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Abstract

The risk, or probability of error, of the classifier produced by the AdaBoost algo-
rithm is investigated. In particular, we consider the stopping strategy to be used in
AdaBoost to achieve universal consistency. We show that provided AdaBoost is
stopped after nν iterations—for sample size n and ν < 1—the sequence of risks
of the classifiers it produces approaches the Bayes risk if Bayes risk L∗ > 0.

1 Introduction

Boosting algorithms are an important recent developments in classification. These algorithms belong
to a group of voting methods, for example [1, 2, 3], that produce a classifier as a linear combination
of base or weak classifiers. While empirical studies show that boosting is one of the best off the
shelf classification algorithms (see [3]) theoretical results don’t give a complete explanation of their
effectiveness.

Breiman [4] showed that under some assumptions on the underlying distribution “population boost-
ing” converges to the Bayes risk as the number of iterations goes to infinity. Since the population
version assumes infinite sample size, this does not imply a similar result for AdaBoost, especially
given results of Jiang [5], that there are examples when AdaBoost has prediction error asymptoti-
cally suboptimal at t = ∞ (t is the number of iterations).

Several authors have shown that modified versions of AdaBoost are consistent. These modifications
include restricting the l1-norm of the combined classifier [6, 7] and restricting the step size of the al-
gorithm [8]. Jiang [9] analyses the unmodified boosting algorithm and proves a process consistency
property, under certain assumptions. Process consistency means that there exists a sequence (tn)
such that if AdaBoost with sample size n is stopped after tn iterations, its risk approaches the Bayes
risk. However Jiang also imposes strong conditions on the underlying distribution: the distribution
of X (the predictor) has to be absolutely continuous with respect to Lebesgue measure and the func-
tion FB(X) = 1

2 ln P(Y =1|X)
P(Y =−1|X) has to be continuous on X . Also Jiang’s proof is not constructive

and does not give any hint on when the algorithm should be stopped. Bickel, Ritov and Zakai in
[10] prove a consistency result for AdaBoost, under the assumption that the probability distribution
is such that the steps taken by the algorithm are not too large. We would like to obtain a simple
stopping rule that guarantees consistency and doesn’t require any modification to the algorithm.

This paper provides a constructive answer to all of the mentioned issues:

1. We consider AdaBoost (not a modification).

2. We provide a simple stopping rule: the number of iterations t is a fixed function of the
sample size n.

3. We assume only that the class of base classifiers has finite VC-dimension, and that the span
of this class is sufficiently rich. Both assumptions are clearly necessary.



2 Setup and notation

Here we describe the AdaBoost procedure formulated as a coordinate descent algorithm and in-
troduce definitions and notation. We consider a binary classification problem. We are given X ,
the measurable (feature) space, and Y = {−1, 1}, set of (binary) labels. We are given a sample
Sn = {(Xi, Yi)}n

i=1 of i.i.d. observations distributed as the random variable (X,Y ) ∼ P , where P
is an unknown distribution. Our goal is to construct a classifier gn : X → Y based on this sample.
The quality of the classifier gn is given by the misclassification probability

L(gn) = P(gn(X) 6= Y |Sn).

Of course we want this probability to be as small as possible and close to the Bayes risk

L∗ = inf
g
L(g) = E(min{η(X), 1− η(X)}),

where the infimum is taken over all possible (measurable) classifiers and η(·) is a conditional prob-
ability

η(x) = P(Y = 1|X = x).
The infimum above is achieved by the Bayes classifier g∗(x) = g(2η(x)− 1), where

g(x) =
{

1 , x > 0,
−1 , x ≤ 0.

We are going to produce a classifier as a linear combination of base classifiers in H = {h|h : X →
Y}. We shall assume that class H has a finite VC (Vapnik-Chervonenkis) dimension dV C(H) =
max

{
|S| : S ⊆ X ,

∣∣H|S
∣∣ = 2|S|

}
.

Define

Rn(f) =
1
n

n∑
i=1

e−Yif(Xi) and R(f) = Ee−Y f(X).

Then the boosting procedure can be described as follows.

1. Set f0 ≡ 0, choose number of iterations t.
2. For k = 1, . . . , t set

fk = fk−1 + αk−1hk−1,

where the following holds

Rn(fk) = inf
h∈H,α∈R

Rn(fk−1 + αh) (1)

We call αi the step size of the algorithm at step i.
3. Output g ◦ ft as a final classifier.

We shall also use the convex hull of H scaled by λ ≥ 0,

Fλ =

{
f

∣∣∣∣∣f =
n∑

i=1

λihi, n ∈ N ∪ {0}, λi ≥ 0,
n∑

i=1

λi = λ, hi ∈ H

}
as well as the set of k-combinations, k ∈ N, of functions in H

Fk =

{
f

∣∣∣∣∣f =
k∑

i=1

λihi, λi ∈ R, hi ∈ H

}
.

We shall also need to define the l∗-norm: for any f ∈ F

‖f‖∗ = inf{
∑

|αi|, f =
∑

αihi, hi ∈ H}.

Define the squashing function πl(·) to be

πl(x) =

{
l , x > l,
x , x ∈ [−l, l],
−l , x < −l.



Then the set of truncated functions is

πl ◦ F =
{
f̃ |f̃ = πl(f), f ∈ F

}
.

The set of classifiers based on class F is denoted by

g ◦ F = {f̃ |f̃ = g(f), f ∈ F}.

Define the derivative of an arbitrary function Q(·) in the direction of h as

Q′(f ;h) =
∂Q(f + λh)

∂λ

∣∣∣∣
λ=0

.

The second derivative Q′′(f ;h) is defined similarly.

3 Consistency of boosting procedure

We shall need the following assumption.

Assumption 1 Let the distribution P and class H be such that

lim
λ→∞

inf
f∈Fλ

R(f) = R∗,

where R∗ = inf R(f) over all measurable functions.

For many classes H, the above assumption is satisfied for all possible distributions P . See [6,
Lemma 1] for sufficient conditions for Assumption 1. As an example of such a class, we can take
a class of indicators of all rectangles or indicators of half-spaces defined by hyperplanes or binary
trees with the number of terminal nodes equal to d+1 (we consider trees with terminal nodes formed
by successive univariate splits), where d is the dimensionality of X (see [4]).

We begin with a simple lemma (see [1, Theorem 8] or [11, Theorem 6.1]):

Lemma 1 For any t ∈ N if dV C(H) ≥ 2 the following holds:

dP (F t) ≤ 2(t+ 1)(dV C(H) + 1) log2[2(t+ 1)/ ln 2],

where dP (F t) is the pseudodimension of class F t.

The proof of AdaBoost consistency is based on the following result, which builds on the result by
Koltchinskii and Panchenko [12] and resembles [6, Lemma 2].

Lemma 2 For a continuous function ϕ define the Lipschitz constant

Lϕ,λ = inf{L|L > 0, |ϕ(x)− ϕ(y)| ≤ L|x− y|,−λ ≤ x, y ≤ λ}

and maximum absolute value of ϕ(·) when argument is in [−λ, λ]

Mϕ,λ = max
x∈[−λ,λ]

ϕ(x).

Then for functions

Rϕ(f) = Eϕ(Y f(X)) and Rϕ,n(f) =
1
n

n∑
i=1

ϕ(Yif(Xi)),

V = dV C(H), c = 24
∫ 1

0

√
ln 8e

ε2 dε and any n, λ > 0 and t > 0,

E sup
f∈πλ◦Ft

|Rϕ(f)−Rϕ,n(f)| ≤ cλLϕ,λ

√
(V + 1)(t+ 1) log2[2(t+ 1)/ ln 2]

n
(2)

and

E sup
f∈Fλ

|Rϕ(f)−Rϕ,n(f)| ≤ 4λLϕ,λ

√
2V ln(4n+ 2)

n
. (3)



Also, for any δ > 0, with probability at least 1− δ,

sup
f∈πλ◦Ft

|Rϕ(f)−Rϕ,n(f)| ≤ cλLϕ,λ

√
(V + 1)(t+ 1) log2[2(t+ 1)/ ln 2]

n

+ Mϕ,λ

√
ln(1/δ)

2n
(4)

and

sup
f∈Fλ

|Rϕ(f)−Rϕ,n(f)| ≤ 4λLϕ,λ

√
2V ln(4n+ 2)

n
+Mϕ,λ

√
ln(1/δ)

2n
. (5)

Proof. Equations (3) and (5 ) constitute [6, Lemma 2]. The proof of equations (2) and (4) is similar.
We begin with symmetrization to get

E sup
f∈πλ◦Ft

|Rϕ(f)−Rϕ,n(f)| ≤ 2E sup
f∈πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σi(ϕ(−Yif(Xi))− ϕ(0))

∣∣∣∣∣ ,
where σi are i.i.d. with P(σi = 1) = P(σi = −1) = 1/2. Then we use the “contraction principle”
(see [13, Theorem 4.12, pp. 112–113]) with a function ψ(x) = (ϕ(x)− ϕ(0))/Lϕ,λ to get

E sup
f∈πλ◦Ft

|Rϕ(f)−Rϕ,n(f)| ≤ 4Lϕ,λE sup
f∈πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

−σiYif(Xi)

∣∣∣∣∣
= 4Lϕ,λE sup

f∈πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ .
Next we proceed and find the supremum. Notice, that functions in πλ ◦ F t are bounded and clipped
to the absolute value equal λ, therefore we can rescale πλ ◦ F t by (2λ)−1 and get

E sup
f∈πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ = 2λE sup
f∈(2λ)−1◦πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ .
Next, we are going to use Dudley’s entropy integral [14] to bound the r.h.s above

E sup
f∈(2λ)−1◦πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ ≤ 12√
n

∫ ∞

0

√
lnN (ε, (2λ)−1 ◦ πλ ◦ F t, L2(Pn))dε.

Since for ε > 1 the covering number N is 1, then upper integration limit can be taken 1, and we can
use Pollard’s bound [15] for F ⊆ [0, 1]X

N (ε, F, L2(P )) ≤ 2
(

4e
ε2

)dP (F )
,

where dP (F ) is a pseudodimension, and obtain for c̃ = 12
∫ 1

0

√
ln 8e

ε2 dε

E sup
f∈(2λ)−1◦πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ ≤ c̃

√
dP ((2λ)−1 ◦ πλ ◦ F t)

n
,

also notice that constant c̃ doesn’t depend on F t or λ. Next, since (2λ)−1 ◦ πλ is a non-decreasing
transform, we use inequality dP ((2λ)−1 ◦ πλ ◦ F t) ≤ dP (F t) (e.g. [11, Theorem 11.3])

E sup
f∈(2λ)−1◦πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ ≤ c

√
dP (F t)
n

.

And then, since Lemma 1 gives an upper-bound on the pseudodimension of the class F t, we have

E sup
f∈πλ◦Ft

∣∣∣∣∣ 1n
n∑

i=1

σif(Xi)

∣∣∣∣∣ ≤ cλ

√
(V + 1)(t+ 1) log2[2(t+ 1)/ ln 2]

n
,



with constant c above being independent of H, t and λ. To prove the second statement we use
McDiarmid’s bounded difference inequality [16, Theorem 9.2, p. 136], since ∀i

sup
(xj ,yj)n

j=1,(x′i,y
′
i)

∣∣∣∣∣ sup
f∈πλ◦Ft

|Rϕ(f)−Rϕ,n(f)| − sup
f∈πλ◦Ft

|Rϕ(f)−R′ϕ,n(f)|

∣∣∣∣∣ ≤ Mϕ,λ

n
,

where R′ϕ,n(f) is obtained from Rϕ,n(f) by changing pair (xi, yi) to (x′i, y
′
i). This completes the

proof of the lemma. �
Lemma 2, unlike [6, Lemma 2], allows us to choose the number of steps t, that describes the com-
plexity of the linear combination of base functions in addition to the parameter λ, which governs the
size of the deviations of the functions in F , and this is essential for the proof of the consistency. It
is easy to see that for AdaBoost (i.e. ϕ(x) = e−x) we have to choose λ = κ lnn and t = nν with
κ > 0, ν > 0 and 2κ+ ν < 1. So far we dealt with the statistical properties of the function we are
minimizing, now we turn to the algorithmic part. We need the following simple consequence of the
proof of [10, Theorem 1]

Theorem 1 Let function Q(f) be convex in f . Let Q∗ = limλ→∞ inff∈Fλ
Q(f). Assume that

∀c1, c2, s.t. Q∗ < c1 < c2 <∞,

0 < inf{Q′′(f ;h) : c1 < Q(f) < c2, h ∈ H}
≤ sup{Q′′(f ;h) : Q(f) < c2, h ∈ H} <∞.

Then for any reference function f̄ and the sequence of functions fm, produced by the boosting
algorithm, the following bound holds ∀m s.t. Q(fm) > Q(f̄).

Q(fm) ≤ Q(f̄) +

√
8B3Q(f0)(Q(f0)−Q(f̄))

β3

(
ln
`20 + c3(m+ 1)

`20

)− 1
2

, (6)

where `k =
∥∥f̄ − fk

∥∥
∗, c3 = 2Q(f0)/β, β = inf{Q′′(f ;h) : Q(f̄) < Q(f) < Q(f0), h ∈ H},

B = sup{Q′′(f ;h) : Q(f) < Q(f0), h ∈ H}.

Proof. The statement of the theorem is a version of the result implicit in the proof of [10, Theorem
1]. If for some m we have Q(fm) ≤ Q(f̄), then theorem is trivially true for all m′ ≥ m. Therefore,
we are going to consider only the case when Q(fm+1) > Q(f̄). By convexity of Q(·)

|Q′(fm; fm − f̄)| ≥ Q(fm)−Q(f̄) = εm. (7)

Let fm − f̄ =
∑
α̃ih̃i, where α̃i and h̃i correspond to the best representation (with the smallest

l∗-norm). Then from (7) and linearity of the derivative we have

εm ≤
∣∣∣∑ α̃iQ

′(fm; h̃i)
∣∣∣ ≤ sup

h∈H
|Q′(fm;h)|

∑
|α̃i|,

therefore
sup
h∈H

Q′(fm;h) ≥ εm∥∥fm − f̄
∥∥
∗
. (8)

Next,

Q(fm + αhm) = Q(fm) + αQ′(fm;hm) +
1
2
α2Q′′(f̃m;hm),

where f̃m = fm + α̃mhm, for α̃m ∈ [0, αm], and since by assumption f̃m is on the path from fm to
fm+1 we have the following bounds

Q(f̄) < Q(fm+1) ≤ Q(f̃m) ≤ Q(fm) ≤ Q(f0),

then by assumption of the theorem for β, that depends on Q(f̄), we have

Q(fm+1) ≥ Q(fm) + inf
α∈R

(αQ′(fm;hm) +
1
2
α2β) = Q(fm)− |Q′(fm;hm)|2

2β
. (9)

On the other hand,

Q(fm + αmhm) = inf
h∈H,α∈R

Q(fm + αh) ≤ inf
h∈H,α∈R

(
Q(fm) + αQ′(fm;h) +

1
2
α2B)

)
= Q(fm)−

suph∈H |Q′(fm;h)|2

2B
. (10)



Therefore, combining (9) and (10) , we get

|Q′(fm;hm)| ≥ sup
h∈H

|Q′(fm;h)|
√
β

B
. (11)

Another Taylor expansion, this time around fm+1, gives us

Q(fm) = Q(fm+1) +
1
2
α2

mQ
′′(˜̃fm;hm), (12)

where ˜̃
fm is some (other) function on the path from fm to fm+1. Therefore, if |αm| <

|Q′(fm;hm)|/B, then

Q(fm)−Q(fm+1) <
|Q′(fm;hm)|2

2B
,

but by (10)

Q(fm)−Q(fm+1) ≥
suph∈H |Q′(fm;h)|2

2B
≥ |Q′(fm;hm)|2

2B
,

therefore we conclude, by combining (11) and (8), that

|αm| ≥
|Q′(fm;hm)|

B
≥
√
β suph∈H |Q′(fm;h)|

B3/2
≥ εm

√
β

`mB3/2
. (13)

Using (12) we have
m∑

i=0

α2
i ≤

2
β

m∑
i=0

(Q(fi)−Q(fi+1)) ≤
2
β

(Q(f0)−Q(f̄)). (14)

Recall that ∥∥fm − f̄
∥∥
∗ ≤

∥∥fm−1 − f̄
∥∥
∗ + |αm−1| ≤

∥∥f0 − f̄
∥∥
∗ +

m−1∑
i=0

|αi|

≤
∥∥f0 − f̄

∥∥
∗ +

√
m

(
m−1∑
i=0

α2
i

)1/2

,

therefore, combining with (14) and (13), since sequence εi is decreasing,

2
β

(Q(f0)−Q(f̄)) ≥
m∑

i=0

α2
i ≥

β

B3

m∑
i=0

ε2i
`2i
≥ β

B3
ε2m

m∑
i=0

1(
`0 +

√
i
(∑i−1

j=0 α
2
j

)1/2
)2

≥ β

B3
ε2m

m∑
i=0

1(
`0 +

√
i
(

2Q(f0)
β

)1/2
)2

≥ β

2B3
ε2m

m∑
i=0

1

`20 + 2Q(f0)
β i

.

Since
m∑

i=0

1
a+ bi

≥
∫ m+1

0

dx

a+ bx
=

1
b

ln
a+ b(m+ 1)

a
,

then
2
β

(Q(f0)−Q(f̄)) ≥ β2

4B3Q(f0)
ε2m ln

`20 + 2Q(f0)
β (m+ 1)

`20
.

Therefore

εm ≤

√
8B3Q(f0)(Q(f0)−Q(f̄))

β3

(
ln
`20 + 2Q(f0)

β (m+ 1)

`20

)− 1
2

,

and this completes the proof. �
The theorem above allows us to get an upper bound on the difference between the ϕ-risk of the
function output by AdaBoost and the ϕ-risk of the appropriate reference function.



Theorem 2 AssumeR∗ > 0. Let tn = nν be the number of steps we run AdaBoost, let λn = κ lnn,
with ν > 0, κ > 0 and ν + 2κ < 1. Let f̄n be a minimizer of the function Rn(·) within Fλn

. Then
for n large enough with high probability the following holds

Rn(ftn
) ≤ Rn(f̄n) +

8
(R∗)3/2

(
ln
λ2

n + (4/R∗)tn
λ2

n

)−1/2

Proof. This theorem follows directly from Theorem 1. Because in AdaBoost

R′′n(f ;h) =
1
n

n∑
i=1

(−Yih(Xi))2e−Yif(Xi) =
1
n

n∑
i=1

e−Yif(Xi) = R(f)

then all the conditions in Theorem 1 are satisfied (withQ(f) replaced byRn(f)) and in the Equation
(6) we have B = Rn(f0) = 1, β ≥ Rn(f̄n),

∥∥f0 − f̄n

∥∥
∗ ≤ λn. Since for t s.t. Rn(ft) ≤ Rn(f̄n)

the theorem is trivially true we only have to notice that Lemma 2 guarantees that with probability at
least 1− δ

|R(f̄n)−Rn(f̄n)| ≤ 4λnLϕ,λn

√
2V ln(4n+ 2)

n
+Mϕ,λn

√
ln(1/δ)

2n
.

Thus for n such that the r.h.s. of the above expression is less than R∗/2 we have β ≥ Rn(f̄n) ≥
R∗/2 and the result follows immediately from Equation (6) if we use the fact that Rn(f̄) > 0. �
Then, having all the ingredients at hand we can formulate the main result of the paper.

Theorem 3 Assume V = dV C(H) <∞, L∗ > 0,

lim
λ→∞

inf
f∈Fλ

R(f) = R∗,

tn → ∞, and tn = O(nν) for ν < 1. Then AdaBoost stopped at step tn returns a sequence of
classifiers almost surely satisfying L(g(ftn

)) → L∗.

Proof. For the exponential loss function L∗ > 0 implies R∗ > 0. Let λn = κ lnn, κ > 0,
2κ + ν < 1. Also, let f̄ be a minimizer of R and f̄n be a minimizer of Rn within Fλn . Then we
have

R(πλn
(ftn

)) ≤ Rn(πλn
(ftn

)) + ε1 by Lemma 2 (15)
≤ Rn(ftn

) + ε1 + ϕ(λn) since ϕ(πλn
(x)) ≤ ϕ(x) + ϕ(λn)

≤ Rn(f̄n) + ε1 + ϕ(λn) + ε2 by Theorem 2 (16)
≤ R(f̄) + ε1 + ϕ(λn) + ε2 + ε3 by Lemma 2. (17)

Inequalities (15) and (17) hold with probability at least 1 − δn, while inequality (16) is true for
sufficiently large n when (17) holds. The ε’s above are

ε1 = cnκκ lnn

√
(V + 1)(nν + 1) log2[2(nν + 1)/ ln 2]

n
+ nκ

√
ln(1/δn)

2n

ε2 =
8

(R∗)3/2

(
ln

(κ lnn)2 + (4/R∗)nν

(κ lnn)2

)−1/2

,

ε3 = 4nκκ lnn

√
2V ln(4n+ 2)

n
+ nκ

√
ln(1/δn)

2n
and ϕ(λn) = n−κ. Therefore, by the choice of ν and κ and appropriate choice of δn, for example
δn = n−2, we have ε1 → 0, ε2 → 0, ε3 → 0 and ϕ(λn) → 0. Also, R(f̄) → R∗ by Assumption 1.
Now we appeal to the Borel-Cantelli lemma and arrive at R(πλ(ftn

)) → R∗ a.s. Eventually we can
use [17, Theorem 3] to conclude that

L(g(πλn
(ftn

)))a.s.→L∗.

But for λn > 0 we have g(πλn
(ftn

)) = g(ftn
), therefore

L(g(ftn
))a.s.→L∗.

Hence AdaBoost is consistent if stopped after nν steps. �



4 Discussion

We showed that AdaBoost is consistent if stopped sufficiently early, after tn iterations, for tn = nν

with ν < 1, given that Bayes risk L∗ > 0. It is unclear whether this number can be increased.
Results by Jiang [5] imply that for some X and function class H AdaBoost algorithm will achieve
zero training error after tn steps, where n2/tn = o(1). We don’t know what happens in between
O(n1−ε) and O(n2 lnn). Lessening this gap is a subject of further research.

We analyzed only AdaBoost, the boosting algorithm that uses loss function ϕ(x) = e−x. Since
the proof of Theorem 2 relies on the properties of the exponential loss, we cannot make a similar
conclusion for other versions of boosting, e.g., logit boosting with ϕ(x) = ln(1 + e−x): in this
case assumption on the second derivative holds with R′′n(f ;h) ≥ Rn(f)/n, though the resulting
inequality is trivial, the factor 1/n precludes us from finding any useful bound. It is a subject of
future work to find an analog of Theorem 2 that will handle logit loss.

References

[1] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[2] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
[3] Leo Breiman. Arcing classifiers (with discussion). The Annals of Statistics, 26(3):801–849,

1998. (Was Department of Statistics, U.C. Berkeley Technical Report 460, 1996).
[4] Leo Breiman. Some infinite theory for predictor ensembles. Technical Report 579, Department

of Statistics, University of California, Berkeley, 2000.
[5] Wenxin Jiang. On weak base hypotheses and their implications for boosting regression and

classification. The Annals of Statistics, 30:51–73, 2002.
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