergence rates of stochastic optimization procedures, both in ex-
pectation and with high probability, that have optimal dependence on the variance of the gradient
estimates. To the best of our knowledge, these are the first variance-based rates for nonsmooth
optimization. We give several applications of our results to statistical estimation problems and pro-
vide experimental results that demonstrate the effectiveness of the proposed algorithms. We also
describe how a combination of our algorithm with recent work on decentralized optimization yields
a distributed stochastic optimization algorithm that is order-optimal.
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1. Introduction. In this paper, we develop and analyze randomized smoothing
procedures for solving the following class of stochastic optimization problems. Let
{F (· ; ξ), ξ ∈ Ξ} be a collection of convex real-valued functions, each of whose domains
contains the closed convex set X ⊆ R

d. Letting P be a probability distribution over
the index set Ξ, consider the function f : X → R defined via

f(x) : = E
[
F (x; ξ)

]
=

∫
Ξ

F (x; ξ)dP (ξ).(1.1)

We focus on potentially nonsmooth stochastic optimization problems of the form

(1.2) minimize
x∈X

{
f(x) + ϕ(x)

}
,

where ϕ : X → R is a known regularizing function. We assume that ϕ is closed
and convex, but we allow for nondifferentiability so that the framework includes the
�1-norm and related regularizers.

While we do consider effects of the regularizer ϕ on our optimization procedures,
our primary focus is on the properties of the stochastic function f . The problem (1.2)
is challenging mainly for two reasons. First, the function f may be nonsmooth. Sec-
ond, in many cases, f cannot actually be evaluated. When ξ is high-dimensional, the
integral (1.1) cannot be efficiently computed, and in statistical learning problems we

∗Received by the editors April 21, 2011; accepted for publication (in revised form) April 11, 2012;
published electronically June 26, 2012. The first and third authors were partially supported by MURI
grant N00014-11-1-0688.

http://www.siam.org/journals/siopt/22-2/83165.html
†Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,

CA 94720 (jduchi@eecs.berkeley.edu). This author was supported by an NDSEG fellowship.
‡Department of Electrical Engineering and Computer Sciences, Department of Statistics, Uni-

versity of California Berkeley, Berkeley, CA 94720. (bartlett@eecs.berkeley.edu) and Mathematical
Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia. This author was
supported by NSF awards DMS-0830410 and CCF-1115788.

§Department of Electrical Engineering and Computer Science, Department of Statistics, Univer-
sity of California Berkeley, Berkeley, CA 94720 (wainwrig@eecs.berkeley.edu).

674



RANDOMIZED SMOOTHING FOR STOCHASTIC OPTIMIZATION 675

usually do not even know the distribution P . Thus, throughout this work, we assume
only that we have access to a stochastic oracle that allows us to obtain independent
and identically distributed (i.i.d.) samples ξ ∼ P , and we study stochastic gradient
procedures for solving the convex program (1.2).

In order to address difficulties associated with nonsmooth objective functions,
several researchers have considered techniques for smoothing the objective. Such
approaches for deterministic nonsmooth problems are by now well known and include
Moreau–Yosida regularization (e.g., [22]), methods based on recession functions [3]
and Nesterov’s approach using conjugacy and proximal regularization [26]. Several
researchers study methods to smooth exact penalties of the form max{0, f(x)} in
convex problems, where smoothing is applied to the max{0, ·} operator (for instance,
see the paper [8] and references therein). The difficulty of such approaches is that most
require quite detailed knowledge of the structure of the function f to be minimized
and are thus impractical in stochastic settings.

Because the convex objective (1.1) cannot actually be evaluated except through
stochastic realization of f and its (sub)gradients, we develop an algorithm for solving
problem (1.2) based on stochastic subgradient methods. Such methods are classi-
cal [29, 12]; in recent work, Juditsky, Nemirovski, and Tauvel [16] and Lan [19] have
shown that if f is smooth, meaning that its gradients are Lipschitz continuous, and
if the variance of the stochastic gradient estimator is at most σ2, then the result-
ing stochastic optimization procedure has convergence rate O(σ/

√
T ). Of particular

relevance to our study is the following fact: if the oracle—instead of returning just
a single estimate—returns m unbiased estimates of the gradient, the variance of the
gradient estimator is reduced by a factor of m. Indeed, Dekel et al. [9] exploit this
fact to develop asymptotically order-optimal distributed optimization algorithms, as
we discuss in what follows.

To the best of our knowledge, there is no work on nonsmooth stochastic problems
for which a reduction in the variance of the stochastic estimate of the true subgradient
gives an improvement in convergence rates. For nonsmooth stochastic optimization,
known convergence rates depend only on the Lipschitz constant of the functions F (·; ξ)
and the number of actual updates performed. Within the oracle model of convex
optimization [25], the optimizer has access to a black-box oracle that, given a point
x ∈ X , returns an unbiased estimate of a (sub)gradient of f at the point x. In most
stochastic optimization procedures, an algorithm updates a parameter xt after each
query of the oracle; we consider the natural extension to the case when the optimizer
issues several queries to the stochastic oracle at every iteration.

The starting point for our approach is a convolution-based smoothing technique
amenable to nonsmooth stochastic optimization problems. A number of authors
(e.g., [17, 31, 18, 37]) have noted that random perturbation of the variable x can
be used to transform f into a smooth function. The intuition underlying such ap-
proaches is that the convolution of two functions is at least as smooth as the smoothest
of the two original functions. In particular, letting μ denote the density of a random
variable with respect to Lebesgue measure, consider the smoothed objective function

(1.3) fμ(x) :=

∫
Rd

f(x+ y)μ(y)dy = E[f(x+ Z)],

where Z is a random variable with density μ. Clearly, the function fμ is convex when
f is convex; moreover, since μ is a density with respect to Lebesgue measure, the
function fμ is also guaranteed to be differentiable (e.g., Bertsekas [4]).
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We analyze minimization procedures that solve the nonsmooth problem (1.2) by
using stochastic gradient samples from the smoothed function (1.3) with appropri-
ate choice of smoothing density μ. The main contribution of our paper is to show
that the ability to issue several queries to the stochastic oracle for the original ob-
jective (1.2) can give faster rates of convergence than a simple stochastic oracle.
Our two main theorems quantify the above statement in terms of expected values
(Theorem 2.1) and, under an additional reasonable tail condition, with high proba-
bility (Theorem 2.2). One consequence of our results is that a procedure that queries
the nonsmooth stochastic oracle for m subgradients at iteration t achieves rate of
convergence O(RL0/

√
Tm) in expectation and with high probability. (Here L0 is

the Lipschitz constant of the function f , and R is the �2-radius of the domain X .)
As we discuss in section 2.4, this convergence rate is optimal up to constant factors.
Moreover, this fast rate of convergence has implications for applications in statistical
problems, distributed optimization, and other areas, as discussed in section 3.

The remainder of the paper is organized as follows. In section 2, we begin by pro-
viding background on some standard techniques for stochastic optimization, noting a
few of their deficiencies for our setting. We then describe an algorithm based on the
randomized smoothing technique (1.3), and we state our main theorems guarantee-
ing faster rates of convergence for nonsmooth stochastic problems. In proving these
claims, we make frequent use of the analytic properties of randomized smoothing,
many of which are collected in Appendix E. In section 3, we discuss applications of
our methods and provide experimental results illustrating the merits of our approach.
Finally, we provide the proofs of our results in section 4, with certain more technical
aspects deferred to the appendices.

Notation. We define Bp(x, u) = {y ∈ R
d | ‖x− y‖p ≤ u} to be the closed p-norm

ball of radius u around the point x. Addition of sets A and B is defined as the
Minkowski sum in R

d, A + B = {x ∈ R
d | x = y + z, y ∈ A, z ∈ B}, multiplication

of a set A by a scalar α is defined to be αA := {αx | x ∈ A}, and aff(A) denotes
the affine hull of the set A. We let suppμ := {x | μ(x) 	= 0} denote the support of
a function or distribution μ. We use ∂f(x) to denote the subdifferential set of the
convex function f at a point x. Given a norm ‖·‖, we adopt the shorthand notation
‖∂f(x)‖ = sup{‖g‖ | g ∈ ∂f(x)}. The dual norm ‖·‖∗ associated with a norm ‖·‖
is given by ‖z‖∗ := sup‖x‖≤1 〈z, x〉. A function f is L0-Lipschitz with respect to the
norm ‖·‖ over X if

|f(x) − f(y)| ≤ L0 ‖x− y‖ for all x, y ∈ X .

We note that a convex function f is L0-Lipschitz if and only if supx∈X ‖∂f(x)‖∗ ≤ L0

(see, e.g., the book [13]). The gradient of f is L1-Lipschitz continuous with respect
to the norm ‖·‖ over X if

‖∇f(x)−∇f(y)‖∗ ≤ L1 ‖x− y‖ for all x, y ∈ X .

A function ψ is strongly convex with respect to a norm ‖·‖ over X if

ψ(y) ≥ ψ(x) + 〈g, y − x〉+ 1

2
‖x− y‖2 for all g ∈ ∂ψ(x) and x, y,∈ X .

Given a differentiable convex function ψ, the associated Bregman divergence [5] is
given by Dψ(x, y) := ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉. When X ∈ R

d1×d2 is a matrix,
we let ρi(X) denote its ith largest singular value and ‖X‖Fr denote its Frobenius
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norm. The transpose of X is denoted X�. The notation ξ ∼ P indicates that the
random variable ξ is drawn from the distribution P , and P -a.e. ξ is shorthand for
P -almost every ξ.

2. Main results and some consequences. We begin by motivating the algo-
rithm studied in this paper, and we then state our main results on its convergence.

2.1. Some background. We focus on stochastic gradient descent methods1

based on dual averaging schemes [27] for solving the stochastic problem (1.2). Dual
averaging methods are based on a proximal function ψ that is assumed to be strongly
convex with respect to a norm ‖·‖. Given a point xt ∈ X , the algorithm queries
a stochastic oracle and receives a random vector gt ∈ R

d satisfying the inclusion
E[gt | xt, g1, . . . , gt−1] ∈ ∂f(xt). The algorithm then performs the update

(2.1) xt+1 = argmin
x∈X

{ t∑
τ=0

〈gτ , x〉+ 1

αt
ψ(x)

}
,

where αt > 0 is a sequence of stepsizes. Under some mild assumptions, the algorithm
is guaranteed to converge for stochastic problems. For instance, suppose that ψ is
strongly convex with respect to the norm ‖·‖ and moreover that E[‖gt‖2∗] ≤ L2

0 for
all t. Then, with stepsizes αt ∝ R/L0

√
t, the sequence {xt}∞t=0 generated by the

update (2.1) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) = O

(
L0

√
ψ(x∗)√
T

)
.(2.2)

We refer the reader to papers by Nesterov [27] and Xiao [35] for results of this type.

An unsatisfying aspect of the bound (2.2) is the absence of any role for the
variance of the (sub)gradient estimator gt. Even if an algorithm is able to obtain
m > 1 samples of the gradient of f at xt—giving a more accurate gradient estimate—
this result fails to capture the potential improvement of the method. We address
this problem by stochastically smoothing the nonsmooth objective f and then adapt
recent work on so-called accelerated gradient methods [19, 33, 35], which apply only
to smooth functions, to achieve variance-based improvements. With this motivation
in mind, we now turn to developing the tools necessary for stochastic smoothing of
the nonsmooth objective function (1.2).

2.2. Description of algorithm. Our algorithm is based on observations of
stochastically perturbed gradient information at each iteration, where we slowly de-
crease the perturbation as the algorithm proceeds. Consider the following scheme.
Let {ut} ⊂ R+ be a nonincreasing sequence of positive real numbers; these quantities
control the perturbation size. At iteration t, rather than query the stochastic oracle
at the point yt, the algorithm queries the oracle at m points drawn randomly from
some neighborhood around yt. Specifically, it performs the following three steps:

(1) Draws random variables {Zi,t}mi=1 i.i.d. according to the distribution μ.
(2) Queries the oracle at the m points yt + utZi,t for i = 1, 2, . . . ,m, yielding the

stochastic (sub)gradients

1We note in passing that essentially identical results can also be obtained for methods based on
mirror descent [25, 33], though we omit these so as not to overburden the reader.
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gi,t ∈ ∂F (yt + utZi,t; ξi,t), where ξi,t ∼ P for i = 1, 2, . . . ,m.(2.3)

(3) Computes the average gt =
1
m

∑m
i=1 gi,t.

Here and throughout we denote the distribution of the random variable utZ by μt, and
we note that this procedure ensures E[gt | yt] = ∇fμt(yt) = ∇E[F (yt + utZ; ξ) | yt],
where fμt is the smoothed function (1.3) and μt is the density of ut.

We combine the sampling scheme (2.3) with extensions of Tseng’s recent work
on accelerated gradient methods [33] and propose an update that is essentially a
smoothed version of the simpler method (2.1). The method uses three series of points
denoted {xt, yt, zt} ∈ X 3. We use yt as a “query point” so that at iteration t, the
algorithm receives a vector gt as described in the sampling scheme (2.3). The three
sequences evolve according to a dual-averaging algorithm, which in our case involves
three scalars (Lt, θt, ηt) to control step sizes. The recursions are as follows:

yt = (1 − θt)xt + θtzt,(2.4a)

zt+1 = argmin
x∈X

{ t∑
τ=0

1

θτ
〈gτ , x〉+

t∑
τ=0

1

θτ
ϕ(x) + Lt+1ψ(x) +

ηt+1

θt+1
ψ(x)

}
,(2.4b)

xt+1 = (1 − θt)xt + θtzt+1.(2.4c)

In prior work on accelerated schemes for stochastic and nonstochastic optimization [33,
19, 35], the term Lt is set equal to the Lipschitz constant of ∇f ; in contrast, our choice
of varying Lt allows our smoothing schemes to be oblivious to the number of iterations
T . The extra damping term ηt/θt provides control over the fluctuations induced by
using the random vector gt as opposed to deterministic subgradient information. As
in Tseng’s work [33], we assume that θ0 = 1 and (1− θt)/θ

2
t = 1/θ2t−1; the latter

equality is ensured by setting θt = 2/(1 +
√
1 + 4/θ2t−1).

2.3. Convergence rates. We now state our two main results on the convergence
rate of the randomized smoothing procedure (2.3) with accelerated dual-averaging up-
dates (2.4a)–(2.4c). To avoid cluttering the theorem statements, we begin by stating
our main assumptions and notation. Whenever we state that a function f is Lipschitz
continuous, we mean with respect to the norm ‖·‖, and we assume that ψ is nonnega-
tive and is strongly convex with respect to the same norm ‖·‖. Our main assumption
ensures that the smoothing operator and smoothed function fμ are relatively well
behaved.

Assumption A (smoothing). The random variable Z is zero-mean with density μ
(with respect to Lebesgue measure on the affine hull aff(X ) of X ). There are constants
L0 and L1 such that for u > 0, E[f(x+uZ)] ≤ f(x)+L0u, and E[f(x+uZ)] has L1

u -
Lipschitz continuous gradient with respect to the norm ‖·‖. Additionally, for P -a.e.
ξ ∈ Ξ, the set domF (·; ξ) ⊇ u0 suppμ+ X .

Let μt denote the density of the random vector utZ, and define the instantaneous
smoothed function fμt =

∫
f(x + z)dμt(z). The function fμt is guaranteed to be

smooth whenever μ (and hence μt) is a density with respect to Lebesgue measure,
so Assumption A ensures that fμt is uniformly close to f and not too “jagged.”
Many smoothing distributions, including Gaussians and uniform distributions on
norm balls, satisfy Assumption A (see Appendix E); we use such examples in the
corollaries to follow. The containment of u0 suppμ + X in domF (·; ξ) guarantees
that the subdifferential ∂F (·; ξ) is nonempty at all sampled points yt + utZ. Indeed,
since μ is a density with respect to Lebesgue measure on aff(X ), with probability 1
yt + utZ ∈ relint domF (·; ξ), and thus [13] the subdifferential ∂F (yt + utZ; ξ) 	= ∅.
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In the algorithm (2.4a)–(2.4c), we set Lt to be an upper bound on the Lipschitz
constant L1

ut
of the gradient of E[f(x + utZ)]; this choice ensures good convergence

properties of the algorithm. The following is the first of our main theorems.
Theorem 2.1. Define ut = θtu, use the scalar sequence Lt = L1/ut, and assume

that ηt is nondecreasing. Under Assumption A, for any x∗ ∈ X and T ≥ 4,
(2.5)

E[f(xT )+ϕ(xT )]−[f(x∗)+ϕ(x∗)] ≤ 6L1ψ(x
∗)

Tu
+
2ηTψ(x

∗)
T

+
1

T

T−1∑
t=0

1

ηt
E[‖et‖2∗]+

4L0u

T
,

where et : = ∇fμt(yt)− gt is the error in the gradient estimate.

Remarks. The convergence rate (2.5) involves the variance E[‖et‖2∗] explicitly,
which we exploit in the corollaries to be stated shortly. In addition, Theorem 2.1 does
not require a priori knowledge of the number of iterations T to be performed, thereby
rendering it suitable to online and streaming applications. If T is known, a similar
result holds for constant smoothing parameter u, as formalized by Theorem 4.4.

The preceding result, which provides convergence in expectation, can be extended
to bounds that hold with high probability under suitable tail conditions on the error
et : = ∇fμt(yt) − gt. In particular, let Ft denote the σ-field of the random variables
gi,s, i = 1, . . . ,m and s = 0, . . . , t, defined in (2.3). In order to achieve high-probability
convergence results, a subset of our results involve the following assumption.

Assumption B (sub-Gaussian errors). The error is (‖·‖∗ , σ) sub-Gaussian for
some σ > 0, meaning that with probability one

E[exp(‖et‖2∗ /σ2) | Ft−1] ≤ exp(1) for all t ∈ {1, 2, . . .}.(2.6)

We refer the reader to Appendix F for more background on sub-Gaussian and
subexponential random variables. In past work on smooth optimization, other au-
thors [16, 19, 35] have imposed this type of tail assumption, and we discuss sufficient
conditions for the assumption to hold in Corollary 2.6 in the following section.

Theorem 2.2. In addition to the conditions of Theorem 2.1, suppose that X is
compact with ‖x− x∗‖ ≤ R for all x ∈ X and that Assumption B holds. Then with
probability at least 1− 2δ, the algorithm with step size ηt = η

√
t+ 1 satisfies

f(xT )+ϕ(xT )−f(x∗)−ϕ(x∗) ≤ 6L1ψ(x
∗)

Tu
+

4L0u

T
+

2ηTψ(x
∗)

T
+

T−1∑
t=0

E[‖et‖2∗ | Ft−1]

Tηt

+
4σ2 max

{
log 1

δ ,
√
2e(1 + logT ) log 1

δ

}
ηT

+
σR

√
log 1

δ√
T

.

Remarks. The first four terms in the convergence rate provided by Theorem 2.2
are essentially identical to the rate in expectation stated in Theorem 2.1. There are
two additional terms, the first of which decreases at a rate of 1/T , while the second
decreases at a rate of σ/

√
T . As discussed in the corollaries to follow, the dependence

σ/
√
T on the variance σ2 is optimal, and an appropriate choice of the sequence ηt in

Theorem 2.1 yields identical rates to those in Theorem 2.2.

2.4. Some consequences. We now turn to various corollaries of the above the-
orems and the consequential optimality guarantees of the algorithm. More precisely,
we establish concrete convergence bounds for algorithms using different choices of the
smoothing distribution μ. For each corollary, we impose the assumptions that the
point x∗ ∈ X satisfies ψ(x∗) ≤ R2, the iteration number T ≥ 4, and ut = uθt.
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We begin with a corollary that provides bounds when the smoothing distribution
μ is uniform on the �2-ball. The conditions on F in the corollary hold, for example,
when F (·; ξ) is L0-Lipschitz with respect to the �2-norm for P -a.e. sample of ξ.

Corollary 2.3. Let μ be uniform on B2(0, 1) and assume E[‖∂F (x; ξ)‖22] ≤ L2
0

for x ∈ X +B2(0, u), where we set u = Rd1/4. With step sizes ηt = L0

√
t+ 1/R

√
m

and Lt = L0

√
d/ut,

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)] ≤ 10L0Rd
1/4

T
+

5L0R√
Tm

.

The following corollary shows that similar convergence rates are attained when
smoothing with the normal distribution.

Corollary 2.4. Let μ be the d-dimensional normal distribution with zero mean
and identity covariance I and assume F (·; ξ) is L0-Lipschitz with respect to the
�2-norm for P -a.e. ξ. With smoothing parameter u = Rd−1/4 and step sizes ηt =
L0

√
t+ 1/R

√
m and Lt = L0/ut, we have

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)] ≤ 10L0Rd
1/4

T
+

5L0R√
Tm

.

We note here (deferring deeper discussion to Lemma E.4) that the dimension
dependence of d1/4 on the 1/T term in the previous corollaries cannot be improved
by more than a constant factor. Essentially, functions f exist whose smoothed versions
fμ cannot have both Lipschitz continuous gradient and be uniformly close to f in a
dimension-independent sense, at least for the uniform or normal distributions.

The advantage of using normal random variables—as opposed to Z uniform on
B2(0, u)—is that no normalization of Z is necessary, though there are more stringent
requirements on f . The lack of normalization is a useful property in very high-
dimensional scenarios, such as statistical natural language processing (NLP) [23].
Similarly, we can sample Z from an �∞-ball, which, like B2(0, u), is still compact but
gives slightly looser bounds than sampling from B2(0, u). Nonetheless, it is much
easier to sample from B∞(0, u) in high-dimensional settings, especially sparse data
scenarios such as NLP where only a few coordinates of the random variable Z are
needed.

There are several objectives f+ϕ with domains X for which the natural geometry
is non-Euclidean, which motivates the mirror descent family of algorithms [25]. Here
we give an example that is quite useful for problems in which the optimizer x∗ is sparse;
for example, the optimization set X may be a simplex or �1-ball, or ϕ(x) = λ ‖x‖1.
The point here is that an alternative pair of dual norms may give better optimization
performance than the �2-�2 pair above.

Corollary 2.5. Let μ be uniform on B∞(0, 1) and assume that F (·; ξ) is L0-
Lipschitz continuous with respect to the �1-norm over X+B∞(0, u) for ξ ∈ Ξ, where we

set u = R
√
d log d. Use the proximal function ψ(x) = 1

2(p−1) ‖x‖2p for p = 1+ 1/ log d

and set ηt =
√
t+ 1/R

√
m log d and Lt = L0/ut. There is a universal constant C

such that

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)] ≤ C
L0R

√
d

T
+ C

L0R
√
log d√

Tm

= O
(
L0 ‖x∗‖1

√
d log d

T
+
L0 ‖x∗‖1 log d√

Tm

)
.



RANDOMIZED SMOOTHING FOR STOCHASTIC OPTIMIZATION 681

The dimension dependence of
√
d log d on the leading 1/T term in the corollary

is weaker than the d1/4 dependence in the earlier corollaries, so for very large m
the corollary is not as strong as one might desire when applied to non-Euclidean
geometries. Nonetheless, for large T the 1/

√
Tm terms dominate the convergence

rates, and Corollary 2.5 can be an improvement.
Our final corollary specializes the high probability convergence result in Theo-

rem 2.2 by showing that the error is sub-Gaussian (2.6) under the assumptions in the
corollary. We state the corollary for problems with Euclidean geometry, but it is clear
that similar results hold for non-Euclidean geometry such as that above.

Corollary 2.6. Assume that F (·; ξ) is L0-Lipschitz with respect to the �2-norm.

Let ψ(x) = 1
2 ‖x‖22 and assume that X is compact with ‖x− x∗‖2 ≤ R for x, x∗ ∈ X .

Using the smoothing distribution μ uniform on B2(0, 1) and parameters u, ηt, and Lt
identical to those in Corollary 2.3, with probability at least 1− δ,

f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)

≤ O(1)

[
L0Rd

1/4

T
+

L0R√
Tm

+
L0R

√
log 1

δ√
Tm

+
L0Rmax{log 1

δ , logT }
T
√
m

]
.

Remarks. Let us pause to make some remarks concerning the corollaries given
above. First, if one abandons the requirement that the optimization procedure be an
“any time” algorithm, meaning that it is able to return a result at any iteration, it is
possible to obtain essentially the same results as Corollaries 2.3–2.5 by choosing a fixed
setting ut = u/T (see Theorem 4.4 in section 4.4). As a side benefit, it is then easier

to satisfy the Lipschitz condition that E[‖∂F (x; ξ)‖2] ≤ L2
0 for x ∈ X + u0 suppμ.

Our second observation is that Theorem 2.1 and the corollaries appear to require a
very specific setting of the constant Lt to achieve fast rates. However, the algorithm
is robust to misspecification of Lt since the instantaneous smoothness constant Lt is
dominated by the stochastic damping term ηt in the algorithm. Indeed, since ηt grows
proportionally to

√
t for each corollary, we have Lt = L1/ut = L1/θtu = O(ηt/

√
tθt);

that is, Lt is order
√
t smaller than ηt/θt, so setting Lt incorrectly up to order

√
t has

an essentially negligible effect.
We can show that the bounds in the theorems above are tight, meaning unimprov-

able up to constant factors, by exploiting known lower bounds [25, 1] for stochastic
optimization problems. For instance, let us set X = {x ∈ R

d | ‖x‖2 ≤ R2} and con-
sider the class of all convex functions f that are L0,2-Lipschitz with respect to the
�2-norm. Assume that the stochastic oracle, when queried at a point x, returns a vec-
tor g for which E[g] ∈ ∂f(x) and E[‖g‖22] ≤ L2

0,2. Then for any method that outputs
a point xT ∈ X after T queries of the oracle, we have the lower bound

sup
f

{
E[f(xT )]−min

x∈X
f(x)

}
= Ω

(
L0,2R2√

T

)
,

where the supremum is taken over L0,2-Lipschitz convex f (see section 3.1 of the
paper [1]). Moreover, similar bounds hold for problems with non-Euclidean geome-
try [1]. For instance, let us consider convex functions f that are L0,∞-Lipschitz with
respect to the �1-norm, meaning that |f(x) − f(y)| ≤ L0,∞ ‖x− y‖1. If we define
X = {x ∈ R

d | ‖x‖1 ≤ R1}, we then have B∞(0, R1/d) ⊂ B1(0, R1), and thus

sup
f

{
E[f(xT )]−min

x∈X
f(x)

}
= Ω

(
L0,∞R1√

T

)
.
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In either geometry, no method can have optimization error smaller than O(LR/
√
T )

after T queries of the stochastic oracle.
Let us compare the above lower bounds to the convergence rates in Corollaries 2.3–

2.5. Examining the bound in Corollaries 2.3 and 2.4, we see that the dominant terms
are on the order of L0R/

√
Tm so long as m ≤ T/

√
d. Since our method issues Tm

queries to the oracle, this is optimal. Similarly, the strategy of sampling uniformly
from the �∞-ball in Corollary 2.5 is optimal up to factors logarithmic in the dimension.
In contrast to other optimization procedures, however, our algorithm performs an
update to the parameter xt only after every m queries to the oracle; as we show in
the next section, this is beneficial in several applications.

3. Applications and experimental results. In this section, we describe appli-
cations of our results and give experiments that illustrate our theoretical predictions.

3.1. Some applications. The first application of our results is to parallel com-
putation and distributed optimization. Imagine that instead of querying the stochastic
oracle serially, we can issue queries and aggregate the resulting stochastic gradients in
parallel. In particular, assume that we have a procedure in which the m queries of the
stochastic oracle occur concurrently. Then Corollaries 2.3–2.6 imply that in the same
amount of time required to perform T queries and updates of the stochastic gradient
oracle serially, achieving an optimization error of O(1/

√
T ), the parallel implementa-

tion can process Tm queries and consequently has optimization error O(1/
√
Tm).

We now briefly describe two possibilities for a distributed implementation of the
above. The simplest architecture is a master-worker architecture, in which one mas-
ter maintains the parameters (xt, yt, zt), and each of m workers has access to an
uncorrelated stochastic oracle for P and the smoothing distribution μ. The master
broadcasts the point yt to the workers, which sample ξi ∼ P and Zi ∼ μ, returning
sample gradients to the master. In a tree-structured network, broadcast and aggrega-
tion require at most O(logm) steps; the relative speedup over a serial implementation
is O(m/ logm). In recent work, Dekel et al. [9] give a series of reductions showing
how to distribute variance-based stochastic algorithms and achieve an asymptotically
optimal convergence rate. The algorithm given here, as specified by (2.3) and (2.4a)–
(2.4c), can be exploited within their framework to achieve an O(m) improvement
in convergence rate over a serial implementation. More precisely, whereas achiev-
ing optimization error ε requires O(1/ε2) iterations for a centralized algorithm, the
distributed adaptation requires only O(1/(mε2)) iterations. Such an improvement is
possible as a consequence of the variance reduction techniques we have described.

A second application of interest involves problems where the set X and/or the
function ϕ are complicated, so that calculating the proximal update (2.4b) becomes
expensive. The proximal update may be distilled to computing

(3.1) min
x∈X

{ 〈g, x〉+ ψ(x)
}

or min
x∈X

{ 〈g, x〉+ ψ(x) + ϕ(x)
}
.

In such cases, it may be beneficial to accumulate gradients by querying the stochas-
tic oracle several times in each iteration, using the averaged subgradient in the up-
date (2.4b), and thus solve only one proximal subproblem for a collection of samples.

Let us consider some concrete examples. In statistical applications involving
the estimation of covariance matrices, the domain X is constrained in the positive
semidefinite cone {X ∈ Sn | X � 0}; other applications involve additional nuclear-

norm constraints of the form X = {X ∈ R
d1×d2 | ∑min{d1,d2}

j=1 ρj(X) ≤ C}. Examples
of such problems include covariance matrix estimation, matrix completion, and model
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identification in vector autoregressive processes (see the paper [24] and references
therein for further discussion). Another example is the problem of metric learning [36,
32], in which the learner is given a set of n points {a1, . . . , an} ⊂ R

d and a matrix
B ∈ R

n×n indicating which points are close together in an unknown metric. The goal
is to estimate a positive semidefinite matrix X � 0 such that 〈(ai − aj), X(ai − aj)〉 is
small when ai and aj belong to the same class or are close, while 〈(ai − aj), X(ai − aj)〉
is large when ai and aj belong to different classes. It is desirable that the matrix
X have low rank, which allows the statistician to discover structure or guarantee
performance on unseen data. As a concrete illustration, suppose that we are given
a matrix B ∈ {−1, 1}n×n, where bij = 1 if ai and aj belong to the same class and
bij = −1 otherwise. In this case, one possible optimization-based estimator involves
solving the nonsmooth program

(3.2) min
X,x

1(
n
2

) ∑
i<j

[
1 + bij(tr(X(ai − aj)(ai − aj)

�) + x)
]
+

s.t. X � 0, tr(X) ≤ C.

Now let us consider the cost of computing the projection update (3.1) for the met-

ric learning problem (3.2). When ψ(X) = 1
2 ‖X‖2Fr, the update (3.1) reduces for

appropriate choice of V to

min
X

1

2
‖X − V ‖2Fr subject to X � 0, tr(X) ≤ C.

(As a side-note, it is possible to generalize this update to Schatten p-norms [11].) The
above problem is equivalent to projecting the eigenvalues of V to the simplex {x ∈ R

d |
x � 0, 〈11, x〉 ≤ C}, which after an O(d3) eigendecomposition requires time O(d) [6].
To see the benefits of the randomized perturbation and averaging technique (2.3)
over standard stochastic gradient descent (2.1), consider that the cost of querying a
stochastic oracle for the objective (3.2) for one sample pair (i, j) requires time O(d2).
Thus, m queries require O(md2) computation, and each update requires O(d3). So we
see that after Tmd2+Td3 units of computation, our randomized perturbation method
has optimization error O(1/

√
Tm), while the standard stochastic gradient method

requires Tmd3 units of computation. In short, for m ≈ d the randomized smoothing
technique (2.3) uses a factor O(d) less computation than standard stochastic gradient;
we give experiments corroborating this in section 3.2.2.

3.2. Experimental results. We now describe experimental results that confirm
the sharpness of our theoretical predictions. The first experiment explores the benefit
of using multiple samples m when estimating the gradient ∇f(yt) as in the averaging
step (2.3). The second experiment studies the actual amount of time required to solve
a statistical metric learning problem, as described in the objective (3.2) above.

3.2.1. Iteration complexity of reduced variance estimators. In this ex-
periment, we consider the number of iterations of the accelerated method (2.4a)–(2.4c)
necessary to achieve an ε-optimal solution to the problem (1.2). To understand how
the iteration scales with the number m of gradient samples, we consider our results
in terms of the number of iterations

T (ε,m) := inf
{
t ∈ {1, 2, . . .} | f(xt)−min

x∈X
f(x∗) ≤ ε

}
required to achieve optimization error ε when using m gradient samples in the aver-
aging step (2.3). We focus on the algorithm analyzed in Corollary 2.3, which uses
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Fig. 3.1. The number of iterations T (ε,m) to achieve the ε-optimal solution for the prob-
lem (3.4) as a function of the number of samples m used in the gradient estimate (2.3). The
prediction (3.3) is the square black line in each plot; plot (a) shows results for dimension d = 50
and (b) for d = 400.

uniform sampling of the �2-ball. The corollary implies there should be two regimes of
convergence—one where the L0R/

√
Tm term is dominant, and the other where the

number of samples m is so large that the L0Rd
1/4/T term is dominant. By inverting

the first term, we see that for small m, T (ε,m) = O(L2
0R

2/mε2), while the second
gives T (ε,m) = O(L0Rd

1/4/ε). In particular, our theory predicts that

(3.3) T (ε,m) = O
(
max

{
L2
0R

2

mε2
,
L0Rd

1/4

ε

})
.

In order to assess the accuracy of this prediction, we consider a robust linear regression
problem commonly studied in system identification and robust statistics [28, 15].
Specifically, given a matrix A ∈ R

n×d and a vector b ∈ R
n, the goal is to minimize

the nonsmooth objective function

(3.4) f(x) =
1

n
‖Ax− b‖1 =

1

n

n∑
i=1

| 〈ai, x〉 − bi|,

where ai ∈ R
d denotes a transposed row ofA. The stochastic oracle in this experiment,

when queried at a point x, chooses an index i ∈ [n] uniformly at random and returns
the vector sign(〈ai, x〉 − bi)ai.

In performing our experiments, we generated n = 1000 points in dimensions
d ∈ {50, 100, 200, 400, 800, 1600}, each with fixed norm ‖ai‖2 = L0, and then assigned
values bi by computing 〈ai, w〉 for a random vector w (adding normally distributed
noise with variance 0.1). We estimated the quantity T (ε,m) for solving the robust
regression problem (3.4) for several values of m and d. Figure 3.1 shows results for
dimensions d ∈ {50, 400} averaged over 20 experiments for each choice of dimension d.
(Other settings of d exhibited similar behavior.) Each panel in the figure shows—on a
log-log scale—the experimental average T (ε,m) and the theoretical prediction (3.3).
The decrease in T (ε,m) is nearly linear for smaller numbers of samples m; for larger
m, the effect is quite diminished. We present numerical results in Table 3.1 that
allow us to roughly estimate the number m at which increasing the batch size in the
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Table 3.1

The number of iterations T (ε,m) to achieve ε-accuracy for the regression problem (3.4) as a
function of number of gradient samples m used in the gradient estimate (2.3) and the dimension d.
Each box in the table shows the mean and standard deviations of T (ε,m) measured over 20 trials.

m 1 2 3 5 20 100 1000 10000

d = 50
Mean 612.2 252.7 195.9 116.7 66.1 52.2 47.7 46.6
Std 158.29 34.67 38.87 13.63 3.18 1.66 1.42 1.28

d = 100
Mean 762.5 388.3 272.4 193.6 108.6 83.3 75.3 73.3
Std 56.70 19.50 17.59 10.65 1.91 1.27 0.78 0.78

d = 200
Mean 1002.7 537.8 371.1 267.2 146.8 109.8 97.9 95.0
Std 68.64 26.94 13.75 12.70 1.66 1.25 0.54 0.45

d = 400
Mean 1261.9 656.2 463.2 326.1 178.8 133.6 118.6 115.0
Std 60.17 38.59 12.97 8.36 2.04 1.02 0.49 0.00

d = 800
Mean 1477.1 783.9 557.9 388.3 215.3 160.6 142.0 137.4
Std 44.29 24.87 12.30 9.49 2.90 0.66 0.00 0.49

d=1600
Mean 1609.5 862.5 632.0 448.9 251.5 191.1 169.4 164.0
Std 42.83 30.55 12.73 8.17 2.73 0.30 0.49 0.00

gradient estimate (2.3) gives no further improvement. For each dimension d, Table 3.1
indeed shows that from m = 1 to 5, the iteration count T (ε,m) decreases linearly,
halving again when we reach m ≈ 20, but between m = 100 and 1000 there is at most
an 11% difference in T (ε,m), while between m = 1000 and m = 10000 the decrease
amounts to at most 3%. The good qualitative match between the iteration complexity
predicted by our theory and the actual performance of the methods is clear.

3.2.2. Metric learning. Our second set of experiments were based on instances
of the metric learning problem. For each i, j = 1, . . . , n, we are given a vector ai ∈ R

d

and a measure bij ≥ 0 of the similarity between the vectors ai and aj . (Here bij = 0
means that ai and aj are the same.) The statistical goal is to learn a matrix X—

inducing a pseudonorm via ‖a‖2X := 〈a,Xa〉—such that 〈(ai − aj), X(ai − aj)〉 ≈ bij .
One method for doing so is to minimize the objective

f(X) =
1(
n
2

) ∑
i<j

∣∣tr (X(ai − aj)(ai − aj)
�)− bij

∣∣ subject to tr(X) ≤ C, X � 0.

The stochastic oracle for this problem is simple: given a query matrix X , the oracle
chooses a pair (i, j) uniformly at random and then returns the subgradient

sign [〈(ai − aj), X(ai − aj)〉 − bij ] (ai − aj)(ai − aj)
�.

We solve ten random problems with dimension d = 100 and n = 2000, giving an
objective with 4 · 106 terms and 5050 parameters. Performing stochastic optimization
is more viable for this problem than a nonstochastic method, as even computing
the objective requires O(n2d2) operations. We plot experimental results in Figure 3.2
showing the optimality gap f(Xt)−infX∗∈X f(X∗) as a function of computation time.
We plot several lines, each of which captures the performance of the algorithm using
a different number m of samples in the smoothing step (2.3). As predicted by our
theory and discussion in section 3, receiving more samples m gives improvements in
convergence rate as a function of time. Our theory also predicts that for m ≥ d, there
should be no improvement in actual time taken to minimize the objective; the plot in
Figure 3.2 suggests that this too is correct, as the plots for m = 64 and m = 128 are
essentially indistinguishable.



686 J. C. DUCHI, P. L. BARTLETT, AND M. J. WAINWRIGHT

Fig. 3.2. Optimization error f(Xt) − infX∗∈X f(X∗) in the metric learning problem of sec-
tion 3.2.2 as a function of time in seconds. Each line indicates the optimization error over time for
a particular number of samples m in the gradient estimate (2.3); we set m = 2i for i = {1, . . . , 7}.

4. Proofs. In this section, we provide the proofs of Theorems 2.1 and 2.2 as
well as of Corollaries 2.3–2.6. We begin with the proofs of the corollaries, after which
we give the full proofs of the theorems. In both cases, we defer some of the more
technical lemmas to the appendices.

The general technique for the proof of each corollary is as follows. First, we note
that the randomly smoothed function fμ(x) = E[f(x + Z)] has Lipschitz continuous
gradient, and it is uniformly close to the original nonsmooth function f . This fact
allows us to apply Theorem 2.1. The second step is to realize that with the sampling
procedure (2.3), the variance E[‖et‖2∗] decreases by a factor of approximately m, the
number of gradient samples. Choosing the stepsizes appropriately in the theorems
then completes the proofs. Proofs of these corollaries require relatively tight control
of the smoothness properties of the smoothing convolution (1.3), and so we refer
frequently to lemmas stated in Appendix E.

4.1. Proofs of Corollaries 2.3 and 2.4. We begin by proving Corollary 2.3.
Recall the averaged quantity gt = 1

m

∑m
i=1 gi,t and that gi,t ∈ ∂F (yt + utZi; ξi),

where the random variables Zi are distributed uniformly on the ball B2(0, 1). From
Lemma E.2 in Appendix E, the variance of gt as an estimate of ∇fμt(yt) satisfies

σ2 : = E[‖et‖22] = E[‖gt −∇fμt(yt)‖22] ≤
L2
0

m
.(4.1)

Further, for Z distributed uniformly on B2(0, 1), we have the bound

f(x) ≤ E[f(x+ uZ)] ≤ f(x) + L0u,

and, moreover, the function x �→ E[f(x+ uZ)] has L0

√
d/u-Lipschitz continuous gra-

dient. Thus, applying Lemma E.2 and Theorem 2.1 with the setting Lt = L0

√
d/uθt,

we obtain

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)] ≤ 6L0R
2
√
d

Tu
+

2ηTR
2

T
+

1

T

T−1∑
t=0

1

ηt
· L

2
0

m
+

4L0u

T
,

where we have used the bound (4.1).
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Recall that ηt = L0

√
t+ 1/R

√
m by construction. Coupled with the inequality

(4.2)

T∑
t=1

1√
t
≤ 1 +

∫ T

1

1√
t
dt = 1 + 2(

√
T − 1) ≤ 2

√
T ,

we use the bound 2
√
T + 1/T + 2/

√
T ≤ 5/

√
T to obtain

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)] ≤ 6L0R
2
√
d

Tu
+

5L0R√
Tm

+
4L0u

T
.

Substituting the specified setting of u = Rd1/4 completes the proof.
The proof of Corollary 2.4 is essentially identical, differing only in the setting of

u = Rd−1/4 and the application of Lemma E.3 instead of Lemma E.2 in Appendix E.

4.2. Proof of Corollary 2.5. Under the conditions of the corollary, Lemma E.1
implies that when μ is uniform on B∞(0, u), then the function fμ(x) := E[f(x + Z)]
has L0/u-Lipschitz continuous gradient with respect to the �1-norm, and moreover it
satisfies the upper bound fμ(x) ≤ f(x)+ L0du

2 . Fix x ∈ X and let gi ∈ ∂F (x+Zi; ξi),
with g = 1

m

∑m
i=1 gi. We claim that for any u, the error satisfies

E
[‖g −∇fμ(x)‖2∞

] ≤ C
L2
0 log d

m
(4.3)

for some universal constant C. Indeed, Lemma E.1 shows that E[g] = ∇fμ(x); more-
over, component j of the random vector gi is an unbiased estimator of the jth com-
ponent of ∇fμ(x). Since ‖gi‖∞ ≤ L0 and ‖∇fμ(x)‖∞ ≤ L0, the vector gi−∇fμ(x) is
a d-dimensional random vector whose components are sub-Gaussian with parameter
4L2

0. Conditional on x, the gi are independent, and so g −∇fμ(x) has sub-Gaussian
components with parameter at most 4L2

0/m. Applying Lemma F.3 from Appendix F
with X = g −∇fμ(x) and σ2 = 4L2

0/m yields the claim (4.3).
Now, as in the proof of Corollary 2.3, we can apply Theorem 2.1. Recall [25]

that 1
2(p−1) ‖x‖2p is strongly convex over Rd with respect to the �p-norm for p ∈ (1, 2].

Thus, with the choice ψ(x) = 1
2(p−1) ‖x‖2p for p = 1 + 1/ log d, it is clear that the

squared radius R2 of the set X is order ‖x∗‖2p log d ≤ ‖x∗‖21 log d. All that remains
is to relate the Lipschitz constant L0 with respect to the �1-norm to that for the
�p-norm. Let q be conjugate to p, that is, 1/q + 1/p = 1. Under the assumptions of
the theorem, we have q = 1 + log d. For any g ∈ R

d, we have ‖g‖q ≤ d1/q ‖g‖∞. Of

course, d1/(log d+1) ≤ d1/(log d) = exp(1), and so ‖g‖q ≤ e ‖g‖∞.
Having shown that the Lipschitz constant L for the �p-norm satisfies L ≤ L0e,

where L0 is the Lipschitz constant with respect to the �1-norm, we apply Theorem 2.1
and the variance bound (4.3) to obtain the result. Specifically, Theorem 2.1 implies

E[f(xT )+ϕ(xT )]− [f(x∗)+ϕ(x∗)] ≤ 6L0R
2

Tu
+

2ηTR
2

T
+
C

T

T−1∑
t=0

1

ηt
· L

2
0 log d

m
+

4L0du

2T
.

Plugging in u, ηt, and R ≤ ‖x∗‖1
√
log d and using bound (4.2) completes the proof.

4.3. Proof of Corollary 2.6. The proof of this corollary requires an auxiliary
result showing that Assumption B holds under the stated conditions. The following
result does not appear to be well known, so we provide a proof in Appendix A. In
stating it, we recall the definition of the sigma field Ft from Assumption B.
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Lemma 4.1. In the notation of Theorem 2.2, suppose that F (·; ξ) is L0-Lipschitz
continuous with respect to the norm ‖·‖ over X + u0 suppμ for P -a.e. ξ. Then

E

[
exp

(‖et‖2∗
σ2

)
| Ft−1

]
≤ exp(1), where σ2 : = 2max

{
E[‖et‖2∗ | Ft−1],

16L2
0

m

}
.

Using this lemma, we now prove Corollary 2.6. When μ is the uniform distribution
on B2(0, u), Lemma E.2 from Appendix E implies that ∇fμ is Lipschitz with constant

L1 = L0

√
d/u. Lemma 4.1 ensures that the error et satisfies Assumption B. Noting

the inequality

max
{
log(1/δ),

√
(1 + logT ) log(1/δ)

}
≤ max{log(1/δ), 1 + logT }

and combining the bound in Theorem 2.2 with Lemma 4.1, we see that with proba-
bility at least 1− 2δ

f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)

≤ 6L0R
2
√
d

Tu
+

4L0u

T
+

4R2η√
T + 1

+
2L2

0

m
√
Tη

+ C
L2
0max

{
log 1

δ , logT
}

(T + 1)mη
+
L0R

√
log 1

δ√
Tm

for a universal constant C. Setting η = L0/R
√
m and u = Rd1/4 gives the result.

4.4. Proof of Theorem 2.1. This proof is more involved than those of the
above corollaries. In particular, we build on techniques used in the work of Tseng [33],
Lan [19], and Xiao [35]. The changing smoothness of the stochastic objective—which
comes from changing the shape parameter of the sampling distribution Z in the aver-
aging step (2.3)—adds some challenge. Essentially, the idea of the proof is to let μt be
the density of utZ and define fμt(x) := E[f(x + utZ)], where ut is the nonincreasing
sequence of shape parameters in the averaging scheme (2.3). We show via Jensen’s
inequality that f(x) ≤ fμt(x) ≤ fμt−1(x) for all t, which is intuitive because the vari-
ance of the sampling scheme is decreasing. Then we apply a suitable modification of
the accelerated gradient method [33] to the sequence of functions fμt decreasing to
f , and by allowing ut to decrease appropriately we achieve our result. At the end of
this section, we state a third result (Theorem 4.4), which gives an alternative setting
for u given a priori knowledge of the number of iterations.

We begin by stating two technical lemmas.
Lemma 4.2. Let fμt be a sequence of functions such that fμt has Lt-Lipschitz con-

tinuous gradients with respect to the norm ‖·‖ and assume that fμt(x) ≤ fμt−1(x) for
any x ∈ X . Let the sequence {xt, yt, zt} be generated according to the updates (2.4a)–
(2.4c), and define the error term et = ∇fμt(yt)− gt. Then for any x∗ ∈ X ,

1

θ2t
[fμt(xt+1) + ϕ(xt+1)] ≤

t∑
τ=0

1

θτ
[fμτ (x

∗) + ϕ(x∗)] +
(
Lt+1 +

ηt+1

θt+1

)
ψ(x∗)

+

t∑
τ=0

1

2θτητ
‖et‖2∗ +

t∑
τ=0

1

θτ
〈eτ , zτ − x∗〉 .

See Appendix B for the proof of this claim.
Lemma 4.3. Let the sequence θt satisfy

1−θt
θ2t

= 1
θ2t−1

and θ0 = 1. Then θt ≤ 2
t+2

and
∑t

τ=0
1
θτ

= 1
θ2t
.
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Tseng [33] proves the second statement; the first follows by induction.
We now proceed with the proof. Recalling fμt(x) = E[f(x + utZ)], let us verify

that fμt(x) ≤ fμt−1(x) for any x and t so we can apply Lemma 4.2. Since ut ≤ ut−1,
we may define a random variable U ∈ {0, 1} such that P(U = 1) = ut

ut−1
∈ [0, 1]. Then

fμt(x) = E[f(x + utZ)] = E
[
f
(
x+ ut−1ZE[U ]

)]
≤ P[U = 1] E[f(x+ ut−1Z)] + P[U = 0] f(x),

where the inequality follows from Jensen’s inequality. By a second application of
Jensen’s inequality, we have f(x) = f(x + ut−1E[Z]) ≤ E[f(x + ut−1Z)] = fμt−1(x).
Combined with the previous inequality, we conclude that fμt(x) ≤ E[f(x+ut−1Z)] =
fμt−1(x) as claimed. Consequently, we have verified that the function fμt satisfies the
assumptions of Lemma 4.2 where ∇fμt has Lipschitz parameter Lt = L1/ut and error
term et = ∇fμt(yt)− gt. We apply the lemma momentarily.

Using Assumption A that f(x) ≥ E[f(x + utZ)] − L0ut = fμt(x) − L0ut for all
x ∈ X , Lemma 4.3 implies

1

θ2T−1

[f(xT ) + ϕ(xT )]− 1

θ2T−1

[f(x∗) + ϕ(x∗)]

=
1

θ2T−1

[f(xT ) + ϕ(xT )]−
T−1∑
t=0

1

θt
[f(x∗) + ϕ(x∗)]

≤ 1

θ2T−1

[fμT−1(xT ) + ϕ(xT )]−
T−1∑
t=0

1

θt
[fμt(x

∗) + ϕ(x∗)] +
T−1∑
t=0

L0ut
θt

,

which by the definition of ut = θtu is in turn bounded by

(4.4)
1

θ2T−1

[fμT−1(xT ) + ϕ(xT )]−
T−1∑
t=0

1

θt
[fμt(x

∗) + ϕ(x∗)] + TL0u.

Now we apply Lemma 4.2 to the bound (4.4), which gives us

1

θ2T−1

[f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)]

≤ LTψ(x
∗) +

ηT
θT
ψ(x∗) +

T−1∑
t=0

1

2θtηt
‖et‖2∗ +

T−1∑
t=0

1

θt
〈et, zt − x∗〉+ TL0u.(4.5)

The nonprobabilistic bound (4.5) is the key to the remainder of this proof, as well as
the starting point for the proof of Theorem 2.2 in the next section. What remains
here is to take expectations in the bound (4.5).

Recall the filtration of σ-fields Ft, which satisfy xt, yt, zt ∈ Ft−1; that is, Ft
contains the randomness in the stochastic oracle to time t. Since gt is an unbiased
estimator of ∇fμt(yt) by construction, we have E[gt | Ft−1] = ∇fμt(yt) and

E[〈et, zt − x∗〉] = E
[
E[〈et, zt − x∗〉 | Ft−1]

]
= E

[ 〈E[et | Ft−1], zt − x∗〉 ] = 0,

where we have used the fact that zt are measurable with respect to Ft−1. Now, recall
from Lemma 4.3 that θt ≤ 2

2+t and that (1− θt)/θ
2
t = 1/θ2t−1. Thus

θ2t−1

θ2t
=

1

1− θt
≤ 1

1− 2
2+t

=
2 + t

t
≤ 3

2
for t ≥ 4.
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Furthermore, we have θt+1 ≤ θt, so by multiplying both sides of our bound (4.5) by
θ2T−1 and taking expectations over the random vectors gt,

E[f(xT ) + ϕ(xT )]− [f(x∗) + ϕ(x∗)]

≤ θ2T−1LTψ(x
∗) + θT−1ηTψ(x

∗) + θ2T−1TL0u

+ θT−1

T−1∑
t=0

1

2ηt
E[‖et‖2∗] + θT−1

T−1∑
t=0

E[〈et, zt − x∗〉]

≤ 6L1ψ(x
∗)

Tu
+

2ηTψ(x
∗)

T
+

1

T

T−1∑
t=0

1

ηt
E[‖et‖2∗] +

4L0u

T
,

where we used the fact that LT = L1/uT = L1/θTu. This completes the proof of
Theorem 2.1.

We conclude with a theorem using a fixed setting of the smoothing parameter ut.
It is clear that by setting u ∝ 1/T , the rates achieved by Theorems 2.1 and 4.4 are
identical up to constant factors.

Theorem 4.4. Suppose that ut ≡ u for all t and set Lt ≡ L1/u. With the
remaining conditions as in Theorem 2.1, then for any x∗ ∈ X , we have

E[f(xT )+ϕ(xT )]−[f(x∗)+ϕ(x∗)] ≤ 4L1ψ(x
∗)

T 2u
+
2ηTψ(x

∗)
T

+
1

T

T−1∑
t=0

1

ηt
E
[ ‖et‖2∗ ]+L0u.

Proof. If we fix ut ≡ u for all t, then the bound (4.5) holds with the last term
TL0u replaced by θ2T−1L0u, which we see by invoking Lemma 4.3. The remainder of
the proof follows unchanged, with Lt ≡ L1 for all t.

4.5. Proof of Theorem 2.2. An examination of the proof of Theorem 2.1
shows that to control the probability of deviation from the expected convergence
rate, we need to control two terms: the squared error sequence

∑T−1
t=0

1
2ηt

‖et‖2∗ and

the sequence
∑T−1

t=0
1
θt
〈et, zt − x∗〉. The next two lemmas handle these terms.

Lemma 4.5. Let X satisfy ‖x− x∗‖ ≤ R for all x ∈ X . Under Assumption B,

(4.6) P

[
θ2T−1

T−1∑
t=0

1

θt
〈et, zt − x∗〉 ≥ ε

]
≤ exp

(
− T ε2

R2σ2

)
.

Consequently, with probability at least 1− δ,

(4.7) θ2T−1

T−1∑
t=0

1

θt
〈et, zt − x∗〉 ≤ Rσ

√
log 1

δ

T
.

Lemma 4.6. In the notation of Theorem 2.2 and under Assumption B, we have
(4.8)

logP

[ T−1∑
t=0

‖et‖2∗
2ηt

≥
T−1∑
t=0

E[‖et‖2∗ | Ft−1]

2ηt
+ ε

]
≤ max

{
− ε2

32eσ4
∑T−1
t=0

1
η2t

,− η0
4σ2

ε

}
.

Consequently, with probability at least 1− δ,

(4.9)

T−1∑
t=0

‖et‖2∗
2ηt

≤
T−1∑
t=0

E[‖et‖2∗ | Ft−1]

2ηt
+

4σ2

η
max

{
log

1

δ
,

√
2e(1 + logT ) log

1

δ

}
.
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See Appendices C and D, respectively, for the proofs of the two lemmas.
Equipped with Lemmas 4.5 and 4.6, we now prove Theorem 2.2. Let us recall the

deterministic bound (4.5) from the proof of Theorem 2.1:

1

θ2T−1

[f(xT ) + ϕ(xT )− f(x∗)− ϕ(x∗)]

≤ LTψ(x
∗) +

ηT
θT
ψ(x∗) +

T−1∑
t=0

1

2θtηt
‖et‖2∗ +

T−1∑
t=0

1

θt
〈et, zt − x∗〉+ TL0u.

Since θT−1 ≤ θt for t ∈ {0, . . . , T − 1}, Lemmas 4.5 and 4.6 combined with a union
bound imply that with probability at least 1− 2δ

θT−1

T−1∑
t=0

1

2θtηt
‖et‖2∗ + θ2T−1

T−1∑
t=0

〈et, zt − x∗〉 ≤
T−1∑
t=0

1

2ηt
E[‖et‖2∗ | Ft−1]

+
4σ2

η
max

{
log(1/δ),

√
2e(1 + logT ) log(1/δ)

}
+
Rσ

√
log 1

δ√
T

.

The terms remaining to control are deterministic, and as in Theorem 2.1 we have

θ2T−1LT ≤ 6L1

Tu
,

θ2T−1ηT

θT
≤ 2ηT

T
, and θ2T−1TL0u ≤ 4L0u

T + 1
.

Combining the above bounds completes the proof.

5. Discussion. In this paper, we have developed and analyzed smoothing strate-
gies for stochastic nonsmooth optimization that are provably optimal in the stochas-
tic oracle model of optimization complexity, and we have given—to the best of our
knowledge—the first variance reduction techniques for nonsmooth stochastic opti-
mization. We think that at least two obvious questions remain. The first is whether
the randomized smoothing is necessary to achieve such optimal rates of convergence.
The second question is whether dimension-independent smoothing techniques are pos-
sible, that is, whether the d-dependent factors in the bounds in Corollaries 2.3–2.6 are
necessary. Answering this question would require study of different smoothing distri-
butions, as the dimension dependence for our choices of μ is tight. We have outlined
several applications for which smoothing techniques give provable improvement over
standard methods. Our experiments also show qualitatively good agreement with the
theoretical predictions we have developed.

Appendix A. Proof of Lemma 4.1. The proof of this lemma requires several
auxiliary results on sub-Gaussian and subexponential random variables, which we
collect and prove in Appendix F. For notational convenience, we take expectations E
conditional on Ft−1 without mention.

For each i = 1, . . . ,m, define the random variable Xi = ∇fμt(yt)−gi,t, and define
the sum Sm =

∑m
i=1Xi. With these definitions, we have the convenient relation

1
mSm = ∇fμt(yt)− 1

m

∑m
i=1 gi,t. Conditioned on Ft−1, the Xi are independent, and

we have ‖Xi‖∗ ≤ L : = 2L0. Consequently, by applying Lemma F.5 from Appendix F,
we conclude that the random variable ‖ 1

mSm‖∗ − E[‖ 1
mSm‖∗] is sub-Gaussian with

parameter at most 4L2/m. Applying Lemma F.2 from Appendix F yields

E

[
exp

(
sm

∥∥ 1
mSm

∥∥2

∗
8L2

)]
≤ 1√

1− s
exp

(
m(E

[∥∥ 1
mSm

∥∥
∗
]
)2

8L2
· s

1− s

)
.
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Since 4L2/m ≤ max{E [‖ 1
mSm‖2∗

]
, 4L2/m}, we conclude that

E [exp(λ(‖Sm/m‖∗ − E [‖Sm/m‖∗]))] ≤ exp

(
λ2 max{4L2/m,E

[‖ 1
mSm‖2∗

]}
2

)
.

For any random variable X , Jensen’s inequality implies that (EX)2 ≤ EX2, so that

E

[
exp

(
s
∥∥ 1
mSm

∥∥2

∗
2max{E[‖ 1

mSm‖2∗], 4
mL

2}

)]

≤ 1√
1− s

exp

(
E[‖ 1

mSm‖2∗]
2max{E[‖ 1

mSm‖2∗], 4
mL

2} · s

1− s

)
≤ 1√

1− s
exp

(
1

2
· s

1− s

)
.

Taking s = 1
2 yields the upper bound

1√
1− s

exp

(
1

2
· s

1− s

)
=

√
2 exp

(
1

2

)
≤ exp(1),

which completes the proof.

Appendix B. Proof of Lemma 4.2. Define the linearized version of the cu-
mulative objective

(B.1) �t(z) :=

t∑
τ=0

1

θτ
[fμτ (yτ ) + 〈gτ , z − yτ 〉+ ϕ(z)],

and let �−1(z) denote the indicator function of the set X . For conciseness, we tem-
porarily adopt the shorthand notation

α−1
t = Lt + ηt/θt and φt(x) = fμt(x) + ϕ(x).

By the smoothness of fμt , we have

fμt(xt+1) + ϕ(xt+1)︸ ︷︷ ︸
φt(xt+1)

≤ fμt(yt) + 〈∇fμt(yt), xt+1 − yt〉+ Lt
2

‖xt+1 − yt‖2 + ϕ(xt+1).

From the definition (2.4a)–(2.4c) of the triple (xt, yt, zt), we obtain

φt(xt+1) ≤ fμt(yt) + 〈∇fμt(yt), θtzt+1 + (1− θt)xt〉+ Lt
2

‖θtzt+1 − θtzt‖2

+ ϕ(θtzt+1 + (1− θt)xt).

Finally, by convexity of the regularizer ϕ, we conclude that

φt(xt+1) ≤ θt

[
fμt(yt) + 〈∇fμt(yt), zt+1 − yt〉+ ϕ(zt+1) +

Ltθt
2

‖zt+1 − zt‖2
]

+ (1− θt)[fμt(yt) + 〈∇fμt(yt), xt − yt〉+ ϕ(xt)].(B.2)

By the strong convexity of ψ, it is clear that we have the lower bound

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x − y〉 ≥ 1

2
‖x− y‖2 .(B.3)



RANDOMIZED SMOOTHING FOR STOCHASTIC OPTIMIZATION 693

On the other hand, by the convexity of fμt , we have

(B.4) fμt(yt) + 〈∇fμt(yt), xt − yt〉 ≤ fμt(xt).

Substituting inequalities (B.3) and (B.4) into the bound (B.2) and simplifying yields

φt(xt+1) ≤ θt [fμt(yt) + 〈∇fμt(yt), zt+1 − yt〉+ ϕ(zt+1) + LtθtDψ(zt+1, zt)]

+ (1 − θt)[fμt(xt) + ϕ(xt)].

We now rewrite this upper bound in terms of the error et = ∇fμt(yt)− gt:

φt(xt+1) ≤ θt [fμt(yt) + 〈gt, zt+1 − yt〉+ ϕ(zt+1) + LtθtDψ(zt+1, zt)]

+ (1− θt)[fμt(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉
= θ2t [�t(zt+1)− �t−1(zt+1) + LtDψ(zt+1, zt)]

+ (1− θt)[fμt(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉 .(B.5)

The first order convexity conditions for optimality imply that for some g ∈
∂�t−1(zt) and all x ∈ X , we have 〈g + 1

αt
∇ψ(zt), x − zt〉 ≥ 0 since zt minimizes

�t−1(x) +
1
αt
ψ(x). Thus, first-order convexity gives

�t−1(x)− �t−1(zt) ≥ 〈g, x− zt〉 ≥ − 1

αt
〈∇ψ(zt), x− zt〉

=
1

αt
ψ(zt)− 1

αt
ψ(x) +

1

αt
Dψ(x, zt).

Adding �t(zt+1) to both sides of the above and substituting x = zt+1, we conclude

�t(zt+1)− �t−1(zt+1) ≤ �t(zt+1)− �t−1(zt)− 1

αt
ψ(zt) +

1

αt
ψ(zt+1)− 1

αt
Dψ(zt+1, zt).

Combining this inequality with the bound (B.5) and the definition α−1
t = Lt + ηt/θt,

fμt(xt+1)+ϕ(xt+1) ≤ θ2t

[
�t(zt+1)− �t(zt)− 1

αt
ψ(zt) +

1

αt
ψ(zt+1)− ηt

θt
Dψ(zt+1, zt)

]
+ (1− θt)[fμt(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉

≤ θ2t

[
�t(zt+1)− �t(zt)− 1

αt
ψ(zt) +

1

αt+1
ψ(zt+1)− ηt

θt
Dψ(zt+1, zt)

]
+ (1− θt)[fμt(xt) + ϕ(xt)] + θt 〈et, zt+1 − yt〉

since α−1
t is nondecreasing. We now divide both sides by θ2t and unwrap the recursion.

By construction (1− θt)/θ
2
t = 1/θ2t−1 and fμt ≤ fμt−1 , so we obtain

1

θ2t
[fμt(xt+1) + ϕ(xt+1)] ≤ 1− θt

θ2t
[fμt(xt) + ϕ(xt)]− 1

αt
ψ(zt) +

1

αt+1
ψ(zt+1)

+ �t(zt+1)− �t(zt)− ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − yt〉

≤ 1

θ2t−1

[fμt−1(xt) + ϕ(xt)]− 1

αt
ψ(zt) +

1

αt+1
ψ(zt+1)

+ �t(zt+1)− �t(zt)− ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − yt〉 .
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The second inequality follows by combination of the facts that (1−θt)/θ2t = 1/θ2t−1 and
fμt ≤ fμt−1 . By applying the two steps above successively to [fμt−1(xt)+ϕ(xt)]/θ

2
t−1,

then to [fμt−2(xt−1) + ϕ(xt−1)]/θ
2
t−2, and so on until t = 0, we find

1

θ2t
[fμt(xt+1) + ϕ(xt+1)] ≤ 1− θ0

θ20
[fμ0(x0) + ϕ(x0)] + �t(zt+1) +

1

αt+1
ψ(zt+1)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑
τ=0

1

θτ
〈eτ , zτ+1 − yτ 〉 − �−1(z0)− 1

α0
ψ(z0).

By construction, θ0 = 1, we have �−1(z0) = 0, and zt+1 minimizes �t(x)+
1

αt+1
ψ(x)

over X . Thus, for any x∗ ∈ X , we have

1

θ2t
[fμt(xt+1) + ϕ(xt+1)]

≤ �t(x
∗) +

1

αt+1
ψ(x∗)−

t∑
τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑
τ=0

1

θτ
〈eτ , zτ+1 − yτ 〉 .

Recalling the definition (B.1) of �t and noting that the first-order conditions for con-
vexity imply that fμt(yt) + 〈∇fμt(yt), x− yt〉 ≤ fμt(x), we expand �t and have

1

θ2t
[fμt(xt+1) + ϕ(xt+1)] ≤

t∑
τ=0

1

θτ
[fμτ (yτ ) + 〈gτ , x∗ − yτ 〉+ ϕ(x∗)] +

1

αt+1
ψ(x∗)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑
τ=0

1

θτ
〈eτ , zτ+1 − yt〉

=

t∑
τ=0

1

θτ
[fμτ (yτ ) + 〈∇fμτ (yτ ), x

∗ − yτ 〉+ ϕ(x∗)] +
1

αt+1
ψ(x∗)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑
τ=0

1

θτ
〈eτ , zτ+1 − x∗〉

≤
t∑

τ=0

1

θτ
[fμτ (x

∗) + ϕ(x∗)] +
1

αt+1
ψ(x∗)

−
t∑

τ=0

ητ
θτ
Dψ(zτ+1, zτ ) +

t∑
τ=0

1

θτ
〈eτ , zτ+1 − x∗〉 .

(B.6)

Now we apply the Fenchel inequality to the conjugates 1
2 ‖·‖2 and 1

2 ‖·‖2∗, yielding
〈et, zt+1 − x∗〉 = 〈et, zt − x∗〉+ 〈et, zt+1 − zt〉

≤ 〈et, zt − x∗〉+ 1

2ηt
‖et‖2∗ +

ηt
2
‖zt − zt+1‖2 .

In particular,

−ηt
θt
Dψ(zt+1, zt) +

1

θt
〈et, zt+1 − x∗〉 ≤ 1

2ηtθt
‖et‖2∗ +

1

θt
〈et, zt − x∗〉 .

Using this inequality and rearranging (B.6) proves the lemma.
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Appendix C. Proof of Lemma 4.5. Consider the sum
∑T−1

t=0
1
θt
〈et, zt − x∗〉.

Since X is compact and ‖zt − x∗‖ ≤ R, we have 〈et, zt − x∗〉 ≤ ‖et‖∗R. Further,
E[〈et, zt − x∗〉 | Ft−1] = 0, so 1

θt
〈et, zt − x∗〉 is a martingale difference sequence. By

setting ct = Rσ/θt, we have by Assumption B that

E

[
exp

( 〈et, zt − x∗〉2
c2t θ

2
t

)
| Ft−1

]
≤ E

[
exp

(
‖et‖2∗R2

c2t θ
2
t

)
| Ft−1

]

= E

[
exp

(‖et‖2∗
σ2

)
| Ft−1

]
≤ exp(1).

By applying Lemma F.8 from Appendix F, we conclude that 1
θt
〈et, zt − x∗〉 is (con-

ditionally) sub-Gaussian with parameter σ2
t ≤ 4R2σ2/3θ2t , and applying the Azuma–

Hoeffding inequality (see (F.1) in Appendix F) yields

P

[ T−1∑
t=0

1

θt
〈et, zt − x∗〉 ≥ w

]
≤ exp

(
− 3w2

8R2σ2
∑T−1
t=0

1
θ2t

)

for w ≥ 0. Setting w = ε/θT−1 yields that

P

[
θT−1

T−1∑
t=0

1

θt
〈et, zt − x∗〉 ≥ ε

]
≤ exp

(
− 3ε2

8R2σ2
∑T−1
t=0

θ2T−1

θ2t

)
.

Since θT−1 ≤ θt for t < T , we have R2σ2
∑T−1

t=0

θ2T−1

θ2t
≤ R2σ2

∑T−1
t=0 1 = R2σ2T , and

dividing ε again by θT−1 while recalling that θT−1 ≤ 2
T+1 , we have

P

[
θ2T−1

T−1∑
t=0

1

θt
〈et, zt − x∗〉 ≥ ε

]
≤ exp

(
−12(T + 1)ε2

8R2σ2

)
≤ exp

(
− 3T ε2

2R2σ2

)
,

as claimed in (4.6). The second claim (4.7) follows by setting δ = exp(− 3Tε2

2R2σ2 ).

Appendix D. Proof of Lemma 4.6. Recall the σ-fields Ft defined prior to
Assumption B. Define the random variables

Xt :=
1

2ηt
‖et‖2∗ −

1

2ηt
E[‖et‖2∗ | Ft−1].

As an intermediate step, we claim that for λ ≤ ηt/2σ
2, the following bound holds:

(D.1)

E[exp(λXt) | Ft−1] =E

[
exp

(
λ

2ηt
(‖et‖2∗ − E[‖et‖2∗ | Ft−1])

)
| Ft−1

]
≤ exp

(
8e

η2t
λ2σ4

)
.

For now, we proceed with the proof, returning to establish the claim (D.1) later.
The bound (D.1) implies that Xt is subexponential with parameters Λt = ηt/2σ

2

and τ2t ≤ 16eσ4/η2t . Since ηt = η
√
t+ 1, it is clear that mint{Λt} = Λ0 = η0/2σ

2. By

defining C2 =
∑T−1
t=0 τ2t , we can apply Theorem I.5.1 from the book [7] to conclude

that

(D.2) P

(
T−1∑
t=0

Xt ≥ ε

)
≤

{
exp

(
− ε2

2C2

)
for 0 ≤ ε ≤ Λ0C

2,

exp
(−Λ0ε

2

)
otherwise, i.e., ε > Λ0C

2,

which yields the first claim in Lemma 4.6.
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The second statement involves inverting the bound for the different regimes of
ε. Before proving the bound, we note that for ε = Λ0C

2, we have exp(−ε2/2C2) =
exp(−Λε/2), so we can invert each of the exp terms to solve for ε and take the
maximum of the bounds. We begin with ε in the regime closest to zero, recalling that
ηt = η

√
t+ 1. We see that

C2 ≤ 16eσ4

η2

T−1∑
t=0

1

t+ 1
≤ 16eσ4

η2
(logT + 1).

Thus, inverting the bound δ = exp(−ε2/2C2), we obtain ε =
√
2C2 log 1

δ or that

T−1∑
t=0

1

2ηt
‖et‖2∗ ≤

T−1∑
t=0

1

2ηt
E[‖et‖2∗ | Ft−1] + 4

√
2e
σ2

η

√
log

1

δ
(log T + 1)

with probability at least 1 − δ. In the large ε regime, we solve δ = exp(−ηε/4σ2) or

ε = 4σ2

η log 1
δ , which gives that

T−1∑
t=0

1

2ηt
‖et‖2∗ ≤

T−1∑
t=0

1

2ηt
E[‖et‖2∗ | Ft−1] +

4σ2

η
log

1

δ

with probability at least 1− δ, by the bound (D.2).
We now return to prove the intermediate claim (D.1). Let X := ‖et‖∗. For

notational convenience in this paragraph, we take all probabilities and expectations
conditional on Ft−1. By assumption E[exp(X2/σ2)] ≤ exp(1), so for λ ∈ [0, 1]

P(X2/σ2 > ε) ≤ E[exp(λX2/σ2)] exp(−λε) ≤ exp(λ− λε),

and replacing ε with 1+ ε we have P(X2 > σ2+ εσ2) ≤ exp(−ε). If εσ2 ≥ σ2−E[X2],
then σ2 − E[X2] + εσ2 ≤ 2εσ2, and so

P(X2 > E[X2] + 2εσ2) ≤ P(X2 > σ2 + εσ2) ≤ exp(−ε),
while for εσ2 < σ2−E[X2], we clearly have P(X2−E[X2] > εσ2) ≤ 1 ≤ exp(1) exp(−ε)
since ε ≤ 1. In either case, we have

P(X2 − E[X2] > ε) ≤ exp(1) exp
(
− ε

2σ2

)
.

For the opposite concentration inequality, we see that

P((E[X2]−X2)/σ2 > ε) ≤ E[exp(λE[X2]/σ2) exp(−λX2/σ2)] exp(−λε) ≤ exp(λ−λε)
or P(X2 − E[X2] < −σ2ε) ≤ exp(1) exp(−ε). Using the union bound, we have

(D.3) P(|X2 − E[X2]| > ε) ≤ 2 exp(1) exp
(
− ε

2σ2

)
.

Now we apply Lemma F.7 to the bound (D.3) to see that ‖et‖2∗ −E[‖et‖2∗ | Ft−1]
is subexponential with parameters Λ ≥ σ2 and τ2 ≤ 32eσ4.

Appendix E. Properties of randomized smoothing. In this section, we dis-
cuss the analytic properties of the smoothed function fμ from the convolution (1.3).
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We assume throughout that functions are sufficiently integrable without bothering
with measurability conditions (since F (·; ξ) is convex, this entails no real loss of gen-
erality [4, 30]). By Fubini’s theorem, we have

fμ(x) =

∫
Ξ

∫
Rd

F (x+ y; ξ)μ(y)dydP (ξ) =

∫
Ξ

Fμ(x; ξ)dP (ξ).

Here Fμ(x; ξ) = (F (·; ξ) ∗ μ(−·))(x). We begin with the observation that since μ is a
density with respect to Lebesgue measure, the function fμ is in fact differentiable [4].
So we have already made our problem somewhat smoother, as it is now differentiable;
for the remainder, we consider finer properties of the smoothing operation. In partic-
ular, we will show that under suitable conditions on μ, F (·; ξ), and P , the function
fμ is uniformly close to f over X and ∇fμ is Lipschitz continuous.

We remark on notation before proceeding: since f is convex, it is almost-everywhere
differentiable, and we can abuse notation and take its gradient inside of integrals and
expectations with respect to Lebesgue measure, and similarly for F (·; ξ). That is, we
write ∇F (x + Z; ξ), which exists with probability 1 (see also [4]). We give proofs of
the following set of smoothing lemmas in the full version of this paper [10].

Lemma E.1. Let μ be the uniform density on the �∞-ball of radius u. Assume
that E[‖∂F (x; ξ)‖2∞] ≤ L2

0 for all x ∈ int(X +B∞(0, u)) Then the following hold:
(i) f(x) ≤ fμ(x) ≤ f(x) + L0d

2 u.
(ii) fμ is L0-Lipschitz with respect to the �1-norm over X .
(iii) fμ is continuously differentiable; moreover, its gradient is L0

u -Lipschitz continu-
ous with respect to the �1-norm.

(iv) For random variables Z ∼ μ and ξ ∼ P , we have

E[∇F (x + Z; ξ)] = ∇fμ(x) and E[‖∇fμ(x) −∇F (x+ Z; ξ)‖2∞] ≤ 4L2
0.

There exists a function f for which each of the estimates (i)–(iii) is tight simultane-
ously, and (iv) is tight at least to a factor of 1/4.

Remarks. Note that the hypothesis of this lemma is satisfied if for any fixed ξ ∈ Ξ,
the function F (·; ξ) is L0-Lipschitz with respect to the �1-norm.

A similar lemma can be proved when μ is the density of the uniform distribution
on B2(0, u). In this case, Yousefian, Nedić, and Shanbhag [37] give (i)–(iii) of the
following lemma (though the tightness of the bounds is new).

Lemma E.2 (Yousefian, Nedić, and Shanbhag [37]). Let fμ be defined as in (1.3),

where μ is the uniform density on the �2-ball of radius u. Assume E[‖∂F (x; ξ)‖22] ≤ L2
0

for x ∈ int(X +B2(0, u)). Then the following hold:
(i) f(x) ≤ fμ(x) ≤ f(x) + L0u.
(ii) fμ is L0-Lipschitz over X .

(iii) fμ is continuously differentiable; moreover, its gradient is L0

√
d

u -Lipschitz
continuous.

(iv) For random variables Z ∼ μ and ξ ∼ P ,

E[∇F (x+ Z; ξ)] = ∇fμ(x) and E[‖∇fμ(x) −∇F (x+ Z; ξ)‖22] ≤ L2
0.

In addition, there exists a function f for which each of the bounds (i)–(iv) is tight—
cannot be improved by more than a constant factor—simultaneously.

For situations in which F (·; ξ) is L0-Lipschitz with respect to the �2-norm over
all of Rd and for P -a.e. ξ, we can use the normal distribution to perform smoothing
of the expected function f . The following lemma is similar to a result of Lakshmanan
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and de Farias [18, Lemma 3.3], but they consider functions Lipschitz-continuous with
respect to the �∞-norm, i.e., |f(x) − f(y)| ≤ L ‖x− y‖∞, which is too stringent
for our purposes, and we carefully quantify the dependence on the dimension of the
underlying problem.

Lemma E.3. Let μ be the N(0, u2Id×d) distribution. Assume that F (·; ξ) is
L0-Lipschitz with respect to the �2-norm for P -a.e. ξ. The following properties hold:

(i) f(x) ≤ fμ(x) ≤ f(x) + L0u
√
d.

(ii) fμ is L0-Lipschitz with respect to the �2-norm
(iii) fμ is continuously differentiable; moreover, its gradient is L0

u -Lipschitz continu-
ous with respect to the �2-norm.

(iv) For random variables Z ∼ μ and ξ ∼ P ,

E[∇F (x+ Z; ξ)] = ∇fμ(x) and E[‖∇fμ(x) −∇F (x+ Z; ξ)‖22] ≤ L2
0.

In addition, there exists a function f for which each of the bounds (i)–(iv) is tight (to
within a constant factor) simultaneously.

Our final lemma illustrates the sharpness of the bounds we have proved for func-
tions that are Lipschitz with respect to the �2-norm. Specifically, we show that at
least for the normal and uniform distributions, it is impossible to obtain more favor-
able tradeoffs between the uniform approximation error of the smoothed function fμ
and the Lipschitz continuity of ∇fμ. We begin with the following definition of our
two types of error (uniform and gradient) and then give the lemma:

EU (f) := inf
{
L ∈ R | sup

x∈X
|f(x)− fμ(x)| ≤ L

}
,(E.1)

E∇(f) := inf
{
L ∈ R | ‖∇fμ(x)−∇fμ(y)‖2 ≤ L ‖x− y‖2 ∀ x, y ∈ X}

.(E.2)

Lemma E.4. For μ equal to either the uniform distribution on B2(0, u) or
N(0, u2Id×d), there exists an L0-Lipschitz continuous function f and dimension in-
dependent constant c > 0 such that

EU (f)E∇(f) ≥ cL2
0

√
d.

Remarks. Inspecting the convergence guarantee of Theorem 2.1 makes the impor-
tance of the above bound clear. The terms L1 and L0 in the bound (2.5) can be re-
placed with E∇(f) and EU (f), respectively. Minimizing over u, we see that the leading

term in the convergence guarantee (2.5) is of order

√
E∇(f)EU (f)ψ(x∗)

T ≥ cL0d
1/4

√
ψ(x∗)

T .
In particular, this result shows that our analysis of the dimension dependence of the
randomized smoothing in Lemmas E.2 and E.3 is sharp and cannot be improved by
more than a constant factor (see also Corollaries 2.3 and 2.4).

Appendix F. Sub-Gaussian and subexponential tail bounds. For refer-
ence purposes, we state here some standard definitions and facts about sub-Gaussian
and subexponential random variables (see the books [7, 21, 34] for further details).

F.1. Sub-Gaussian variables. This class of random variables is characterized
by a quadratic upper bound on the cumulant generating function.

Definition F.1. A zero-mean random variable X is called sub-Gaussian with
parameter σ2 if E[exp(λX)] ≤ exp(σ2λ2/2) for all λ ∈ R.
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Remarks. If Xi, i = 1, . . . , n, are independent sub-Gaussian with parameter σ2,
it follows from this definition that 1

n

∑n
i=1Xi is sub-Gaussian with parameter σ2/n.

Moreover, it is well known that any zero-mean random variable X satisfying |X | ≤ C
is sub-Gaussian with parameter σ2 ≤ C2.

Lemma F.2. (Buldygin and Kozachenko [7, Lemma 1.6]) Let X − E[X ] be sub-
Gaussian with parameter σ2. Then for s ∈ [0, 1],

E

[
exp

(
sX2

2σ2

)]
≤ 1√

1− s
exp

(
(E[X ])2

2σ2
· s

1− s

)
.

The maximum of d sub-Gaussian random variables grows logarithmically in d, as
shown by the following result.

Lemma F.3. Let X ∈ R
d be a random vector with sub-Gaussian components,

each with parameter at most σ2. Then E[‖X‖2∞] ≤ max{6σ2 log d, 2σ2}.
Using the definition of sub-Gaussianity, the result can be proved by a combination

of union bounds and Chernoff’s inequality (see Van der Vaart and Wellner [34, Lemma
2.2.2] or Buldygin and Kozachenko [7, Chapter II] for details).

The following martingale-based bound for variables with conditionally sub-Gaussian
behavior is of the Azuma–Hoeffding type (e.g., [2, 14, 7]).

Lemma F.4. Let Xi be a martingale difference sequence adapted to the filtra-
tion Fi, and assume that each Xi is conditionally sub-Gaussian with parameter σ2

i ,
meaning E[exp(λXi) | Fi−1] ≤ exp(λ2σ2

i /2). Then for all ε > 0,

(F.1) P

[
1

n

n∑
i=1

Xi ≥ ε

]
≤ exp

(
− nε2

2
∑n
i=1 σ

2
i /n

)
.

We use martingale techniques to establish the sub-Gaussianity of a normed sum.

Lemma F.5. Let X1, . . . , Xn be independent random vectors with ‖Xi‖ ≤ L for
all i. Define Sn =

∑n
i=1Xi. Then ‖Sn‖−E[‖Sn‖] is sub-Gaussian with parameter at

most 4nL2.

Proof. Since ‖Xi‖ ≤ L, the quantity ‖Sn‖ − E[‖Sn‖] can be controlled using
techniques for bounded martingales [21, Chapter 6]. We begin by constructing the
Doob martingale associated with the sequence {Xi}. Let F0 be the trivial σ-field, and
for i ≥ 1, let Fi be the σ-field defined by the random variables X1, . . . , Xi. Define
the real-valued random variables Zi = E[‖Sn‖ | Fi]− E[‖Sn‖ | Fi−1], and note that
E[Zi | Fi−1] = 0 by construction. Defining the quantity Sn\i =

∑
j �=iXj, we have

|Zi| = |E[‖Sn‖ | Fi−1]− E[‖Sn‖ | Fi]|
≤ ∣∣E [∥∥Sn\i∥∥ | Fi−1

]− E
[∥∥Sn\i∥∥ | Fi

]∣∣+ E[‖Xi‖ | Fi−1] + E[‖Xi‖ | Fi]
= ‖Xi‖+ E[‖Xi‖] ≤ 2L,

where we have exploited the fact that Xj is independent of Fi−1 for j ≥ i. Con-
sequently, the variables Zi define a bounded martingale difference sequence. More
precisely, since |Zi| ≤ 2L, the Zi are conditionally sub-Gaussian with parameter at
most 4L2. Thus, the sum

∑n
i=1 Zi = ‖Sn‖−E[‖Sn‖] is sub-Gaussian with parameter

at most 4nL2, as claimed.

F.2. Subexponential random variables. A slightly less restrictive tail con-
dition defines the class of subexponential random variables.
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Definition F.6. A zero-mean random variable X is subexponential with pa-
rameters (Λ, τ) if

E[exp(λX)] ≤ exp

(
λ2τ2

2

)
for all |λ| ≤ Λ.

The following lemma provides an equivalent characterization of subexponential
variable via a tail bound.

Lemma F.7. Let X be a zero-mean random variable. If there are constants
a, α > 0 such that

P(|X | ≥ t) ≤ a exp(−αt) for all t > 0,

then X is subexponential with parameters Λ = α/2 and τ2 = 4a/α2.
The proof of the lemma follows from a Taylor expansion of exp(·) and the identity

E[|X |k] = ∫ ∞
0 P(|X |k ≥ t)dt (for similar results, see Buldygin and Kozachenko [7,

Chapter I.3]).
Finally, any random variable whose square is subexponential is sub-Gaussian, as

shown by the following result.
Lemma F.8. (Lan, Nemirovski, and Shapiro [20, Lemma 2]) Let X be a zero-mean

random variable satisfying the moment generating inequality E[exp(X2/σ2)] ≤ exp(1).
Then X is sub-Gaussian with parameter at most 3/2σ2.
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[13] J. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I,
Springer, New York, 1996.

[14] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13–30.

[15] P. J. Huber, Robust Statistics, John Wiley and Sons, New York, 1981.
[16] A. Juditsky, A. Nemirovski, and C. Tauvel, Solving Variational Inequalities with the

Stochastic Mirror-Prox Algorithm, preprint, http://arxiv.org/abs/0809.0815, 2008.
[17] V. Katkovnik and Y. Kulchitsky, Convergence of a class of random search algorithms,

Automat. Remote Control, 33 (1972), pp. 1321–1326.
[18] H. Lakshmanan and D. P. de Farias, Decentralized resource allocation in dynamic networks

of agents, SIAM J. Optim., 19 (2008), pp. 911–940.
[19] G. Lan, An optimal method for stochastic composite optimization, Math. Program., 133 (2012),

pp. 365–397.
[20] G. Lan, A. Nemirovski, and A. Shapiro, Validation analysis of robust stochas-

tic approximation method, Math. Program., to appear; also available online from
http://www.ise.ufl.edu/glan/files/2011/12/Validate-SA-rev-Oct28-2010-final.pdf.

[21] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, New York, 1991.
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