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Abstract. We consider the problem of binary classification where the classifier can, for a
particular cost, choose not to classify an observation. Just as in the conventional classifi-
cation problem, minimization of the sample average of the cost is a difficult optimization
problem. As an alternative, we propose the optimization of a certain convex loss function φ,
analogous to the hinge loss used in support vector machines (SVMs). Its convexity ensures
that the sample average of this surrogate loss can be efficiently minimized. We study its
statistical properties. We show that minimizing the expected surrogate loss—the φ-risk—
also minimizes the risk. We also study the rate at which the φ-risk approaches its minimum
value. We show that fast rates are possible when the conditional probability P(Y = 1|X) is
unlikely to be close to certain critical values.
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1. Introduction

The aim of binary classification is to classify observations that take values in an arbitrary

feature space X into one of two classes, labelled −1 or +1. Since an observation X does not

fully determine its label y, we construct a classifier t : X → {−1,+1} that represents our

guess t(X) of the label Y of a future observation X. The rule with the smallest probability

of error P{t(X) 6= Y } is the Bayes rule

t∗(x) :=
{
−1 if P{Y = −1|X = x} ≥ P{Y = +1|X = x}
+1 otherwise(1)

Observations x for which the conditional probability

η(x) := P{Y = +1|X = x}(2)

is close to 1/2, are the most difficult to classify. In the extreme case where η(x) = 1/2, we

may just as well toss a coin to make a decision. While it is our aim to classify the majority of

future observations in an automatic way, it is often appropriate to instead report a warning for

those observations that are hard to classify (the ones having conditional probability η(x) near
1
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the value 1/2). This motivates the introduction of a reject option for classifiers, by allowing

for a third decision, r (reject), expressing doubt. In case the reject option is invoked, no

decision is made. Although such classifiers are valuable in practice, few theoretical results

are available—see [10] and [7] for references.

In this note, we assume that the cost of making a wrong decision is 1 and the cost of

utilizing the reject option is d > 0. Given a classifier with reject option t : X → {−1, 1,r},
the appropriate risk function is

Ld(t) := dP{t(X) = r}+ P{t(X) 6= Y, t(X) 6= r}.(3)

It is easy to see that the rule minimizing this risk assigns −1, 1 or r depending on which of

η(x), 1−η(x) or d is smallest. According to this rule, which we refer to as the Bayes rule, we

need never reject if d ≥ 1/2. For this reason we restrict ourselves to the cases 0 ≤ d ≤ 1/2

and the Bayes rule with reject option is then

t∗d(x) :=

 −1 if η(x) < d
+1 if η(x) > 1− d
r otherwise

(4)

with risk

L∗d := Ld(t∗d) = E min{η(X), 1− η(X), d}.(5)

The case d = 1/2 reduces to the classical situation without the reject option and (4) coincides

with (1).

Herbei and Wegkamp [7] study “plug-in” rules that replace the regression function η(x)

by an estimate η̂(x) in the formula for t∗d(x) above. They show that the rate of convergence

of the risk (3) to the Bayes risk L∗d depends on how well η̂(X) estimates η(X) and on the

behavior of η(X) near the values d and 1 − d. This condition on η(X) nicely generalizes

Tsybakov’s “noise” condition (cf. [13]) from the classical setting (d = 1/2) to our more

general framework (0 ≤ d ≤ 1/2). The same paper considers classifiers t̂ that minimize the

empirical counterpart

L̂d(t) :=
d

n

n∑
i=1

I{t(Xi) = r}+
1
n

n∑
i=1

I{t(Xi) 6= Yi, t(Xi) 6= r}(6)

of the risk Ld(t) over a class T of classifiers t : X → {−1,+1,r} with reject option, based

on a sample (X1, Y1), . . . , (Xn, Yn) of independent copies of the pair (X,Y ). For such rules t̂,
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[7] establish oracle inequalities for the excess risk of the form

Ld(t̂)− L∗d ≤ C0 inf
t∈T

[Ld(t)− L∗d] + ∆n

for some constant C0 > 1 and the remainder ∆n depends on the sample size n, the “complex-

ity” of the class T and the behavior of η(X) near the values d and 1− d. Their findings are

in line with the recent theoretical developments of standard binary classification without the

reject option (d = 1/2), see e.g. [3], [4], [9]. Despite the attractive theoretical properties of

this method, it is often hard to implement. This paper addresses this pitfall by considering

a convex surrogate for the loss function akin to the hinge loss that is used in SVMs.

The next section introduces a piecewise linear loss function φd(x) that generalizes the hinge

loss function max{0, 1− x} in that it allows for the reject option and φd(x) = max{0, 1− x}
for d = 1/2. We prove that the Bayes classifier (4) is a transformed version of the minimizer

of the risk associated with this new loss and that the excess risk Ld−L∗d can be bounded by 2d

times the excess risk based on the piecewise linear loss φd. Thus classifiers with small excess

φd-risk automatically have small excess classification risk, providing theoretical justification

of the more computationally appealing method.

In Section 3, we illustrate the computational convenience of the new loss, showing that the

SVM classifier with reject option can be obtained by solving a quadratic program.

Finally, in Section 4, we show that fast rates (for instance, faster than n−1/2) of the SVM

classifier with reject option are possible under the same noise conditions on η(X) used in [7].

As a side effect, for the standard SVM (the special case of d = 1/2), our results imply fast

rates without an assumption that η(X) is unlikely to be near 0 and 1, a technical condition

that has been imposed in the literature for that case ([5], [12]).

2. Generalized hinge loss

We can associate any real-valued function f with a classifier with reject option using the

transformation

tf,δ(x) =


−1 if f(x) < −δ,
r if |f(x)| ≤ δ,

+1 if f(x) > δ,
(7)

where 0 ≤ δ ≤ 1 is an arbitrary positive number. (We recommend the value δ = 1/2 but we

postpone the discussion on the choice of δ until after Theorem 2.) According to (3), the risk
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of tf,δ(x) equals then

Ld(tf,δ) = P{tf,δ(X) 6= Y, tf,δ(X) 6= r}+ dP{tf,δ(X) = r}

= P{f(X) < −δ, Y = 1}+ P{f(X) > δ, Y = −1}+ dP{−δ ≤ f(X) ≤ δ}

= P{Y f(X) < −δ}+ dP{|Y f(X)| ≤ δ}.

For example, the Bayes classifier t∗d(x) defined in (4) corresponds to the function

f∗d (x) =


−1 if η(x) < d,
0 if d ≤ η(x) ≤ 1− d,
1 if η(x) > 1− d.

(8)

Although the function f∗d (x) is not unique, the classifier t∗d(x) is the unique minimizer of

Ld(tf,δ) over all measurable f : X → R. We see that

Ld(tf,δ) = Ld,δ(f) := E`d,δ(Y f(X))(9)

for the discontinuous loss

`d,δ(α) =


1 if α < −δ,
d if |α| < δ,
0 otherwise.

The choice (δ, d) = (0, 1/2) corresponds to the classical case Ld(tf,δ) = P{Y f(X) < 0}. All

other choices δ > 0 lead to classification that allows for the reject option with minimal risk

Ld,δ(f∗d ) = E`d,δ(Y f∗d (X)) = L∗d.

Instead of the discontinuous loss `d,δ, we consider a convex surrogate loss. Define the piecewise

linear function

φd(α) =


1− aα if α < 0,
1− α if 0 ≤ α < 1,
0 otherwise

where a = (1− d)/d ≥ 1.

The next result states that the minimizer of the expectation of the discrete loss `d,δ and

the convex loss φd(α) remains the same: f∗d defined in (8) minimizes both E`d,δ(Y f(X)) and

Eφd(Y f(X)) and the minimal risks are related via the equality Ld,δ(f∗d ) = dLφd
(f∗d ).

Proposition 1. The minimizer of the risk

Lφd
(f) = Eφd(Y f(X))

over all measurable f : X → R is the Bayes rule (8). Furthermore,

dLφd
(f∗d ) = Ld,δ(f∗d ).
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Proof. Note that

Lφd
(f) = Eη(X)φd(f(X)) + E(1− η)(X)φd(−f(X)).

Hence, for

rη,φd
(α) = ηφd(α) + (1− η)φd(−α)(10)

it suffices to show that

α∗ =


−1 if η < 1/(1 + a),
0 if 1/(1 + a) ≤ η ≤ a/(1 + a),
1 if η(x) > a/(1 + a)

(11)

minimizes rη,φd
(α). The function rη,φd

(α) can be written as

rη,φd
(α) =


η − aηα if α ≤ −1,
1 + α(1− (1 + a)η) if −1 ≤ α ≤ 0,
1 + α(−η + a(1− η)) if 0 ≤ α ≤ 1,
α(a(1− η)) + (1− η) if α ≥ 1

and it is now a simple exercise to verify that α∗ indeed minimizes Lφd
(α). Finally, since

Lφd
(f) = Erη,φd

(f(X)) and

inf
α
ηφd(α) + (1− η)φd(−α)

= ηφd(α∗) + (1− η)φd(α∗)

=
η

d
{η ≤ d}+ 1{d ≤ η ≤ 1− d}+

1− η

d
{η ≥ 1− d},

we find that

dLφd
(f∗d ) = E [min(η(X), 1− η(X), d)] = L∗d.

and the second claim follows as well. �

We see that φd(α) ≥ `d,δ(α) for all α ∈ R as long as 0 ≤ δ ≤ 1 − d. Since this pointwise

relation remains preserved under taking expected values, we immediately obtain Ld(tf,δ) ≤
Lφd

(f). The following comparison theorem shows that a relation like this holds not only for

the risks, but for the excess risks as well.

Theorem 2. Let 0 ≤ d < 1/2 be fixed. For all 0 < δ ≤ 1/2, we have

Ld(tf,δ)− L∗d ≤
d

δ

(
Lφd

(f)− L∗φd

)
,(12)

where L∗φd
= Lφd

(f∗d ). For 1/2 ≤ δ ≤ 1− d, we have

Ld(tf,δ)− L∗d ≤ Lφd
(f)− L∗φd

.(13)



6 BARTLETT AND WEGKAMP

Finally, for (δ, d) = (0, 1/2), we have

L(tf )− L∗ ≤ Lφ(f)− L∗φ,(14)

where L(tf ) := P{Y f(X) < 0}, L∗ := E min(η(X), 1− η(X)) and φ(x) = max{0, 1− x}.

Remark. The optimal multiplicative constant (d/δ or 1 depending on the value of δ) in front

of the φd-excess risk is achieved at δ = 1/2. For this choice, Theorem 2 states that

Ld(tf,1/2)− L∗d ≤ 2d
(
Lφd

(f)− L∗φd

)
.

For all d ≤ δ ≤ 1−d, the multiplicative constant in front of the φd-excess risk does not exceed

1. The choice δ = 1/2 with the smallest constant 2d < 1 is right in the middle of the interval

[d, 1− d]. The choice δ = 1− d corresponds to the largest value of δ for which the piecewise

constant function `d,δ(α) is still majorized by the convex surrogate φd(α). For δ = d we will

reject less frequently than for δ = 1 − d and δ = 1/2 can be seen as a compromise among

these two extreme cases.

Inequality (14) is due to Zhang [14].

Before we prove the theorem, we need an intermediate result. We define the functions

ξ(η) = η{η ≤ d}+ d{d ≤ η ≤ 1− d}+ (1− η){η ≥ 1− d}

and

H(η) = inf
α
ηφd(α) + (1− η)φd(−α)

=
η

d
{η ≤ d}+ 1{d ≤ η ≤ 1− d}+

1− η

d
{η ≥ 1− d}.

(We suppress their dependence on d in our notation.) Their expectations are L∗d = Eξ(η(X))

and L∗φd
= EH(η(X)), respectively. Furthermore, we define

H−1(η) = inf
α<−δ

(ηφd(α) + (1− η)φd(−α)) ,

Hr(η) = inf
|α|≤δ

(ηφd(α) + (1− η)φd(−α)) ,

H1(η) = inf
α>δ

(ηφd(α) + (1− η)φd(−α)) ;

ξ−1(η) = η − ξ(η),

ξr(η) = d− ξ(η),

ξ1(η) = 1− η − ξ(η).
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Proposition 3. Let 0 ≤ d < 1/2.

If 0 < δ ≤ 1/2, then, for b ∈ {−1, 1,r},

ξb(η) ≤
δ

d
{Hb(η)−H(η)}.

If d ≤ δ ≤ 1− d, then, for b ∈ {−1, 1,r},

ξb(η) ≤ Hb(η)−H(η).

If (δ, d) = (0, 1/2), then, for b ∈ {−1, 1,r},

ξb(η) ≤ Hb(η)−H(η).

Proof. First we compute

inf
α≤−1

rφ(α) =
η

d
,

inf
−1≤α≤−δ

rφ(α) =
η

d
{η ≤ d}+

(
δ

d
η + 1− δ

)
{η ≥ d}

inf
−δ≤α≤0

rφ(α) = {η ≥ d}+
(

1− δ + η
δ

d

)
{η ≤ d}

inf
0≤α≤δ

rφ(α) = {η ≤ 1− d}+
(

1 +
δ

d
− δ − δ

d
η

)
{η ≥ 1− d}

inf
δ≤α≤1

rφ(α) =
1− η

d
{η ≥ 1− d}+

(
1 +

δ

d
− δ − δ

d
η

)
{η ≤ 1− d}

inf
α≥1

rφ(α) =
1− η

d

It is now easy to verify that

H−1(η) = inf
α<−δ

ηφd(α) + (1− η)φd(−α)

=
η

d
{η ≤ d}+

(
δ

d
η + 1− δ

)
{η ≥ d}

so that

H−1(η)−H(η) =

0{η ≤ d}+
(
δ

d
η − δ

)
{d ≤ η ≤ 1− d}+

(
1 + δ

d
η + 1− δ − 1

d

)
{η ≥ 1− d}

On the other hand,

ξ−1(η) = η − ξ(η)

= 0{η ≤ d}+ (η − d){d ≤ η ≤ 1− d}+ (2η − 1){η ≥ 1− d}
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and we see that
δ

d
ξ−1(η) ≤ H−1(η)−H(η)

for all 0 < δ ≤ 1. Next, we compute

Hr(η) = inf
|α|≤δ

ηφd(α) + (1− η)φd(−α)

=
(

1− δ +
δ

d
η

)
{η ≤ d}+ {d ≤ η ≤ 1− d}

+
(

1− δ +
δ

d
− δ

d
η

)
{η ≥ 1− d}

and

Hr(η)−H(η) =
(

1− δ − 1− δ

d
η

)
{η ≤ d}

+
(

1− δ − 1− δ

d
+

1− δ

d
η

)
{η ≥ 1− d}.

Since

ξr(η) = d− ξ(η)

= (d− η){η ≤ d}+ 0{d ≤ η ≤ 1− d}+ (d− 1 + η){η ≥ 1− d}

we find that
δ

d
ξr(η) ≤ Hr(η)−H(η)

provided 0 < δ ≤ 1/2. Finally, we find that

H1(η) = inf
α>δ

ηφd(α) + (1− η)φd(−α)

=
1− η

d
{η ≥ 1− d}+

(
δ

d
+ 1− δ − δ

d
η

)
{η ≤ 1− d}

and consequently

H1(η)−H(η) =
(

1− δ +
δ

d
− δ

d
η − η

d

)
{η ≤ d}

+
(
δ

d
− δ − δ

d
η

)
{d ≤ η ≤ 1− d}+ 0{η ≥ 1− d}.

Now,

ξ1(η) = 1− η − ξ(η)

= (1− 2η){η ≤ d}+ (1− η − d){d ≤ η ≤ 1− d}+ 0{η ≥ 1− d},

and we find that
δ

d
ξ1(η) ≤ H1(η)−H(η)



CLASSIFICATION WITH A REJECT OPTION USING A HINGE LOSS 9

provided 0 < δ ≤ 1.

We now verify the second claim of Proposition 3. Assume that d ≤ δ ≤ 1− d.

First we consider the case η ≤ d. Then

ξ−1(η) ≤ H−1(η)−H(η) holds trivially.

ξr(η) ≤ Hr(η) − H(η) ⇐⇒ (1 + δ − 2d)η ≤ δ(1 − d). As η ≤ d, we need that

(1 + δ − 2d)d ≤ δ(1− d), that is, (δ − d)(1− 2d) ≥ 0.

ξ1(η) ≤ H1(η) − H(η) ⇐⇒ (1 + δ − 2d)η ≤ δ(1 − d). As η ≤ d, we need that

(1 + δ − 2d)d ≤ δ(1− d), equivalently, (δ − d)(1− 2d) ≥ 0.

Next, if d ≤ η ≤ 1− d, we see that

ξ−1(η) ≤ H−1(η)−H(η) ⇐⇒ (δ − d)η ≥ d(δ − d).

ξr(η) ≤ Hr(η)−H(η) holds trivially.

ξ1(η) ≤ H1(η)−H(η) ⇐⇒ (δ − d)η ≤ (1− d)(δ − d).

Finally, if η ≥ 1− d, we find that

ξ−1(η) ≤ H−1(η)−H(η) ⇐⇒ (1+ δ− 2d)η ≥ (1+ dδ− 2d). For η ≥ 1− d this holds

provided (1 + δ − 2d)(1− d) ≥ (1 + dδ − 2d) ⇐⇒ (δ − d)(1− 2d) ≥ 0.

ξr(η) ≤ Hr(η)−H(η) ⇐⇒ (1− δ − d)η ≥ (1− d)(1− δ − d).

ξ1(η) ≤ H1(η)−H(η) holds trivially.

This concludes the proof of the second claim ) since d ≤ δ ≤ 1 − d. The last claim for the

case (δ, d) = (0, 1/2) follows as well from the preceding calculations. �

Proof of Theorem 2. Assume 0 < δ ≤ 1/2 and 0 ≤ d < 1/2. Define ψ(x) = xδ/d. By

linearity of ψ, we have for any measurable function f ,

ψ(Ld(tf,δ)− L∗d) = P{f < −δ}ψ(φ−1(η)) + P{−δ ≤ f ≤ δ}ψ(φr(η))

+ P{f > δ}ψ(φ1(η)),

where P is the probability measure of X and Pf =
∫
f dP. Invoke now Proposition 3 to

deduce

ψ(Ld(tf,δ)− L∗d) ≤ P{f < −δ} [H−1(η)−H(η)] + P{−δ ≤ f ≤ δ}([Hr(η)−H(η)]

+P{f > δ} [H1(η)−H(η)]

and conclude the proof by observing that the term on the right of the previous inequality

equals Lφd
(f)− L∗φd

.
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For the case (δ, d) = (0, 1/2) and the case (δ, d) with d ≤ δ ≤ 1− d and 0 ≤ d < 1/2, take

ψ(x) = x. �

3. SVM classifiers with reject option

In this section, we consider the SVM classifier with reject option, and show that it can be

obtained by solving a quadratic program.

Let k : X 2 → R be the kernel of a reproducing kernel Hilbert space (RKHS) H, and let ‖f‖
be the norm of f inH. The SVM classifier with reject option is the minimizer of the sum of the

empirical φd-risk and a regularization term that is proportional to the squared RKHS norm.

The following theorem shows that this classifier is the solution to a quadratic program, that

is, it is the minimizer of a quadratic criterion on a subset of Euclidean space defined by linear

inequalities. Thus, the classifier can be found efficiently using general-purpose algorithms.

Theorem 4. For any x1, . . . , xn ∈ X and y1, . . . , yn ∈ {−1, 1}, let f∗ ∈ H be the minimizer

of the regularized risk functional

f 7→
n∑

i=1

φd (yif(xi)) + λ‖f‖2,

where λ > 0. Then we can represent f∗ as the finite sum

f∗(x) =
n∑

i=1

α∗i k(xi, x),

where α∗1, . . . , α
∗
n is the solution to the following quadratic program.

min
αi,ξi,γi

1
n

n∑
i=1

(
ξi +

1− 2d
d

γi

)
+ λ

∑
i,j

αiαjk(xi, xj)

s.t. ξi ≥ 0, γi ≥ 0,

ξi ≥ 1− yi

n∑
j=1

αjk(xi, xj),

γi ≥ −yi

n∑
j=1

αjk(xi, xj) for i = 1, . . . , n.

Proof. The fact that f∗ can be represented as a finite sum over the kernel basis functions is a

standard argument (see [8, 6]). It follows from Pythagoras’ theorem: the squared RKHS norm

can be split into the squared norm of the component in the space spanned by the kernel basis

functions x 7→ k(xi, x) and that of the component in the orthogonal subspace. Since the cost
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function depends on f only at the points xi, and the reproducing property f(xi) = 〈k(xi, ·), f〉
shows that these values depend only on the component of f in the space spanned by the kernel

basis functions, the orthogonal subspace contributes only to the squared norm term and not

to the cost term. Thus, a minimizing f∗ can be represented in terms of the solution α∗ to

the minimization

min
α1,...,αn

1
n

n∑
i=1

φd

yi

n∑
j=1

αjk(xi, xj)

+ λ
∑∑
1≤i,j≤n

αiαjk(xi, xj).

But then it is easy to see that we can decompose φd as

φd(β) = max{0, 1− β}+
1− 2d
d

max{0,−β}.

Defining ξi = max{0, 1− yif(xi)} and γi = max{0,−yif(xi)} gives the QP. �

4. Tsybakov’s noise condition, Bernstein classes, and fast rates

In this section, we consider methods that choose the function f̂ from some class F so as

to minimize the empirical φd-risk,

L̂φd
(f) :=

1
n

n∑
i=1

φd(Yif(Xi)).

For instance, to analyze the SVM classifier with reject option, we could consider classes

Fn = {f ∈ H : ‖f‖ ≤ cn} for some sequence of constants cn. We are interested in bounds on

the excess φd-risk, that is, the difference between the φd-risk of f̂ and the minimal φd-risk

over all measurable functions, of the form

ELφd
(f̂)− L∗φd

≤ 2 inf
f∈F

(
Lφd

(f)− L∗φd

)
+ εn.

Such bounds can be combined with an assumption on the rate of decrease of the approxima-

tion error inff∈Fn

(
Lφd

(f)− L∗φd

)
for a sequence of classes Fn used by a method of sieves,

and thus provide bounds on the rate of convergence of risk to Bayes risk.

For many binary classification methods (including empirical risk minimization, plug-in

estimates, and minimization of the sample average of a suitable convex loss), the estimation

error term εn approaches zero at a faster rate when the conditional probability η(X) is unlikely

to be close to the critical value of 1/2 (see [13, 2, 5, 12, 1]). For plug-in rules, [7] showed

an analogous result for classification with a reject option, where the corresponding condition

concerns the probability that η(X) is close to the critical values of d and 1 − d. In this
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section, we prove a bound on the excess φd-risk of f̂ that converges rapidly when a condition

of this kind applies. We begin with a precise statement of the condition. For d = 1/2, it is

equivalent to Tsybakov’s margin condition [13].

Definition 5. We say that η satisfies the margin condition at d with exponent α if there is

an A ≥ 1 such that for all t > 0,

P{|η(X)− d| ≤ t} ≤ Atα and P{η(X)− (1− d)| ≤ t} ≤ Atα.

The reason that conditions of this kind allow fast rates is related to the variance of the

excess φd-loss,

gf (x, y) = φd(yf(x))− φd(yf∗(x)),

where f∗ minimizes the φd-risk. Notice that the expectation of gf is precisely the excess risk

of f , Egf (X,Y ) = Lφd
(f) − L∗φd

. We will show that when η satisfies the margin condition

at d with exponent α, the variance of each gf is bounded in terms of its expectation, and

thus approaches zero as the φ-risk of f approaches the minimal value. Classes for which this

occurs are called Bernstein classes.

Definition 6. We say that G ⊂ L2(P) is a (β,B)-Bernstein class with respect to the proba-

bility measure P (0 < β ≤ 1, B ≥ 1) if every g ∈ G satisfies

Pg2 ≤ B{Pg}β.

We say that G has a Bernstein exponent β with respect to P if there exists a constant B for

which G is a (β,B)-Bernstein class.

Lemma 7. If η satisfies the margin condition at d with exponent α, then for any class any

class F of measurable uniformly bounded functions, the class G = {gf : f ∈ F} has a

Bernstein exponent β = α/(1 + α).

The result relies on the following two lemmas. The first shows that the excess φd-risk is

at least linear in a certain pseudo-norm of the difference between f and f∗. It is similar to

the L1(P) norm, but it penalizes f less for large excursions that have little impact on the

φd-risk. For example, if η(x) = 1, then the conditional φd-risk is zero even if f(x) takes a

large positive value. For η ∈ [0, 1], define

ρη(f, f∗) =


η|f − f∗| if η < d and f < −1,
(1− η)|f − f∗| if η > 1− d and f > 1,
|f − f∗| otherwise,
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and recall the definition of the conditional φd-risk in (10).

Lemma 8. For η ∈ [0, 1],

d (rη,φd
(f)− rη,φd

(f∗)) ≥ (|η − d| ∧ |η − (1− d)|) ρη(f, f∗).

Proof. Since rη,φd
is convex,

rη,φd
(f) ≥ rη,φd

(f∗) + g(f − f∗)

for any g in the subgradient of rη,φd
(f) at f∗. In our case, rη,φd

is piecewise linear, with four

pieces, and the subgradients include

η 1−d
d at f∗ = −1,

|η − d|1d at f∗ = −1, 0,
|1− η − d|1d at f∗ = 0, 1,
(1− η)1−d

d at f∗ = 1.

Thus, we have

d(rη,φd
(f)− rη,φd

(f∗))

≥



η(1− d)|f − f∗| if η < d and f < −1,
|η − d||f − f∗| if η < d and f > −1,
(|η − d| ∧ |1− η − d|) |f − f∗| if d ≤ η ≤ 1− d,
|1− η − d||f − f∗| if η > 1− d and f < 1,
(1− η)(1− d)|f − f∗| if η > 1− d, f > 1.

=



(1− d)ρη(f, f∗) if η < d and f < −1,
|η − d|ρη(f, f∗) if η < d and f > −1,
(|η − d| ∧ |1− η − d|) ρη(f, f∗) if d ≤ η ≤ 1− d,
|1− η − d|ρη(f, f∗) if η > 1− d and f < 1,
(1− d)ρη(f, f∗) if η > 1− d, f > 1.

≥ (|η − d| ∧ |1− η − d|) ρη(f, f∗).

�

We shall also use the following inequalities.

Lemma 9. For η ∈ [0, 1],

ρη(f, f∗) ≤ |f − f∗|,

and

η |φd(f)− φd(f∗)|2 + (1− η) |φd(−f)− φd(−f∗)|2 ≤
(

1− d

d

)2

(B + 1)ρη(f, f∗).
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Proof. The first inequality is immediate from the definition of ρη. To see the second, use the

fact that φd is flat to the right of 1 to notice that

η |φd(f)− φd(f∗)|2 + (1− η) |φd(−f)− φd(−f∗)|2

=

{
η |φd(f)− φd(f∗)|2 if η < d and f < −1,
(1− η) |φd(−f)− φd(−f∗)|2 if η > 1− d and f > 1.

Since φd has Lipschitz constant a = (1− d)/d, this implies

η |φd(f)− φd(f∗)|2 + (1− η) |φd(−f)− φd(−f∗)|2

≤


ηa2|f − f∗|2 if η < d and f < −1,
(1− η)a2|f − f∗|2 if η > 1− d and f > 1,
a2|f − f∗|2 otherwise

≤ a2(1 +B)ρη(f, f∗).

�

Proof of Lemma 7. By Lemma 8, we have

Lφd
(f)− L∗φd

≥ d−1Pρη(f, f∗)
(
|η − (1− d)|IE− + |η − d|IE+

)
,

with

E− = {|η − (1− d)| ≤ |η − d|}, E+ = {|η − (1− d)| > |η − d|}.

Using the assumption on η, there is an A ≥ 1 such that for all t > 0

P{|η(X)− d| ≤ t} ≤ Atα and P{η(X)− (1− d)| ≤ t} ≤ Atα.

Thus, for any set E,

Pρη(f, f∗)|η − (1− d)|IE ≥ tPρη(f, f∗)I{|η−(1−d)|≥t}IE

= tPρη(f, f∗)IE − tPρη(f, f∗)I{|η−(1−d)|<t}IE

≥ t{Pρη(f, f∗)IE − (B + 1)Atα},

where B is such that |f | ≤ B. Similarly,

Pρη(f, f∗)|η − d|IE ≥ t{Pρη(f, f∗)IE − (B + 1)Atα},

and we obtain

Lφd
(f)− L∗φd

≥ d−1t
(
Pρη(f, f∗)IE+∪E− − 2(B + 1)Atα

)
= d−1t (Pρη(f, f∗)− 2(B + 1)Atα) .
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Choose

t =
(

Pρη(f, f∗)
4(B + 1)A

)1/α

,

in the expression above, and we obtain

Egf (X,Y ) = Lφd
(f)− L∗φd

≥ 1
2d(4(B + 1)A)1/α

(Pρη(f, f∗))
(1+α)/α ,

and so

Pρη(f, f∗) ≤
{

2d(4(B + 1)A)1/α
}α/(α+1)

{Egf (X,Y )}α/(1+α) .(15)

In addition, by Lemma 9,

E{gf (X,Y )}2 = EE[{gf (X,Y )}2|X]

= P
(
η|φd(f)− φd(f∗)|2 + (1− η)|φd(−f)− φd(−f∗)|2

)
≤ (B + 1)

(
1− d

d

)2

Pρη(f, f∗).

Combining these two inequalities shows that

E{gf (X,Y )}2 ≤ (B + 1)
(

1− d

d

)2 (
2d(4A(B + 1))1/α

)α/(α+1)
(Egf (X,Y ))α/(1+α) .

�

Remark. Specialized to the case (δ, d) = (0, 1/2), we note that Lemma 7 removes unneces-

sary technical restrictions on η(X) near 0 and 1, imposed in [5] and [12].

Lemma 7 provides the main ingredient for establishing fast rates of minimizers f̂d of the

empirical risk

L̂φd
(f) :=

1
n

n∑
i=1

φd(Yif(Xi)).

Theorem 10. If η satisfies the margin condition at d with exponent α, F is a countable class

of functions f : X → R satisfying ‖f‖∞ ≤ B, and F satisfies

logN(ε, L∞,F) ≤ Cε−p

for all ε > 0 and some 0 ≤ p ≤ 2, then there exists a constant C ′ independent of n, such that

ELφd
(f̂d)− L∗φd

≤ 2 inf
f∈F

(
Lφd

(f)− L∗φd

)
+ C ′n

− 1+α
2+p+α+pα ,

where f̂d = arg minf∈F L̂φd
(f).
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Proof. We use the notation Pgf = Egf (X,Y ) and

Pngf =
1
n

n∑
i=1

gf (Xi, Yi).

By definition of f̂d, we have

Lφd
(f̂d)− L∗φd

= Pg bfd

= 2Png bfd
+ (P− 2Pn)g bfd

≤ 2 inf
f∈F

Pngf + sup
f∈F

(P− 2Pn)gf .

Taking expected values on both sides, yields,

ELφd
(f̂d)− L∗φd

≤ 2 inf
f∈F

(
Lφd

(f)− L∗φd

)
+ E

[
sup
f∈F

(P− 2Pn)gf

]
.

Since |gf − gf ′ | ≤ |f − f ′|, it follows that

E

[
sup
f∈F

(P− 2Pn)gf

]
≤ 4εn + 2BP

{
sup

f∈Fn

(P− 2Pn)gf ≥ εn

}
,

where Fn is a εn-minimal covering net of F with

εn = An−(1+α)/(2+p+α+pα).

The union bound and Bernstein’s exponential inequality for the tail probability of sums of

bounded random variables in conjunction with Lemma 7, yield

P

{
sup

f∈Fn

(P− 2Pn)gf ≥ εn

}
≤ |Fn|max

f∈Fn

exp

(
−n

8
(εn + Pgf )2

Pg2
f +B(εn + Pgf )/6

)
≤ exp(Cε−p

n − cnε2−β
n )

with 0 ≤ β = α/(1 +α) ≤ 1 and some c > 0 independent of n. Conclude the proof by noting

that

exp(Cε−p
n − cnε2−β

n ) = exp
(
− c

2
nε2−β

n

)
,

and by choosing the constant A in εn such that Cε−p
n = −2cnε2−β

n and exp(−nε2−β
n ) =

o(εn). �

Remark. Consider for simplicity the case F is finite (p = 0). Then, if the margin condition

holds for α = +∞, we obtain rates of convergence log |F|/n. If α = 0, we in fact impose no

restriction on η(X) at all, and the rate equals (log |F|/n)1/2.
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The constant 2 in front of the minimal excess risk on the right could be made closer to 1,

at the expense of increasing C ′.
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