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Abstract. One of the nice properties of kernel classifiers such as SVMs
is that they often produce sparse solutions. However, the decision func-
tions of these classifiers cannot always be used to estimate the condi-
tional probability of the class label. We investigate the relationship be-
tween these two properties and show that these are intimately related:
sparseness does not occur when the conditional probabilities can be un-
ambiguously estimated. We consider a family of convex loss functions and
derive sharp asymptotic bounds for the number of support vectors. This
enables us to characterize the exact trade-off between sparseness and the
ability to estimate conditional probabilities for these loss functions.

1 Introduction

Consider the following familiar setting of a binary classification problem. A se-
quence T = ((x1, y1), . . . , (xn, yn)) of i.i.d. pairs is drawn from a probability
distribution over X × Y where X ⊆ R

d and Y is the set of labels (which we
assume is {+1,−1} for convenience). The goal is to use the training set T to
predict the label of a new observation x ∈ X . A common way to approach the
problem is to use the training set to construct a decision function fT : X → R

and output sign(fT (x)) as the predicted label of x.
In this paper, we consider classifiers based on an optimization problem of the

form:

fT,λ = arg min
f∈H

λ‖f‖2
H +

1
n

n∑
i=1

φ(yif(xi)) (1)

Here, H is a reproducing kernel Hilbert space (RKHS) of some kernel k, λ > 0
is a regularization parameter and φ : R → [0,∞) is a convex loss function. Since
optimization problems based on the non-convex function 0-1 loss t �→ I(t≤0)

(where I(·) is the indicator function) are computationally intractable, use of con-
vex loss functions is often seen as using upper bounds on the 0-1 loss to make
the problem computationally easier. Although computational tractability is one
of the goals we have in mind while designing classifiers, it is not the only one. We



would like to compare different convex loss functions based on their statistical
and other useful properties. Conditions ensuring Bayes-risk consistency of clas-
sifiers using convex loss functions have already been established [2, 4, 9, 12]. It
has been observed that different cost functions have different properties and it is
important to choose a loss function judiciously (see, for example, [10]). In order
to understand the relative merits of different loss functions, it is important to
consider these properties and investigate the extent to which different loss func-
tions exhibit them. It may turn out (as it does below) that different properties
are in conflict with each other. In that case, knowing the trade-off allows one
to make an informed choice while choosing a loss function for the classification
task at hand.

One of the properties we focus on is the ability to estimate the conditional
probability of the class label η(x) = P (Y = +1|X = x). Under some condi-
tions on the loss function and the sequence of regularization parameters λn, the
solutions of (1) converge (in probability) to a function F ∗

φ (η(x)) which is set
valued in general [7]. As long as we can uniquely identify η(x) based on a value
in F ∗

φ (η(x)), we can hope to estimate conditional probabilities using fT,λn(x), at
least asymptotically. Choice of the loss function is crucial to this property. For
example, the L2-SVM (which uses the loss function t �→ (max{0, 1−t})2) is much
better than L1-SVM ( which uses t �→ max{0, 1− t}) in terms of asymptotically
estimating conditional probabilities.

Another criterion is the sparseness of solutions of (1). It is well known that
any solution fT,λ of (1) can be represented as

fT,λ(x) =
n∑

i=1

α∗
i k(x, xi) . (2)

The observations xi for which the coefficients α∗
i are non-zero are called support

vectors. The rest of the observations have no effect on the value of the decision
function. Having fewer support vectors leads to faster evaluation of the decision
function. Bounds on the number of support vectors are therefore useful to know.
Steinwart’s recent work [8] has shown that for the L1-SVM and a suitable kernel,
the asymptotic fraction of support vectors is twice the Bayes-risk. Thus, L1-
SVMs can be expected to produce sparse solutions. It was also shown that L2-
SVMs will typically not produce sparse solutions.

We are interested in how sparseness relates to the ability to estimate condi-
tional probabilities. What we mentioned about L1 and L2-SVMs leads to several
questions. Do we always lose sparseness by being able to estimate conditional
probabilities? Is it possible to characterize the exact trade-off between the asymp-
totic fraction of support vectors and the ability to estimate conditional probabil-
ities? If sparseness is indeed lost when we are able to fully estimate conditional
probabilities, we may want to estimate conditional probabilities only in an in-
terval, say (0.05, 0.95), if that helps recover sparseness. Estimating η for x’s that
have η(x) ≥ 0.95 may not be too crucial for our prediction task. How can we
design loss functions which enable us to estimate probabilities in sub-intervals
of [0, 1] while preserving as much sparseness as possible?



This paper attempts to answer these questions. We show that if one wants to
estimate conditional probabilities in an interval (γ, 1− γ) for some γ ∈ (0, 1/2),
then sparseness is lost on that interval in the sense that the asymptotic fraction of
data that become support vectors is lower bounded by ExG(η(x)) where G(η) =
1 throughout the interval (γ, 1− γ). Moreover, one cannot recover sparseness by
giving up the ability to estimate conditional probabilities in some sub-interval
of (γ, 1 − γ). The only way to do that is to increase γ thereby shortening the
interval (γ, 1 − γ). We also derive sharp bounds on the asymptotic number of
support vectors for a family of loss functions of the form:

φ(t) = h((t0 − t)+), t0 > 0

where t+ denotes max{0, t} and h is a continuously differentiable convex function
such that h′(0) ≥ 0. Each loss function in the family allows one to estimate
probabilities in the interval (γ, 1−γ) for some value of γ. The asymptotic fraction
of support vectors is then ExG(η(x)), where G(η) is a function that increases
linearly from 0 to 1 as η goes from 0 to γ. For example, if φ(t) = 1

3 ((1 −
t)+)2 + 2

3 (1 − t)+ then conditional probabilities can be estimated in (1/4, 3/4)
and G(η) = 1 for η ∈ (1/4, 3/4) (see Fig. 1).

L2−SVM

L1−SVM

−1

1

10

1

L1−SVM

L2−SVM

1/ 2 10

Fig. 1. Plots of F ∗
φ (η) (left) and G(η) (right) for a loss function which is a convex com-

bination of the L1 and L2-SVM loss functions. Dashed lines represent the corresponding
plots for the original loss functions.

2 Notation and Known Results

Let P be the probability distribution over X × Y and let T ∈ (X × Y)n be a
training set. Let EP (·) denote expectations taken with respect to the distribution
P . Similarly, let Ex(·) denote expectations taken with respect to the marginal
distribution on X . Let η(x) be P (Y = +1|X = x). For a decision function
f : X → R, define its risk as

RP (f) = EP I(yf(x)≤0) .



The Bayes-risk RP = inf{RP (f) : f measurable} is the least possible risk. Given
a loss function φ, define the φ-risk of f by

Rφ,P (f) = EP φ(yf(x)) .

The optimal φ-risk Rφ,P = inf{Rφ,P (f) : f measurable} is the least achievable
φ-risk. When the expectations in the definitions of RP (f) and Rφ,P (f) are taken
with respect to the empirical measure corresponding to T , we get the empirical
risk RT (f) and the empirical φ-risk Rφ,T (f) respectively. Conditioning on x, we
can write the φ-risk as

Rφ,P (f) = Ex[E(φ(yf(x)|x)]
= Ex[η(x)φ(f(x)) + (1 − η(x))φ(−f(x))]
= Ex[C(η(x), f(x))] .

Here, we have defined C(η, t) = ηφ(t) + (1 − η)φ(−t). To minimize the φ-risk,
we have to minimize C(η, ·) for each η ∈ [0, 1]. So, define the set valued function
F ∗

φ (η) by
F ∗

φ (η) = {t : C(η, t) = min
s∈R̄

C(η, s)}

where R̄ is the set of extended reals R∪{−∞,∞}. Any measurable selection f∗

of F ∗
φ actually minimizes the φ-risk. The function F ∗

φ is plotted for three choices
of φ in Fig. 1. From the definitions of C(η, t) and F ∗

φ (η), it is easy to see that
F ∗

φ (η) = −F ∗
φ(1 − η). Steinwart [7] also proves that η �→ F ∗

φ (η) is a monotone
operator. This means that if η1 > η2, t1 ∈ F ∗

φ (η1) and t2 ∈ F ∗
φ (η2) then t1 ≥ t2.

A convex loss function is called classification calibrated if the following two
conditions hold:

η <
1
2
⇒ F ∗

φ (η) ⊂ [−∞, 0) and η >
1
2
⇒ F ∗

φ (η) ⊂ (0, +∞] .

A necessary and sufficient condition for a convex φ to be classification calibrated
is that φ′(0) exists and is negative [2]. If φ is classification calibrated then it
is guaranteed that for any sequence fn such that Rφ,P (fn) → Rφ,P , we have
RP (fn) → RP . Thus, classification calibrated loss functions are good in the
sense that minimizing the φ-risk leads to classifiers that have risks approaching
the Bayes-risk. Note, however, that in the optimization problem (1), we are
minimizing the regularized φ-risk

Rreg
φ,T,λ = λ‖f‖2

H + Rφ,T .

Steinwart [9] has shown that if one uses an classification calibrated convex loss
function, a universal kernel (one whose RKHS is dense in the space of continuous
functions over X ) and a sequence of regularization parameters such that λn → 0
sufficiently slowly, then Rφ,P (fT,λn) → Rφ,P . In another paper [7], he proves that
this is sufficient to ensure the convergence in probability of fT,λn to F ∗

φ (η(·)).
That is, for all ε > 0

Px({x ∈ X : ρ(fT,λn(x), F ∗
φ (η(x))) ≥ ε}) → 0 (3)



The function ρ(t, B) is just the distance from t to the point in B which is closest
to t. The definition given by Steinwart [7] is more complicated because one has
to handle the case when B ∩ R = ∅. We will ensure in our proofs that F ∗

φ is not
a singleton set just containing +∞ or −∞.

Since fT,λn converges to F ∗
φ (η(·)), the plots in Fig. 1 suggest that the L2-SVM

decision function can be used to estimate conditional probabilities in the whole
range [0, 1] while it not possible to use the L1-SVM decision function to estimate
conditional probabilities in any interval. However, the L1-SVM is better if one
considers the asymptotic fraction of support vectors. Under some conditions on
the kernel and the regularization sequence, Steinwart proved that the fraction
is Ex[2 min(η(x), 1 − η(x))], which also happens to be the optimal φ-risk for
the hinge loss function. For L2-SVM, he showed that the asymptotic fraction is
Px({x ∈ X : 0 < η(x) < 1}), which is the probability of the set where noise
occurs. Observe that we can write the fraction of support vectors as Ex[G(η(x))]
where G(η) = 2 min{η, 1 − η)} for the hinge loss and G(η) = I(η/∈{0,1}) for the
squared hinge loss. We will see below that these two are extreme cases. In general,
there are loss functions which allow one to estimate probabilities in an interval
centered at 1/2 and for which G(η) = 1 only on that interval.

Steinwart [7] also derived a general lower bound on the asymptotic number
of support vectors in terms of the probability of the set

S = {(x, y) ∈ Xcont × Y : 0 /∈ ∂φ(yF ∗
φ (η(x)))} .

Here, Xcont = {x ∈ X : Px({x}) = 0} and ∂φ denotes the subdifferential of φ.
In the simple case of a function of one variable ∂φ(x) = [φ′

−(x), φ′
+(x)], where

φ′− and φ′
+ are the left and right hand derivatives of φ (which always exist for

convex functions). If Xcont = X , one can write P (S) as

P (S) = EP [I(0/∈∂φ(yF∗
φ (η(x)))]

= Ex[η(x)I(0/∈∂φ(F∗
φ (η(x)))) + (1 − η(x)I(0/∈∂φ(−F∗

φ (η(x))))]

= ExG(η(x)) .

For the last step, we simply defined

G(η) = ηI(0/∈∂φ(F∗
φ
(η))) + (1 − η)I(0/∈∂φ(−F∗

φ
(η))) . (4)

3 Preliminary Results

We will consider only classification calibrated convex loss functions. Since φ is
classification calibrated we know that φ′(0) < 0. Define t0 as

t0 = inf{t : 0 ∈ ∂φ(t)}
with the convention that inf ∅ = ∞. Because φ′(0) < 0 and subdifferentials of a
convex function are monotonically decreasing, we must have t0 > 0. However, it
may be that t0 = ∞. The following lemma says that sparse solutions cannot be
expected if that is the case.



Lemma 1. If t0 = ∞, then G(η) = 1 on [0, 1].

Proof. t0 = ∞ implies that for all t, 0 /∈ ∂φ(t). Using (4), we get G(η) =
η.1 + (1 − η).1 = 1. �
Therefore, let us assume that t0 < ∞. The next lemma tell us about the signs
of φ′

−(t0) and φ′
+(t0).

Lemma 2. If t0 < ∞, then φ′−(t0) ≤ 0 and φ′
+(t0) ≥ 0.

Proof. Suppose φ′
−(t0) > 0. This implies ∂φ(t0) > 0. Since subdifferential is a

monotone operator, we have ∂φ(t) > 0 for all t > t0. By definition of t0, 0 /∈ ∂φ(t)
for t < t0. Thus, {t : 0 ∈ ∂φ(t)} = ∅, which contradicts the fact that t < ∞.
Now, suppose that φ′

+(t0) = −ε, such that ε > 0. Since limt′↓t φ′
−(t′) = φ′

+(t0)
(see [6], Theorem 24.1), we can find a t′ > t0 sufficiently close to t0 such that
φ′−(t′) ≤ −ε/2. Therefore, by monotonicity of the subdifferential, ∂φ(t) < 0, for
all t < t′. This implies t′ ≤ inf{t : 0 ∈ ∂φ(t)}, which is a contradiction since
t′ > t0. �
The following lemma describes the function F ∗

φ (η) near 0 and 1. Note that we
have φ′

−(−t0) ≤ φ′
+(−t0) ≤ φ′(0) < 0. Also φ′(0) ≤ φ′

−(t0) ≤ 0.

Lemma 3. t0 ∈ F ∗
φ (η) iff η ∈ [1 − γ, 1], where γ is defined as

γ =
φ′
−(t0)

φ′−(t0) + φ′
+(−t0)

.

Moreover, F ∗
φ (η) is the singleton set {t0} for η ∈ (1 − γ, 1).

Proof. t0 ∈ F ∗
φ (η) ⇔ t0 minimizes C(η, ·) ⇔ 0 ∈ ∂2C(η, t0), where ∂2 denotes

that the subdifferential is with respect to the second variable. This is because
C(η, ·), being a linear combination of convex functions, is convex. Thus, a neces-
sary and sufficient condition for a point to be a minimum is that the subdiffer-
ential there should contain zero. Now, using the linearity of the subdifferential
operator and the chain rule, we get

∂2C(η, t0) = η∂φ(t0) − (1 − η)∂φ(−t0)
= [ηφ′

−(t0) − (1 − η)φ′
+(−t0), ηφ′

+(t0) − (1 − η)φ′
−(−t0)] .

Hence, 0 ∈ ∂2C(η, t0) iff the following two conditions hold.

ηφ′
−(t0) − (1 − η)φ′

+(−t0) ≤ 0 (5)

ηφ′
+(t0) − (1 − η)φ′

−(−t0) ≥ 0 (6)

The inequality (6) holds for all η ∈ [0, 1] since φ′
+(t0) ≥ 0 and φ′

−(−t0) < 0. The
other inequality is equivalent to

η ≥ −φ′
+(−t0)

−φ′−(t0) − φ′
+(−t0)

.

Moreover, the inequalities are strict when η ∈ (1 − γ, 1). Therefore, t0 is the
unique minimizer of C(η, ·) for these values of η. �



Corollary 4. −t0 ∈ F ∗
φ (η) iff η ∈ [0, γ]. Moreover, F ∗

φ (η) is the singleton set
{−t0} for η ∈ (0, γ).

Proof. Straightforward once we observe that F ∗
φ (1 − η) = −F ∗

φ(η). �
The next lemma states that if F ∗

φ (η1) and F ∗
φ (η2) intersect for η1 �= η2 then φ

must have points of non-differentiability. This means that differentiability of the
loss function ensures that one can uniquely identify η via any element in F ∗

φ (η).

Lemma 5. Suppose η1 �= η2 and η1, η2 ∈ (γ, 1 − γ). Then F ∗
φ (η1) ∩ F ∗

φ (η2) �= ∅
implies that

– F ∗
φ (η1) ∩ F ∗

φ (η2) is a singleton set (= {t} say).
– φ is not differentiable at one of the points t,−t.

Proof. Without loss of generality assume η1 > η2. Suppose t > t′ and t, t′ ∈
F ∗

φ (η1)∩F ∗
φ (η2). This contradicts the fact that F ∗

φ is monotonic since t′ ∈ F ∗
φ (η1),

t ∈ F ∗
φ (η2) and t′ < t. This establishes the first claim. To prove the second

claim, suppose F ∗
φ (η1) ∩ F ∗

φ (η2) = {t} and assume, for sake of contradiction,
that φ is differentiable at t and −t. Since η1, η2 ∈ (γ, 1 − γ), Lemma 3 and
Corollary 4 imply that t �= ±t0. Therefore, t ∈ (−t0, t0) and φ′(t), φ′(−t) > 0.
Also, t ∈ F ∗

φ (η1) ∩ F ∗
φ (η2) implies that

η1φ
′(t) − (1 − η1)φ′(−t) = 0

η2φ
′(t) − (1 − η2)φ′(−t) = 0 .

Subtracting and rearranging, we get

(φ′(t) + φ′(−t))(η1 − η2) = 0

which is absurd since η1 > η2 and φ′(t), φ′(−t) > 0. �
Theorem 6. Let φ be an classification calibrated convex loss function such that
t0 = inf{t : 0 ∈ ∂φ(t)} < ∞. Then, for G(η) as defined in (4), we have

G(η) =

{
1 η ∈ (γ, 1 − γ)
min{η, 1 − η} η ∈ [0, γ] ∪ [1 − γ, 1]

(7)

where γ = φ′
−(t0)/(φ′

−(t0) + φ′
+(−t0)).

Proof. Using Lemmas 2 and 3, we have 0 ∈ ∂φ(F ∗
φ (η)) for η ∈ [1 − γ, 1]. If

η < 1−γ, Lemma 3 tells us that t0 /∈ F ∗
φ (η). Since F ∗

φ is monotonic, F ∗
φ (η) < t0.

Since t0 = inf{t : 0 ∈ ∂φ(t)}, 0 /∈ ∂φ(F ∗
φ (η)) for η ∈ [0, 1−γ). Thus, we can write

I(0/∈∂φ(F∗
φ (η))) as I(η/∈[1−γ,1]). Also I(0/∈∂φ(−F∗

φ (η)) = I(0/∈∂φ(F∗
φ (1−η)). Plugging this

in (4), we get

G(η) = ηI(η/∈[1−γ,1]) + (1 − η)I(1−η/∈[1−γ,1])

= ηI(η/∈[1−γ,1]) + (1 − η)I(η/∈[0,γ]) .

Since γ ≤ 1/2, we can write G(η) in the form given above. �



Corollary 7. If η1 ∈ [0, 1] is such that F ∗
φ (η1) ∩ F ∗

φ (η) = ∅ for η �= η1, then
G(η) = 1 on [min{η1, 1 − η1}, max{η1, 1 − η1}].
Proof. Lemma 3 and Corollary 4 tell us that η1 ∈ (γ, 1 − γ). Rest follows from
Theorem 6. �
The preceding theorem and corollary have important implications. First, we can
hope to have sparseness only for values of η ∈ [0, γ] ∪ [1 − γ, 1]. Second, we
cannot estimate conditional probabilities in these two intervals because F ∗

φ (·) is
not invertible there. Third, any loss function for which F ∗

φ (·) is invertible, say at
η1 < 1/2, will necessarily not have sparseness on the interval [η1, 1 − η1].

Note that for the case of L1 and L2-SVM, γ is 1/2 and 0 respectively. For
these two classifiers, the lower bounds ExG(η(x)) obtained after plugging in γ
in (7) are the ones proved initially [7]. For the L1-SVM, the bound was later
significantly improved [8]. This suggests that ExG(η(x)) might be a loose lower
bound in general. In the next section we will show, by deriving sharp improved
bounds, that the bound is indeed loose for a family of loss functions.

4 Improved Bounds

We will consider convex loss functions of the form

φ(t) = h((t0 − t)+) (8)

The function h is assumed to be continuously differentiable and convex. We
also assume h′(0) > 0. The convexity of φ requires that h′(0) be non-negative.
Since we are not interested in everywhere differentiable loss functions we want
a strict inequality. In other words the loss function is constant for all t ≥ t0
and is continuously differentiable before that. Further, the only discontinuity in
the derivative is at t0. Without loss of generality, we may assume that h(0) = 0
because the solutions to (1) do not change if we add or subtract a constant from
φ. Note that we obtain the hinge loss if we set h(t) = t. We now derive the dual
of (1) for our choice of the loss function.

4.1 Dual Formulation

For a convex loss function φ(t) = h((t0−t)+), consider the optimization problem:

argmin
w

λ‖w‖2 +
1
n

n∑
i=1

φ(yiw
T xi) . (9)

Make the substitution ξi = t0 − yiw
T xi to get

argmin
w

λ‖w‖2 +
1
n

n∑
i=1

φ(t0 − ξi) (10)

subject to ξi = t0 − yiw
T xi for all i . (11)



Introducing Lagrange multipliers, we get the Lagrangian:

L (w, ξ, α) = λ‖w‖2 +
1
n

n∑
i=1

φ(t0 − ξi) +
n∑

i=1

αi(t0 − yiw
T xi − ξi) .

Minimizing this with respect to the primal variables w and ξi’s, gives us

w =
1
2λ

n∑
i=1

αiyixi (12)

αi ∈ −∂φ(t0 − ξi)/n . (13)

For the specific form of φ that we are working with, we have

−∂φ(t0 − ξi)/n =

⎧⎪⎨
⎪⎩
{h′(ξi)/n} ξi > 0
[0, h′(0)/n] ξi = 0
{0} ξi < 0 .

(14)

Let (w∗, ξ∗i ) be a solution of (10). Then we have

λ‖w∗‖2 = λ(w∗)T

(
1
2λ

n∑
i=1

α∗
i yixi

)

=
1
2

n∑
i=1

α∗
i yi(w∗)T xi =

1
2

n∑
i=1

α∗
i (t0 − ξ∗i ) .

(15)

4.2 Asymptotic Fraction of Support Vectors

Recall that a kernel is called universal if its RKHS is dense in the space of
continuous functions over X . Suppose the kernel k is universal and analytic. This
ensures that any function in the RKHS H of k is analytic. Following Steinwart [8],
we call a probability distribution P non-trivial (with respect to φ) if

Rφ,P < inf
b∈R

Rφ,P (b) .

We also define the P -version of the optimization problem (1):

fP,λ = arg min
f∈H

λ‖f‖2
H + EP φ(yf(x)) .

Further, suppose that K = sup{√k(x, x) : x ∈ X} is finite. Fix a loss function
of the form (8). Define G(η) as

G(η) =

⎧⎪⎨
⎪⎩

η/γ 0 ≤ η ≤ γ

1 γ < η < 1 − γ

(1 − η)/γ 1 − γ ≤ η ≤ 1



where γ = h′(0)/(h′(0)+h′(2t0)). Since φ is differentiable on (−t0, t0), Lemma 5
implies that F ∗

φ is invertible on (γ, 1 − γ). Thus, one can estimate conditional
probabilities in the interval (γ, 1 − γ). Let #SV (fT,λ) denote the number of
support vectors in the solution (2):

#SV (fT,λ) = |{i : α∗
i �= 0}| .

The next theorem says that the fraction of support vectors converges to the
expectation ExG(η(x)) in probability.

Theorem 8. Let H be the RKHS of an analytic and universal kernel on R
d.

Further, let X ⊂ R
d be a closed ball and P be a probability measure on X ×{±1}

such that Px has a density with respect to the Lebesgue measure on X and P is
non-trivial. Suppose sup{√k(x, x) : x ∈ X} < ∞. Then for a classifier based
on (1), which uses a loss function of the form (8), and a regularization sequence
which tends to 0 sufficiently slowly, we have

#SV (fT,λn)
n

→ ExG(η(x))

in probability.

Proof. Let us fix an ε > 0. The proof will proceed in four steps of which the last
two simply involve relating empirical averages to expectations.

Step 1. In this step we show that fP,λn(x) is not too close to ±t0 for most
values of x. We also ensure that fT,λn(x) is sufficiently close to fP,λn(x) provided
λn → 0 slowly. Since fP,λ is an analytic function, for any constant c, we have

Px({x ∈ X : fP,λ(x) = c}) > 0 ⇒ f(x) = c Px-a.s. (16)

Assume that Px({x ∈ X : fP,λ(x) = t0}) > 0. By (16), we get Px({x ∈ X :
fP,λ(x) = t0}) = 1. But for small enough λ, fP,λ �= t0 since Rφ,P (fP,λ) → Rφ,P

and R(t0) �= Rφ,P by the non-triviality of P . Therefore, assume that for all
sufficiently large n, we have

Px({x ∈ X : fP,λn(x) = t0}) = 0 .

Repeating the reasoning for −t0 gives us

Px({x ∈ X : |fP,λn(x) − t0| ≤ δ}) ↓ 0 as δ ↓ 0

Px({x ∈ X : |fP,λn(x) + t0| ≤ δ}) ↓ 0 as δ ↓ 0 .

Define the set Aδ(λ) = {x ∈ X : |fP,λ(x) − t0| ≤ δ or |fP,λ(x) + t0| ≤ δ}. For
small enough λ and for all ε > 0, there exists δ > 0 such that Px(Aδ(λ)) ≤ ε.
Therefore, we can define

δ(λ) =
1
2

sup{δ > 0 : Px(Aδ(λ)) ≤ ε} .



Let m(λ) = inf{δ(λ′) : λ′ ≥ λ} be a decreasing version of δ(λ). Using Proposition
33 from [7] with ε = m(λn), we conclude that for a sequence λn → 0 sufficiently
slowly, the probability of a training set T such that

‖fT,λn − fP,λn‖ < m(λn)/K (17)

converges to 1 as n → ∞. It is important to note that we can draw this conclusion
because m(λ) > 0 for λ > 0 (See proof of Theorem 3.5 in [8]). We now relate
the 2-norm of an f to its ∞-norm.

f(x) = 〈k(x, ·), f(·)〉 ≤ ‖k(x, ·)‖ ‖f‖
=
√

〈k(x, ·), k(x, ·)〉‖f‖
= k(x, x)‖f‖ ≤ K‖f‖

(18)

Thus, (17) gives us
‖fT,λn − fP,λn‖∞ < m(λn) . (19)

Step 2. In the second step, we relate the fraction of support vectors to an
empirical average. Suppose that, in addition to (19), our training set T satisfies

λn‖fT,λn‖2 + Rφ,P (fT,λn) ≤ Rφ,P + ε (20)∣∣{i : xi ∈ Aδ(λn)}
∣∣ ≤ 2εn . (21)

The probability of such a T also converges to 1. For (20), see the proof of
Theorem III.6 in [9]. Since Px(Aδ(λn)) ≤ ε, (21) follows from Hoeffding’s in-
equality. By definition of Rφ,P , we have Rφ,P ≤ Rφ,P (fT,λn). Thus, (20) gives
us λn‖fT,λn‖2 ≤ ε. Now we use (15) to get∣∣∣∣∣

n∑
i=1

α∗
i t0 −

n∑
i=1

α∗
i ξ

∗
i

∣∣∣∣∣ ≤ 2ε . (22)

Define three disjoint sets: A = {i : ξ∗i < 0}, B = {i : ξ∗i = 0} and C = {i : ξ∗i >
0}. We now show that B contains few elements. If xi is such that i ∈ B then
ξ∗i = 0 and we have yifT,λn(xi) = t0 ⇒ fT,λn(xi) = ±t0. On the other hand, if
xi /∈ Aδ(λn) then min{|fP,λn(xi) − t0|, |fP,λn(xi) + t0|} > δ(λn) ≥ m(λn), and
hence, by (19), fT,λn(xi) �= ±t0. Thus we can have at most 2εn elements in the
set B by (21). Equation (14) gives us a bound on α∗

i for i ∈ B and therefore∣∣∣∣∣
∑
i∈B

α∗
i t0

∣∣∣∣∣ ≤ 2εn × h′(0)t0/n = 2h′(0)t0ε . (23)

Using (14), we get αi = 0 for i ∈ A. By definition of B, ξ∗i = 0 for i ∈ B.
Therefore, (22) and (23) give us∣∣∣∣∣

∑
i∈C

α∗
i t0 −

∑
i∈C

α∗
i ξ

∗
i

∣∣∣∣∣ ≤ 2(1 + h′(0)t0)ε = c1ε .



where c1 = 2(1 + h′(0)t0) is just a constant. We use (14) once again to write α∗
i

as h′(ξ∗i )/n for i ∈ C:∣∣∣∣∣ 1n
∑
i∈C

h′(ξ∗i )t0 − 1
n

∑
i∈C

h′(ξ∗i )ξ∗i

∣∣∣∣∣ < c1ε . (24)

Denote the cardinality of the sets B and C by NB and NC respectively. Then
we have NC ≤ #SV (fT,λn) ≤ NC + NB. But we showed that NB ≤ 2εn and
therefore

NC

n
≤ #SV (fT,λn)

n
≤ NC

n
+ 2ε . (25)

Observe that (ξ∗i )+ = 0 for i ∈ A ∪ B and (ξ∗i )+ = ξ∗i for i ∈ C. Thus, we can
extend the sums in (24) to the whole training set.∣∣∣∣∣ 1n

n∑
i=1

h′((ξ∗i )+)t0 − (n − NC)
h′(0)t0

n
− 1

n

n∑
i=1

h′((ξ∗i )+)(ξ∗i )+

∣∣∣∣∣ < c1ε

Now let c2 = c1/h′(0)t0 and rearrange the above sum to get∣∣∣∣∣NC

n
− 1

n

n∑
i=1

(
1 − h′((ξ∗i )+)t0 − h′((ξ∗i )+)(ξ∗i )+

h′(0)t0

)∣∣∣∣∣ ≤ c2ε . (26)

Define g(t) as

g(t) = 1 − h′((t0 − t)+)t0 − h′((t0 − t)+)(t0 − t)+
h′(0)t0

.

Now (26) can be written as∣∣∣∣NC

n
− ET g(yfT,λn(x))

∣∣∣∣ ≤ c2ε . (27)

Step 3. We will now show that the empirical average of g(yfT,λn(x)) is close
to its expectation. We can bound the norm of fT,λn as follows. The optimum
value for the objective function in (1) is upper bounded by the value it attains
at f = 0. Therefore,

λn‖fT,λn‖2 + Rφ,T (fT,λn) ≤ λn. 02 + Rφ,T (0) = φ(0) = h(t0)

which, together with (18), implies that

‖fT,λn‖ ≤
√

h(t0)
λn

(28)

‖fT,λn‖∞ ≤ K

√
h(t0)
λn

. (29)



Let Fλn be the class of functions with norm bounded by
√

h(t0)/λn. The cov-
ering number in 2-norm of the class satisfies (see, for example, Definition 1 and
Corollary 3 in [11]):

N2(Fλn , ε, n) ≤ e
Kh(t0)
λnε2

log(2n+1)
. (30)

Define Lg(λn) as

Lg(λn) = sup

⎧⎨
⎩ |g(t) − g(t′)|

|t − t′| : t, t′ ∈
⎡
⎣−K

√
h(t0)
λn

, +K

√
h(t0)
λn

⎤
⎦ , t �= t′

⎫⎬
⎭ (31)

Let Gλn = {(x, y) �→ g(yf(x)) : f ∈ Fλn}. We can express the covering numbers
of this class in terms of those of Fλn (see, for example, Lemma 14.13 on p. 206
in [1]):

N2(Gλn , ε, n) ≤ N2(Fλn , ε/Lg(λn), n) . (32)

Now, using a result of Pollard (see Section II.6 on p. 30 in [5]) and the fact that
1-norm covering numbers are bounded above by 2-norm covering numbers, we
get

Pn

(
T ∈ (X × Y)n : sup

g̃∈Gλn

|ET g̃(x, y) − EP g̃(x, y)| > ε

)

≤ 8N2(Gλn , ε/8, n)e−nε2λn/512L2
g(λn)K2h(t0) . (33)

The estimates (30) and (32) imply that if

nλ2
n

L4
g(λn) log(2n + 1)

→ ∞ as n → ∞

then the probability of a training set which satisfies

|ET g(yfT,λn(x)) − EP g(yfT,λn(x))| ≤ ε (34)

tends to 1 as n → ∞.

Step 4. The last step in the proof is to show that EP g(yfT,λn(x)) is close to
ExG(η(x)) for large enough n. Write EP g(yfT,λn(x)) as

EP g(yfT,λn(x)) = Ex[η(x)g(fT,λn (x)) + (1 − η(x))g(−fT,λn(x))] .

Note that if t∗ ∈ F ∗
φ (η) then

ηg(t∗) + (1 − η)g(−t∗) = G(η) . (35)

This is easily verified for η ∈ [0, γ] ∪ [1 − γ, 1] since g(t) = 0 for t ≥ t0 and
g(−t0) = 1/γ. For η ∈ (γ, 1 − γ) we have

ηg(t∗) + (1 − η)g(−t∗) = 1 − t∗

t0h′(0)
(ηh′(t0 − t∗) − (1 − η)h′(t0 + t∗)) .



Since t∗ minimizes ηh(t0 − t) + (1 − η)h(t0 + t) and h is differentiable, we have
ηh′(t0 − t∗)− (1− η)h′(t0 + t∗) = 0. Thus, we have verified (35) for all η ∈ [0, 1].
Define the sets En = {x ∈ X : ρ(fT,λn(x), F ∗

φ (η(x)) ≥ ε}. We have Px(En) → 0
by (3). We now bound the difference between the two quantities of interest.

| EP g(yfT,λn(x)) − ExG(η(x)) |
= | Ex[η(x)g(fT,λn (x)) + (1 − η(x))g(−fT,λn(x))] − ExG(η(x)) |
≤ Ex | η(x)g(fT,λn(x)) + (1 − η(x))g(−fT,λn (x)) − G(η(x)) |
= I1 + I2 ≤ |I1| + |I2|

(36)

where the integrals I1 and I2 are

I1 =
∫

En

η(x)g(fT,λn(x)) + (1 − η(x))g(−fT,λn(x)) − G(η(x)) dPx (37)

I2 =
∫
X\En

η(x)g(fT,λn (x)) + (1 − η(x))g(−fT,λn(x)) − G(η(x)) dPx . (38)

Using (29) and (31) we bound |g(±fT,λn(x))| by g(0) + Lg(λn)K
√

h′(t0)/λn.
Since g(0) = 1 and |G(η)| ≤ 1, we have

|I1| ≤
⎛
⎝1 + g(0) + Lg(λn)K

√
h′(t0)
λn

⎞
⎠Px(En) .

If λn → 0 slowly enough so that Lg(λn)Px(En)/
√

λn → 0, then for large n,
|I1| ≤ ε. To bound |I2|, observe that for x ∈ X \En, we can find a t∗ ∈ F ∗

φ (η(x)),
such that |fT,λn(x) − t∗| ≤ ε. Therefore

η(x)g(fT,λn(x)) + (1 − η(x))g(−fT,λn (x))
= η(x)g(t∗) + (1 − η(x)g(−t∗) + ∆ . (39)

where |∆| ≤ c3ε and the constant c3 does not depend on λn. Using (35), we can
now bound |I2|:

|I2| ≤ c3ε(1 − Px(En)) ≤ c3ε .

We now use (36) to get

| EP g(yfT,λn(x)) − ExG(η(x)) | ≤ (c3 + 1)ε . (40)

Finally, combining (25), (27), (34) and (40) proves the theorem. �

5 Conclusion

We saw that the decision functions obtained using minimization of regularized
empirical φ-risk approach F ∗

φ (η(·)). It is not possible to preserve sparseness on



intervals where F ∗
φ (·) is invertible. For the regions outside that interval, sparse-

ness is maintained to some extent. For many convex loss functions, the general
lower bounds known previously turned out to be quite loose.

But that leaves open the possibility that the previously known lower bounds
are actually achievable by some loss function lying outside the class of loss func-
tions we considered. However, we conjecture that it is not possible. Note that the
bound of Theorem 8 only depends on the left derivative of the loss function at
t0 and the right derivative at −t0. The derivatives at other points do not affect
the asymptotic number of support vectors. This suggests that the assumption
of the differentiability of φ before the point where it attains its minimum can
be relaxed. It may be that results on the continuity of solution sets of convex
optimization problems can be applied here (see, for example, [3]).
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