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Abstract. We present sharp bounds on the risk of the empirical mini-
mization algorithm under mild assumptions on the class. We introduce
the notion of isomorphic coordinate projections and show that this leads
to a sharper error bound than the best previously known. The quan-
tity which governs this bound on the empirical minimizer is the largest
fixed point of the function ξn(r) = E sup {|Ef − Enf | : f ∈ F, Ef = r}.
We prove that this is the best estimate one can obtain using “structural
results”, and that it is possible to estimate the error rate from data. We
then prove that the bound on the empirical minimization algorithm can
be improved further by a direct analysis, and that the correct error rate
is the maximizer of ξ′

n
(r) − r, where ξ′

n
(r) = E sup {Ef − Enf : f ∈ F,

Ef = r}.

Keywords: statistical learning theory, empirical risk minimization, generaliza-
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1 Introduction

Error bounds for learning algorithms measure the probability that a function
produced by the algorithm has a small error. Sharp bounds give an insight into
the parameters that are important for learning and allow one to assess accu-
rately the performance of learning algorithms. The bounds are usually derived
by studying the relationship between the expected and the empirical error. It
is now a standard result that, for every function, the deviation of the expected
from the empirical error is bounded by a complexity term which measures the
size of the function class from which the function was chosen. Complexity terms
which measure the size of the entire class are called global complexity measures,
and two such examples are the VC-dimension and the Rademacher averages
of the function class (note that there is a key difference between the two; the
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VC-dimension is independent of the underlying measure, and thus captures the
worst case scenario, while the Rademacher averages are measure dependent and
lead to sharper bounds).

Moreover, estimates which are based on comparing the empirical and the
actual structures (for example empirical vs. actual means) uniformly over the
class are loose, because this condition is stronger than necessary. Indeed, in
the case of the empirical risk minimization algorithm, it is more likely that the
algorithm produces functions with a small expectation, and thus one only has to
consider a small subclass. Taking that into account, error bounds should depend
only on the complexity of the functions with small error or variance. Such bounds
in terms of local complexity measures were established in [10, 15, 13, 2, 9].

In this article we will show that by imposing very mild structural assumptions
on the class, these local complexity bounds can be improved further. We will state
the best possible estimates which can be obtained by a comparison of empirical
and actual structures. Then, we will pursue the idea of leaving the “structural
approach” and analyzing the empirical minimization algorithm directly. The
reason for this is that structural results comparing the empirical and actual
structures on the class have a limitation. It turns out that if one is too close to
the true minimizer the class is too rich at that scale and the structures are not
close at a small enough scale to yield a useful bound. On the other hand, with
the empirical minimizer one can go beyond the structural limit.

We consider the following setting and notation: let X × Y be a measur-
able space, and let P be an unknown probability distribution on X × Y . Let
((X1, Y1), ..., (Xn, Yn)) ∈ (X × Y)n be a finite training sample, where each pair
(Xi, Yi) is generated independently according to P . The goal of a learning al-
gorithm is to estimate a function h : X −→ Y (based on the sample), which
predicts the value of Y given X . The possible choices of functions are all in a
function class H , called the hypothesis class. A quantitative measure of how ac-
curate a function h ∈ H approximates Y is given by a loss function l : Y2 −→ R.
Typical examples of loss functions are the 0-1 loss for classification defined by
l(r, s) = 0 if r = s and l(r, s) = 1 if r 6= s or the square-loss for regression tasks
l(r, s) = (r − s)2. In what follows we will assume a bounded loss function and
therefore, without loss of generality, l : Y2 −→ [−b, b]. For every h ∈ H we define
the associated loss function lh : (X ×Y) −→ [−b, b], lh(x, y) = l(h(x), y) and de-
note by F = {lh : (X ×Y) −→ [−b, b] : h ∈ H} the loss class associated with the
learning problem. The best estimate h∗ ∈ H is the one for which the expected
loss (also called risk) is as small as possible, that is, Elh∗ = infh∈H Elh, and we
will assume that such an h∗ exists and is unique. We call F ′ = {lh− lh∗ : h ∈ H}
the excess loss class. Note that all functions in F ′ have a non-negative expecta-
tion, though they can take negative values, and that 0 ∈ F ′.

Empirical risk minimization algorithms are based on the philosophy that it is
possible to approximate the expectation of the loss functions using their empiri-
cal mean, and choose instead of h∗ the function ĥ ∈ H for which 1

n

∑n
i=1 lĥ(xi, yi)

≈ infh∈H
1
n

∑n
i=1 lh(xi, yi). Such a function is called the empirical minimizer.



3

In studying the loss class F we will simplify notation and assume that F
consists of bounded, real-valued functions defined on a measurable set X , that
is, instead of X × Y we only write X . Let X1, . . . , Xn be independent random
variables distributed according to P . For every f ∈ F , we denote by

Pnf = Enf =
1

n

n
∑

i=1

f(Xi), P f = Ef, Rnf =
1

n

n
∑

i=1

σif(Xi),

where Ef is the expectation of the random variable f(X) with respect to P and
σ1, . . . , σn are independent Rademacher random variables, that is, symmetric,
{−1, 1}-valued random variables. We further denote

‖P − Pn‖F = sup
f∈F

|Ef − Enf | , RnF = sup
f∈F

Rnf.

The Rademacher averages of the class F are defined as ERnF , where the ex-
pectation is taken with respect to all random variables Xi and σi. An empirical
version of the Rademacher averages is obtained by conditioning on the sample,

EσRnF = E

(

sup
f∈F

1

n

n
∑

i=1

σif(Xi)

∣

∣

∣

∣

∣

X1, . . . , Xn

)

.

Let

Fr = {f ∈ F : Ef = r}, F n
r1,r2

= {f ∈ F : r1 ≤ Enf ≤ r2}.

For a given sample, denote by f̂ the corresponding empirical risk minimizer,
that is, a function that satisfies: Enf̂ = minf∈F Enf. If the minimum does not

exist, we denote by f̂ ∈ F any ρ-approximate empirical minimizer, which is a
function satisfying

Enf̂ ≤ inf
f∈F

Enf + ρ,

where ρ ≥ 0. Denote the conditional expectation E(f̂(X)|X1, . . . , Xn) by Ef̂ .
In the following we will show that if the class F is star-shaped and the

variance of every function can be bounded by a reasonable function of its ex-
pectation, then the quantity which governs both the structural behaviour of the
class and the error rate of the empirical minimizer is the function

ξn(r) = E sup
f∈Fr

|Ef − Enf | = E ‖P − Pn‖Fr
,

or minor modifications of ξn(r). Observe that this function measures the expecta-
tion of the empirical process ‖P − Pn‖ indexed by the subset Fr. In the classical
result, involving a global complexity measure, the resulting bounds are given in
terms of E ‖P − Pn‖ indexed by the whole set F , and in [10, 15, 13, 2, 9] in terms
of the fixed point of E ‖P − Pn‖ indexed by the subsets {f ∈ F : Ef ≤ r} or
{f ∈ F : Ef2 ≤ r}, which are all larger sets than Fr. For an empirical mini-

mizer, these structural comparisons lead to the estimate that Ef̂ is essentially
bounded by r∗ = inf

{

r : ξn(r) ≤ r
4

}

. This result can be improved further: we
show that the loss of the empirical minimizer is concentrated around the value
s∗ = argmax{ξ′n(r) − r}, where ξ′n(r) = E sup {Ef − Enf : f ∈ Fr}.



4

2 Preliminaries

In order to obtain the desired results we will require some minor structural
assumptions on the class, namely, that F is star-shaped around 0 and satisfies
a Bernstein condition.

Definition 1. We say that F is a (β, B)-Bernstein class with respect to the
probability measure P (where 0 < β ≤ 1 and B ≥ 1), if every f ∈ F satisfies

Ef2 ≤ B(Ef)β .

We say that F has Bernstein type β with respect to P if there is some constant
B for which F is a (β, B)-Bernstein class.

There are many examples of loss classes for which this assumption can be
verified. For example, for nonnegative bounded loss functions, the associated loss
function classes satisfy this property with β = 1. For convex classes of functions
bounded by 1, the associated excess squared-loss class satisfies this property as
well with β = 1, a result that was first shown in [12] and improved and extended
in [16, 3] e.g. to other power types of excess losses.

Definition 2. F is called star-shaped around 0 if for every f ∈ F and 0 ≤ α ≤
1, αf ∈ F .

We can always make a function star-shaped by replacing F with star(F, 0) =
{αf : f ∈ F, 0 ≤ α ≤ 1}. Although F ⊂ star(F, 0), one can show that the
complexity measure ξn(r) does not increase too much. For star-shaped classes,
the function ξn(r)/r is non-increasing, a property which will allow us to estimate
the largest fixed point of ξn(r):

Lemma 1. If F is star-shaped around 0, then for any 0 < r1 < r2,

ξn(r1)

r1
≥ ξn(r2)

r2
.

In particular, if for some α, ξn(r) ≥ αr then for all 0 < r′ ≤ r, ξn(r′) ≥ αr′.

Proof: Fix τ = (X1, ..., Xn) and without loss of generality, suppose that
supf∈Fr2

|Ef − Enf | is attained at f . Then f ′ = r1

r2

f ∈ Fr1
satisfies

|Ef ′ − Enf ′| =
r1

r2
sup

f∈Fr2

|Ef − Enf |.

The tools used in the proofs of this article are mostly concentration inequal-
ities. We first state the main concentration inequality used in this article, which
is a version of Talagrand’s inequality [21, 20, 11].
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Theorem 1. Let F be a class of functions defined on X and set P to be a
probability measure such that for every f ∈ F , ‖f‖∞ ≤ b and Ef = 0. Let
X1, ..., Xn be independent random variables distributed according to P and set
σ2 = n supf∈F var [f ]. Define

Z = sup
f∈F

n
∑

i=1

f(Xi),

Z̄ = sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

f(Xi)

∣

∣

∣

∣

∣

.

Then there is an absolute constant K such that, for every x > 0 and every ρ > 0,
the following holds:

Pr
({

Z ≥ (1 + ρ)EZ + σ
√

Kx + K(1 + ρ−1)bx
})

≤ e−x,

P r
({

Z ≤ (1 − ρ)EZ − σ
√

Kx − K(1 + ρ−1)bx
})

≤ e−x,

and the same inequalities hold for Z̄.

The inequality for Z̄ is due to Massart [14]. The one sided versions were
shown by Rio [19] and Klein [7]. For b = 1, the best estimates on the constants
in all cases are due to Bousquet [6].

Setting Z̄ = ‖P − Pn‖F we obtain the following corollary:

Corollary 1. For any class of functions F , and every x > 0, if

λ ≥ C max

{

E ‖P − Pn‖F , σF

√

x

n
,
bx

n

}

, (1)

where σ2
F = supf∈F var [f ] and b = supf∈F ‖f‖∞, then with probability at least

1 − e−x, every f in F satisfies

|Ef − Enf | ≤ λ.

This global estimate is essentially the result obtained in [8, 1, 18]. It is a worst-
case result in the sense that it holds uniformly over the entire class, but
E ‖P − Pn‖F is a better measure of complexity than the VC-dimension since
it is measure dependent and it is well known that for binary valued classes,
E ‖P − Pn‖F ≤ c

√

V C(F )/n. One way of understanding this result is as a
method to compare the empirical and actual structure on the class additively
up to λ. Condition (1) arises from the two extra terms in Talagrand’s concentra-
tion inequality. The result is sharp since it can be shown that for large enough
n, E ‖P − Pn‖F ≥ σF

√

x/n, and that with high probability ‖P − Pn‖F ≥
cE ‖P − Pn‖F for a suitable absolute constant c, see e.g. [4]. Therefore, asymptot-
ically, the difference of empirical and actual structures in this sense is controlled
by the global quantity E ‖P − Pn‖F , and the error rate obtained using this ap-
proach cannot decay faster than O(1/

√
n). In particular, for any ρ-approximate
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empirical minimizer, if r satisfies the global condition of the theorem, then with
probability at least 1 − e−x, Ef̂ ≤ Enf̂ + ρ + r.

The following symmetrization theorem states that the expectation of
‖P − Pn‖F is upper bounded by the Rademacher averages of F , see for example
[17].

Theorem 2. Let F be a class of functions defined on X , set P to be a probability
measure on X and X1, ..., Xn independent random variables distributed according
to P . Then,

E ‖P − Pn‖F ≤ 2ERnF .

The next lemma, following directly from a theorem in [5], shows that the
Rademacher averages of a class can be upper bounded by the empirical Rade-
macher averages of this class. The following formulation can be found in [2].

Theorem 3. Let F be a class of bounded functions defined on X taking values
in [a, b], P a probability measure on X , and X1, ..., Xn be independent random
variables distributed according to P . Then, for any 0 ≤ α ≤ 1 and x > 0, with
probability at least 1− e−x,

ERnF ≤ 1

1 − α
EσRnF +

(b − a)x

4nα(1 − α)
.

3 Isomorphic coordinate projections

We now introduce a multiplicative (rather than additive, as in Corollary 1)
notion of similarity of the expected and empirical means which characterizes the
fact that, for the given sample, for all functions in the class, |Ef − Enf | is at
most a constant times its expectation.

Definition 3. For τ = (X1, . . . , Xn), we say that the coordinate projection Πτ :
f 7→ (f(X1), . . . , f(Xn)) is an ε-isomorphism if for every f ∈ F ,

(1 − ε)Ef ≤ Enf ≤ (1 + ε)Ef.

We observe that for star-shaped classes, if, for a given sample τ , a coordinate
projection Πτ is an ε-isomorphism on the subset Fr, then the same holds for the
larger set {f ∈ F : Ef ≥ r}.

Lemma 2. Let F be star-shaped around 0 and let τ ∈ X n. For any r > 0 and
0 < ε < 1, the projection Πτ is an ε-isomorphism of Fr if and only if it is an
ε-isomorphism of {f ∈ F : Ef ≥ r}.
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Proof: Let f ∈ F such that Ef = t > r, and since F is star-shaped around
0, g = rf/t ∈ Fr; hence, (1 − ε)Ef ≤ Enf ≤ (1 + ε)Ef if and only if the same
holds for g.

Thus, for star-shaped classes, it suffices to analyze this notion of similarity
on the subsets Fr. The next result, which establishes this fact, follows from
Theorem 1. It states that for every subset Fr , if ξn(r) is slightly smaller than
r then most projections are ε-isomorphisms on Fr (and by Lemma 2 also on
{f ∈ F : Ef ≥ r}). On the other hand, if ξn(r) is slightly larger than r, most
projections are not ε-isomorphisms. Hence, at the value of r for which ξn(r) ∼ r,
there occurs a phase transition: above that point the class is small enough and a
structural result can be obtained. Below the point, the class Fr, which consists
of scaled down versions of all functions {f ∈ F : Ef > r} and “new atoms” with
Ef = r, is too saturated and statistical control becomes impossible.

Theorem 4. There is an absolute constant c for which the following holds. Let
F be a class of functions, such that for every f ∈ F , ‖f‖∞ ≤ b. Assume that F
is a (β, B)-Bernstein class. Suppose r ≥ 0, 0 < ε < 1, and 0 < α < 1 satisfy

r ≥ c max

{

bx

nα2ε
,

(

Bx

nα2ε2

)1/(2−β)
}

.

1. If E ‖P − Pn‖Fr
≥ (1 + α)rε, then

Pr {Πτ is not an ε-isomorphism of Fr} ≥ 1 − e−x.

2. If E ‖P − Pn‖Fr
≤ (1 − α)rε, then

Pr {Πτ is an ε-isomorphism of Fr} ≥ 1 − e−x.

Proof: The proof follows in a straightforward way from Theorem 1. Define Z =
n ‖P − Pn‖Fr

, set σ2 = n supf∈Fr
var [f ] and note that Πτ is an ε-isomorphism

of Fr if and only if Z ≤ εrn.
To prove the first part of our claim, recall that by Theorem 1, for every

ρ, x > 0, with probability larger than 1 − e−x,

Z > (1 − ρ)EZ − σ
√

Kx − K

(

1 +
1

ρ

)

bx.

To ensure that Z > εrn, select ρ = α/(2(1 + α)), and observe that by the
assumption that F is a Bernstein class, it suffices to show that

1

2
αnrε ≥ (BnrβKx)1/2 + K

(

1 +
2(1 + α)

α

)

xb,

which holds by the condition on r.
The second part of the claim also follows from Theorem 1: for every ρ, x > 0,

with probability larger than 1 − e−x,

Z < (1 + ρ)EZ + σ
√

Kx + K

(

1 +
1

ρ

)

bx.
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Choosing ρ = α/(2(1 − α)), we see that Z < nrε if

1

2
αnrε ≥ (BnrβKx)1/2 + K

(

1 +
2(1− α)

α

)

xb,

so the condition on r again suffices.

Corollary 2. Let F be a class of functions bounded by b, which is star-shaped
around 0 and is a (β, B)-Bernstein class. Then there exists an absolute constant
c for which the following holds.If 0 < ε, α < 1, and r, x > 0, satisfy

r ≥ max

{

ξn(r)

(1 − α)ε
, c

bx

nα2ε
, c

(

Bx

nα2ε2

)1/(2−β)
}

, (2)

then with probability at least 1 − e−x, every f ∈ F satisfies

Ef ≤ max

{

Enf

1 − ε
, r

}

.

Proof: The proof follows directly from Theorem 4.

Clearly, Corollary 2 is an improvement on the result in Corollary 1 for most
interesting loss classes, for which 0 < β ≤ 1. The condition (2) allows one to
control the expectation of the empirical minimizer asymptotically up to the scale
O(1/n1/2−β), and for classes with β = 1 even at the best possible scale O(1/n),
as opposed to O(1/

√
n) in Corollary 1. The quantity ξn(r) = E ‖P − Pn‖Fr

is
also an improvement on λ ∼ E ‖P − Pn‖F from Corollary 1, since the supremum
is taken only on the subset Fr which can be much smaller than F .

Corollary 2 also improves the localized results from [2]. In [2] the indexing set
is the set of functions with a small variance, {f ∈ F : Pf 2 ≤ r}, or a sub-root
function upper bounding the empirical process indexed by {f ∈ F : Pf ≤ r}.
The advantage of Corollary 2 is that the indexing set Fr is smaller, and that the
upper bound in terms of the fixed point can be proved without assuming the
sub-root property. The property of ξn(r) in Lemma 1, a “sub-linear” property,
is sufficient to lead to the following estimate on the empirical minimizer:

Theorem 5. Let F be a (β, B)-Bernstein class of functions bounded by b which
is star-shaped around 0. Then there is an absolute constant c such that if

r′ = max

{

inf {r : ξn(r) ≤ r/4} ,
cbx

n
, c

(

Bx

n

)1/(2−β)
}

,

then with probability at least 1−e−x, a ρ-approximate empirical minimizer f̂ ∈ F
satisfies

Ef̂ ≤ max{2ρ, r′}.
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Proof: The proof follows from Corollary 2 by taking ε = α = 1/2 and r = r′. In
particular, Lemma 1 shows that if r′ ≥ inf

{

r : ξn(r) ≤ r
4

}

, then ξn(r′) ≤ r′/4.
Thus, with large probability, if f ∈ F satisfies Ef ≥ r′, then Ef ≤ 2Enf . Since
f̂ is a ρ-approximate empirical minimizer and F is star-shaped at 0, it follows
that Enf̂ ≤ ρ, so either Ef ≤ r′ or Ef ≤ 2ρ, as claimed.

Thus, with high probability, r∗ = inf
{

r : ξn(r) ≤ r
4

}

is an upper bound for

Ef̂ , as long as r∗ ≥ c/n.
This result holds in particular for any empirical minimizer of the excess loss

class if the true minimizer f∗ exists. In this case, 0 ∈ F , and any empirical
minimizer over F is also an empirical minimizer over star(F, 0).

Data-dependent estimation of ξn(r) and r∗

The next question we wish to address is how to estimate the function ξn(r) and
the fixed point

r∗ = inf
{

r : ξn(r) ≤ r

4

}

empirically, in cases where the global complexity of the function class, for exam-
ple the covering numbers or the combinatorial dimension, is not known.

To estimate r∗ we will find an empirically computable function ξ̂n(r) which
is, with high probability, an upper bound for the function ξn(r). Therefore, it

will hold that its fixed point r̂∗ = inf{r : ξ̂n(r) ≤ r
4} is with high probability an

upper bound for r∗. Since ξ̂n(r)/r will be a non-increasing function, we will be
able to determine r̂∗ using a binary search algorithm.

Assume that F is a star-shaped (β, B)-Bernstein class and supf∈F ‖f‖∞ ≤
b. Let τ = (X1, ..., Xn) be a sample, where each Xi is drawn independently
according to P .

From Theorem 4, for α = 1/2, ε = 1/2, if r ≥ c max
{

bx
n ,
(

Bx
n

)1/(2−β)
}

and

ξn(r) ≤ r
4 , then with probability larger than 1− e−x, every f ∈ Fr satisfies that

∀f ∈ Fr : Enf ∈
[

r

2
,
3r

2

]

.

Since F is star-shaped, and by Lemma 1, it holds that ξn(r) ≤ r
4 if and only

if r ≥ r∗. Therefore, if r ≥ max
{

r∗, cbx
n , c

(

Bx
n

)1/(2−β)
}

, then with probability

larger than 1 − e−x, Fr ⊂ F n
r

2
, 3r

2

, which implies that

EσRn (Fr) ≤ EσRn

(

F n
r

2
, 3r

2

)

,

where F n
r1,r2

= {f ∈ F : r1 ≤ Enf ≤ r2}.
By symmetrization (Theorem 2) and concentration of Rademacher averages

around their mean (Theorem 3), it follows that with probability at least 1−2e−x,

ξn(r) ≤ 2ERn(Fr) ≤ 4EσRn(Fr) +
bx

n
≤ 4EσRn

(

F n
r

2
, 3r

2

)

+
r

c
,
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where we used the fact that r ≥ cbx
n (and clearly we can assume that c > 8).

Set

r′ = max

{

r∗,
cbx

n
, c

(

Bx

n

)1/(2−β)
}

, and

R =

{

1

n
,
2

n
, . . . ,

dbne
n

}

∩
[br′nc

n
,
dbne
n

]

.

Applying the union bound, and since |R| ≤ bn + 1, with probability at least

1− 2(bn + 1)e−x, ξn(r) ≤ 4EσRn

(

F n
r

2
, 3r

2

)

+ r
c for every r ∈ R. By Lemma 1, if

r ∈ [k/n, (k + 1)/n], then ξn(r) ≤ ξn

(

k
n

)

nr
k , and thus, with probability at least

1 − 2(bn + 1)e−x, every r ∈ [r′, b] satisfies

ξn(r) ≤ ξn

(

k

n

)

nr

k
≤
(

4EσRn

(

F n
k

2n
, 3k

2n

)

+
k

cn

)

nr

k
≤ 8EσRn

(

F n
c1r,c2r

)

+
r

c
,

where c1, c2 are positive constants. We define therefore

ξ̂n(r) = 8EσRn

(

F n
c1r,c2r

)

+
r

c
.

Then it follows that with probability at least 1 − 2(bn + 1)e−x

∀r ∈ [r′, b] : ξn(r) ≤ ξ̂n(r) .

Let r̂∗ = inf{r : ξ̂n(r) ≤ r
4}, then we know that with probability at least

1− 2(bn + 1)e−x, r̂∗ ≥ r∗. Since ξ̂n(r)/r is non-increasing, it follows that r ≥ r̂∗

if and only if ξ̂n(r) ≤ r
4 .

With this, given a sample of size n, we are ready to state the following
algorithm to estimate the upper bound on r̂∗ based on the data:

Algorithm RSTAR(F , X1, . . . , Xn)

Set rL = 0, rR = b.
If ξ̂n(rR) ≤ rR/4 then

for l = 0 to dlog2 bne
set r = rR−rL

2 ;

if ξ̂n(r) > r/4 then set rL = r,
else set rR = r.

Output r̄ = rR.

By the construction, r̄ − 1
n ≤ r̂∗ ≤ r̄. For every n and every sample, with

probability larger than 1 − 2(bn + 1)e−x, r∗ ≤ r̄.

Theorem 6. Let F be a (β, B)-Bernstein class of functions bounded by b which
is star-shaped around 0. With probability at least 1− (2bn + 3)e−x, a ρ-approxi-

mate empirical minimizer f̂ ∈ F satisfies

Ef̂ ≤ max{2ρ, r′′},
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where

r′′ = max

{

r̄,
cbx

n
, c

(

Bx

n

)1/(2−β)
}

,

and r̄ = RSTAR(F, τ).

RSTAR(F, τ) is essentially the fixed point of the EσRn

(

F n
c1r,c2r

)

. This func-
tion measures the complexity of the function class F n

c1r,c2r which is the subset of
functions having the empirical mean in an interval whose length is proportional
to r. The main difference from the data-dependent estimates in [2] is that instead
of taking the whole empirical ball, here we only measure the complexity of an
empirical “belt” around r, since c1r > 0.

We can tighten this bound further by narrowing the size of the belt by re-
placing the empirical set F n

r/2,3r/2 with F n
r−r/ log n,r+r/ log n. The price we pay is

an extra log n factor.
With the same reasoning as before, by Theorem 4 for α = 1/2, ε = 1/ logn,

and since F is star-shaped, then, if r ≥ max

{

r∗, cbx log n
n , c

(

Bx log2 n
n

)1/(2−β)
}

,

with probability larger than 1 − e−x, Fr ⊂ F n
r−r/ log n,r+r/ log n. We define

ξ̂n(r) =

(

4EσRn

(

F n
k/n−k/(n log n),k/n+k/(n log n)

)

+
k

cn log n

)

n

k
r,

if r ∈ [k/n, (k +1)/n]. Again, with probability at least 1− 2(bn+1)e−x, it holds

that for all r ∈ [r′, b] : ξ(r) ≤ ξ̂n(r), where

r′ = max

{

r∗,
cbx log n

n
, c

(

Bx log2 n

n

)1/(2−β)
}

.

Since ξ̂n(r)/r is non-increasing, we can compute

r̂∗ = inf

{

r : ξ̂n(r) ≤ r

2 log n

}

with a slight modification of RSTAR (we replace the test in the if-clause, ξ̂n(r) >

r/4, with ξ̂n(r) > r/2 log n). For every n and every sample of size n, with prob-
ability larger than 1 − 2(bn + 1)e−x, r∗ ≤ r̄.

4 Direct concentration result for empirical minimizers

In this section we will now show that a direct analysis of the empirical minimizer
leads to sharper estimates than those obtained in the previous section. We will
show that Ef̂ is concentrated around the value s∗ = argmax{ξ′n(r) − r}, where

ξ′n(r) = E sup {Ef − Enf : f ∈ F, Ef = r} .
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To understand why it makes sense to expect that with high probability Ef̂ ∼
s∗, fix one value of r such that ξ′n(s∗) − s∗ > ξ′n(r) − r. Consider a perfect
situation in which one could say that with high probability,

ξ′n(r) ∼ sup {Ef − Enf : f ∈ F, Ef = r} = r − inf {Enf : f ∈ F, Ef = r} .

(Of course, this is not the case, as Talagrand’s inequality contains additional
terms which blow-up as the multiplicative constant represented by ∼ tends to
one; this fact is the crux of the proof.) In that case, it would follow that

− inf {Enf : f ∈ F, Ef = s∗} > − inf {Enf : f ∈ F, Ef = r}

and the empirical minimizer will not be in Fr. In a similar manner, one has to
rule out all other values of r, and to that end we will have to consider a belt
around s∗ rather than s∗ itself.

For ε > 0, define

rε,+ = sup

{

0 ≤ r ≤ b : ξ′n(r) − r ≥ sup
s

(ξ′n(s) − s) − ε

}

,

rε,− = inf

{

0 ≤ r ≤ b : ξ′n(r) − r ≥ sup
s

(ξ′n(s) − s) − ε

}

.

The following theorem is the main result:

Theorem 7. For any c1 > 0, there is a constant c (depending only on c1) such
that the following holds. Let F be a (β, B)-Bernstein class that is star-shaped at
0. Define rε,+, and rε,− as above, and set

r′ = max

{

inf {r : ξ′n(r) ≤ r/4} ,
cb(x + log n)

n
, c

(

B(x + log n)

n

)1/(2−β)
}

.

For 0 < ρ < r′/2, let f̂ denote a ρ-approximate empirical risk minimizer. If

ε ≥ c

(

max

{

sup
s

(ξ′n(s) − s) , r′
β
}

(B + b)(x + log n)

n

)1/2

+ ρ,

then

1. With probability at least 1 − e−x,

Ef̂ ≤ max

{

1

n
, rε,+

}

.

2. If
ξ′n(0, c1/n) < sup

s
(ξ′n(s) − s) − ε,

then with probability at least 1 − e−x,

Ef̂ ≥ rε,−.
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Note that this result is considerably sharper than the bound resulting from
Theorem 5, as long as the function ξ′n(r)− r is not flat. (This corresponds to no
“significant atoms” appearing at a scale below some r0, and thus, for r < r0, Fr

is just a scaled down version of Fr0
; if ξ′n(r) − r is flat, the two bounds will be

of the same order of magnitude.)
Indeed, by Lemma 1, since ξ′n(r)/r is non-increasing,

inf {r : ξ′n(r) ≤ r} ≤ inf
{

r : ξ′n(r) ≤ r

4

}

.

Clearly, ξ′n(r) ≥ 0, since ξ′n(r) ≥ E(Ef − Enf) = 0 for any fixed function,
and thus 0 ≤ s∗ ≤ inf {r : ξ′n(r) ≤ r} ≤ r∗. The same argument shows that if

ξ′n(r)− r is not “flat” then s∗ � r. Now, for β = 1, ε ∼
√

s∗

n � s∗ and rε,+, rε,−

will be of the order of s∗.

5 Discussion

Now, we will give an example which shows that, for any given sample size n, we
can construct a function class and a probability measure such that the bound on
the empirical minimizer differs significantly when using r∗ from Section 3 versus
s∗ from Section 4.

We first prove the existence of two types of function classes, which are both
bounded and Bernstein.

Lemma 3. For every positive integer n and all m ≥ 2(n2 + n), the following
holds. If P is the uniform probability measure on {1, ..., m}, then for every 1

n ≤
λ ≤ 1/2 there exists a function class Gλ such that

1. For every g ∈ Gλ, −1 ≤ g(x) ≤ 1, Eg = λ and Eg2 ≤ 2Eg.
2. For every set τ ⊂ {1, ..., m} with |τ | ≤ n, there is some g ∈ Gλ such that for

every i ∈ τ , g(i) = −1.

Also, there exists a function class Hλ such that

1. For every h ∈ Hλ, 0 ≤ h(x) ≤ 1, Eh = λ.
2. For every set τ ⊂ {1, ..., m} with |τ | ≤ n, there is some h ∈ Hλ such that

for every i ∈ τ , h(i) = 0.

Proof: The proof is constructive. Let J ⊂ {1, ..., m}, |J | = n; for every I ⊂ J
define g = gI,J in the following manner. For i ∈ I , set g(i) = 1, if i ∈ J\I , set
g(i) = −1, and for i 6∈ J put g(i) = t, where

t =
λm + |J\I | − |I |

m − n
.

Observe that if m ≥ n2+2n, then 0 < t ≤ 2λ ≤ 1 for every I, J . By the definition
of t, EgI,J = λ, and

Eg2 =
1

m

(

|I | − |J\I | + t2(m − n) + 2|J\I |
)

≤ Eg +
2|J\I |

m

≤ Eg + 2
n

m
< Eg +

1

n
≤ 2Eg,
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where the last inequality holds because Eg = λ ≥ 1/n, and m ≥ 2n2.
The second property of Gλ is clear by the construction, and the claims re-

garding Hλ can be verified using a similar argument.

Given a sample size n, we can choose a large enough m and the uniform prob-
ability measure P on {1, . . . , m}, and define the function class F = star(F̃ , 0),
where F̃ = H1/4 ∪ G1/n from Lemma 3. F is star-shaped and (1,2) Bernstein.

Theorem 8. If 0 < δ < 1 and n > N0(δ), then for any corresponding F =
star(F̃ , 0) as above, the following holds:

1. For every X1, ..., Xn there is a function f ∈ F with Ef = 1/4 and Enf = 0.
2. For the class F , the function ξ′n satisfies

ξ′n(r) =







(n + 1)r if 0 < r ≤ 1/n,
r if 1/n < r ≤ 1/4,
0 if r > 1/4.

Thus, inf {r > 0 : ξ′n(r) ≤ r/4} = 1/4.

3. If f̂ is a ρ-approximate empirical minimizer, where 0 < ρ < 1/8, then with
probability larger than 1 − δ,

1

n

(

1 − c

√

log n

n
− ρ

)

≤ Ef̂ ≤ 1

n
.

The proof can be found in [4].
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