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Abstract

We study the predictive performance of `1-regularized linear re-
gression in a model-free setting, including the case where the number
of covariates is substantially larger than the sample size. We intro-
duce a new analysis method that avoids the boundedness problems
that typically arise in model-free empirical minimization. Our tech-
nique provides an answer to a conjecture of Greenshtein and Ritov [17]
regarding the “persistence” rate for linear regression and allows us to
prove an oracle inequality for the error of the regularized minimizer. It
also demonstrates that empirical risk minimization gives optimal rates
(up to log factors) of convex aggregation of a set of estimators of a
regression function.

1 Introduction

In this article, we study the problem of linear regression with an `1 regu-
larization. Consider a random pair (X,Y ) ∈ Rd × R of which we have n
independent samples X1, Y1, . . . , Xn, Yn. For a fixed ρ > 0, consider the
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`1-regularized estimate β̂, defined by

β̂ = argmin
β∈Rd

(
1

n

n∑
i=1

(
〈
Xi, β

〉
− Yi)2 + ρn‖β‖`d1

)
. (1.1)

where ρn is a parameter of the problem,
〈
·, ·
〉

denotes the Euclidean inner

product and ‖ · ‖`d1 is the norm ‖x‖`d1 =
∑d

i=1 |xi| on Rd. This is known
as “LASSO” regression and it is often motivated by the fact that it tends
to select solutions β̂ that are sparse [37] (that is, it selects some β̂ ∈ Rd
with considerably fewer than d non-zero coordinates), particularly when
compared with ordinary least squares or with `2-regularized (or “Ridge”)
regression. From a practical point of view, sparsity is desirable because it
allows for fast computation of

〈
X, β̂

〉
on future samples.

In the classical setup, the dimension d is fixed, while the sample size n
grows to infinity. A more modern problem – which will be the focus of this
article – is the behavior of β̂ when its dimension grows with the number of
samples. There are three problems that are typically studied in this setting,
of which we will consider only the first:

1. whether β̂ performs well on future samples (ie. whether E(
〈
X, β̂

〉
−Y )2

is small),

2. whether β̂ closely approximates some “true” parameter β∗ (ie. whether
‖β∗ − β‖ is small with high probability), or

3. whether β̂ correctly identifies the relevant coordinates of some “true,”
sparse parameter β∗ (ie. whether (β∗ = 0) ⇐⇒ (β̂ = 0) with high
probability).

The first of these properties has been studied, for example, in [12, 39, 17, 4, 7,
21, 16] while the latter two are studied in [5, 41, 42, 26, 25, 23, 11, 7, 24, 21].

Note that the second and third questions above both require some notion
of a “true” model, while the first does not necessarily. Nevertheless, most
previous results for the prediction question have assumed underlying models.
For example, Bickel et al [4] prove that, for any ε > 0,

E(
〈
X, β̂

〉
− Y )2 ≤ (1 + ε) inf

β

(
(
〈
X, β̂

〉
− Y )2 +O(n−1 logM‖β‖0)

)
,

provided that (X,Y ) are generated according to a linear model with additive
Gaussian noise and the coordinates of X are, in some sense, very far from
being linearly dependent. In our general setting, we achieve a slower error
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rate of n−1/2, but we do it with an exact oracle inequality (ie. with a constant
of 1 instead of (1 + ε)). Moreover, we don’t require structure on the joint
distribution of X, nor do we need (X,Y ) to follow a linear model with
additive Gaussian noise. Even in the broad generality of our set-up, fast
rates seem to be possible if we allow an approximate oracle inequality as
in [4]: the method that we develop here is used in [22], which contains a
(1 + ε)-oracle inequality with fast rates in a very general case.

A notable exception to this model-based approach is that of van de
Geer [39], which does not assume that the data follow a linear model (and
also contains some further generalizations, like allowing for link functions
and different losses). However, [39] requires a Lipschitz condition on the loss,
which does not hold for linear functions unless the covariates are bounded in
the `2 norm (actually, [39] weakens this somewhat: it is enough for E(Y |X)−〈
X, β̂

〉
to be uniformly bounded). Also, [39] is interested in the sparse case

and so its results are in terms of an explicit sparsity assumption.
Indeed, the problem of unbounded classes of functions (or non-Lipshitz

losses) has traditionally been difficult to handle in model-free results because
some important tools (namely, contraction inequalities and Talagrand’s con-
centration inequality) do not apply. It is possible to work around unbound-
edness by dividing the set of linear functions into a hierarchy of bounded
classes, but the bounds obtained by applying the usual methods to this hi-
erarchy of classes are loose (see [29] for a detailed discussion in a slightly
different setting).

Our main contribution is a model-free method for tackling the prediction
question which mitigates the problems of unboundedness and requires only
mild assumptions. For β ∈ Rd, let `β : Rd × R → R be the function
`β(x, y) = (

〈
x, β

〉
−y)2. Then our main result will be presented as an answer

to a question posed by Greenshtein and Ritov [17] about the persistence rate
of linear regression.

Let (dn)∞n=1 be an increasing sequence, consider a sequence of probability
measures (µn)∞n=1 on Rdn × R and suppose that for every n, one is given n
independent samples (X1, Y1), . . . , (Xn, Yn) drawn according to µn. Fix some
increasing sequence bn and consider, for every n, the empirical minimizer in
bnB

dn
1 = {x ∈ Rdn : ‖x‖

`dn1
≤ bn}:

β̂n = argmin
‖β‖

`
dn
1
≤bn

Pn`β

where Pn is the empirical distribution ofX1, Y1, . . . , Xn, Yn, so that Pn`β(X,Y ) =
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n−1
∑n

i=1(
〈
Xi, β

〉
− Yi)2. The sequence β̂n is called persistent if

P`β̂n(X,Y )− inf
β∈Rdn

P`β(X,Y )→ 0,

in probability, where P denotes the conditional expectation givenX1, Y1, . . . , Xn, Yn,
so that P`β̂n(X,Y ) is a random variable that depends on the data.

Empirical minimization gives a persistent sequence (β̂n) provided that
the sequences (bn) and (dn) do not increase too rapidly. When (dn) is at most
polynomially large in n, Greenshtein and Ritov asked for the most quickly in-
creasing sequence (bn) such that empirical minimization is persistent. Under
some conditions on µn, they showed that one can take bn = o((n/ log(n))1/4).
They also, however, proved persistence for bn = o((n/ log(n))1/2) in the case
of Gaussian measures µn and showed that this was the best possible rate
in the Gaussian case. They asked whether it was possible to improve the
persistence result in the non-Gaussian case under the condition (on the se-
quence µn) that each coordinate of X be bounded almost surely. We answer
this question in the affirmative (up to the power of the logarithm) under
even milder assumptions on µn. In fact, for β̂ = argminβ∈bBd1

Pn`β we will

establish almost sharp estimates (up to the power of the log factor) on the
quantity

P`β̂ − inf
β∈bBd1

P`β

as a function of the radius b, the dimension d and the sample size n. For
example, we will show that if each coordinate of X is subexponential then,
up to poly-logarithmic factors in b, d and n, the error of the empirical
minimizer is bounded by b√

n
(1 + b√

n
). If, moreover, µ is log-concave and

isotropic then, up to poly-logarithmic factors in b, d and n, the error of the
empirical minimizer can also be bounded by b2

n + d
n .

Before stating the result, let us be precise about what we mean by the
“subexponential” condition that was mentioned in the previous paragraph.

Assumption 1.1 For each n, let µn be a probability measure on Rdn × R
such that, if (X,Y ) is distributed according to µn then, for every 1 ≤ i ≤ dn
and every t ≥ 1,

Pr
(
|
〈
X, ei

〉
| ≥ t

)
≤ 2 exp(−ct)

and EY 2 ≤ c, where c is an absolute constant and e1, . . . , ed is the standard
basis in Rd.

Note that the coordinates of X do not need to be either independent or
identically distributed.
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Theorem 1.1 Suppose that (dn) is an increasing sequence and that the se-
quence (µn) satisfies Assumption 1.1. Then empirical minimization is per-
sistent provided that

bn = o

( √
n

log3/2 n · log3/2(ndn)

)
.

Alternatively, suppose |
〈
X, ei

〉
| ≤ C almost surely for every µn and every

1 ≤ i ≤ dn. Then empirical minimization is persistent provided that

bn = o

( √
n

log3/2 n · log1/2(ndn)

)
.

We have made no particular effort to optimize the powers of the loga-
rithms in Theorem 1.1 and we do not believe them to be best possible.

Of course, persistence is not of real practical interest. Given samples
(X1, Y1), . . . , (Xn, Yn) ∈ Rd × R, Theorem 1.1 suggests that we might get a
reasonable estimator by picking some bn �

√
n and doing empirical min-

imization in bnB
d
1 . However, Theorem 1.1 does not tell us whether, for

example, n1/3 is better than n1/4, which is a very important question if we
actually want to find an estimator. Fortunately, results like Theorem 1.1
can be used to study the predictive performance of the LASSO estimator.
In doing so, we have assumed additional regularity (specifically, uniform
boundedness) on the distributions of X and Y . This additional regularity
is very convenient because it allows us to use certain strong concentration
properties. However, it is probably not necessary; we will comment a little
bit more on this matter when it comes time to present the proofs.

Theorem 1.2 There exist absolute constants c and c′ for which the follow-
ing holds. Let (dn)n≥1 be any increasing sequence with log dn = o(n) and
let (µn)n≥1 be a sequence of probability measures on Rdn × R. For n ≥ 1
and taking (X,Y ) distributed according to µn, suppose that each coordinate
of X is bounded almost surely (in absolute value) by M and that |Y | is also
bounded almost surely by M . If we define

ρn = cM2 log3/2 n · log1/2(dnn)√
n

then for all sufficiently large n (depending on dn and M), with probability
at least 1− exp(− log3 n · log(dnn)) the estimator

β̂ = argmin
β∈Rdn

(Pn`β + ρn‖β‖`dn1 ),
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satisfies
P`β̂ ≤ inf

β∈Rdn
(P`β + c′ρn(1 + ‖β‖

`dn1
)).

Remark 1.3 Observe that Theorem 1.2 is an exact oracle inequality. As
the proof of Theorem 1.2 reveals, we can achieve a confidence of 1−exp(−u)
for any u if we include a term of the form u

n‖β‖
2
`dn1

in the regularization and

error terms. It is not clear, however, whether such a term is meaningful or
whether it merely appears as an artifact of our analysis. We chose to present
the theorem in its present form because then the estimator β̂ is exactly the
well-studied LASSO estimator.

Our results also have consequences for the question of optimal aggrega-
tion schemes (see, for example, [38]). Suppose that the coordinates of X
correspond to a dictionary of d functions, and we set bn = 1. Then the
estimator we consider simply minimizes the empirical risk over the convex
hull of this dictionary. Our results show that if, for example, the functions
in the dictionary are uncorrelated and appropriately scaled, then the dis-
tribution of X is isotropic and so the error rate (how much P`β̂n exceeds

inf{P`β : ‖β‖`d1 ≤ 1}) is min

(
d/n,

√
log d
n

)
, up to log factors in d and n.

When d�
√
n, we get the same rate without assuming that the dictionary is

uncorrelated. Tsybakov showed [38] that this rate cannot be improved, and
that a complex estimator that extends ideas of Catoni [9] achieves this rate.
Bunea, Tsybakov and Wegkamp showed [6] that this rate is also achieved by
an estimator that minimizes a weighted `1-penalized least squares criterion,
with data dependent weights. Our results imply that, up to log factors, this
optimal rate is achieved by the simpler estimator that minimizes squared
error over the simplex.

2 Preliminaries

In this section we will present the basic definitions and results that we
require. Throughout, all absolute constants (that is, positive numbers that
are independent of the other parameters of the problem) are denoted by
C,C1, ..., c, c1, etc. Their value may change from line to line.

Let |x| denote the Euclidean norm of x. A subset B of a vector space
is called symmetric if x ∈ B implies that −x ∈ B. For every 1 ≤ p < ∞
and every integer d, ‖ ·‖`dp denotes the norm ‖x‖p

`dp
=
∑
|xi|p (with the usual

extension for p =∞) and Bd
p is its unit ball.
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A significant part of our work will be devoted to the study of the supre-
mum of a stochastic process indexed by a subset of Rd. This is an example
of a rather general idea: to study the supremum of a family of random
variables indexed by a metric space using the metric structure of the set.

Definition 2.1 A process {Zt : t ∈ T} indexed by a metric space (T, d) is
called subgaussian with respect to the metric d if for every x, y ∈ T and every
t ≥ 1

Pr (|Zx − Zy| ≥ td(x, y)) ≤ 2 exp(−t2/2).

For example, given any T ⊂ Rd, the Gaussian and Rademacher processes{
d∑
i=1

gixi : x ∈ T

}
and

{
d∑
i=1

εixi : x ∈ T

}

are subgaussian with respect to the Euclidean metric, where (gi)
d
i=1 are in-

dependent standard Gaussian random variables and (εi)
d
i=1 are independent,

symmetric-{−1, 1} valued random variables.
When a random process {Zt : t ∈ T} is subgaussian with respect to a

metric d, one can use the generic chaining mechanism to control the ran-
dom variable supt∈T |Zt| in terms of metric invariants of the index set. In
particular, we will rely heavily on an entropy integral result. The entropy
integral mechanism was introduced by Dudley [13] and then extended by
Pisier [33] and Talagrand [35]. The bounds we present could be tightened
(by logarithmic factors) by avoiding an entropy integral and bounding Tala-
grand’s γ2 functional directly. For our purposes, however, the gains are not
worth the additional complications involved. We refer the reader to [36] for
an extensive survey of chaining methods and their applications.

Definition 2.2 Let (T, d) be a metric space. Define N(ε, T, d) to be the
smallest number of open balls (with respect to the metric d) needed to cover
T . Define

D(T, d) =

∫ diam(T,d)

0

√
logN(ε, T, d) dε.

Theorem 2.3 [36] There exists an absolute constant c such that for every
metric space (T, d), every subgaussian process {Zt} indexed by T and every
t0 ∈ T ,

E sup
t∈T
|Zt − Zt0 | ≤ cD(T, d).
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The most important processes for us will be empirical processes. Let
F be a class of functions on a probability space (Ω, µ) and let X1, ..., Xn

be distributed according to µ. The empirical process indexed by F is the
collection of Zf = Pnf − Pf = n−1

∑n
i=1 f(Xi) − Ef for each f ∈ F . We

denote
‖Pn − P‖F = sup

f∈F
|Pnf − Pf | .

Unfortunately, an empirical process is not subgaussian under typical as-
sumptions on F and µ. Indeed, by Bernstein’s inequality (e.g. [40]) – which
is sharp is many cases – the typical tail behavior of Pnf − Pf is a mixture
of subgaussian and subexponential tails. One way around this problem is to
use a symmetrization argument, due to Giné and Zinn [14], from which we
obtain a subgaussian process with respect to a random metric.

Theorem 2.4 Let F be a class of functions on (Ω, µ). Then,

E‖Pn − P‖F ≤
2

n
EXEε sup

f∈F

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣ ,
where (εi)

n
i=1 are independent, symmetric {−1, 1}-valued random variables.

Theorem 2.4 implies that estimating the expectation of the supremum of the
empirical process indexed by F is reduced to bounding the expectation of
the supremum of the Rademacher process (which is subgaussian with respect
to the Euclidean norm | · |) indexed by the random coordinate projections

{(f(Xi))
n
i=1 : f ∈ F} .

3 Error rates for linear functionals on Rd

The particular function classes of interest to us are the sets of linear func-
tionals {

〈
t, ·
〉

: t ∈ T}, where T ⊂ Rd is a compact, convex, symmetric set.
In this section, we will develop an estimate on the error of the empirical
minimizer in T , via an “isomorphic” bound, as will be explained below.
This bound, applied to the set T = bBd

1 = {β ∈ Rd : ‖β‖`d1 ≤ b} will yield a

sharp estimate (up to logarithmic factors in b, d and n) on the performance
of the empirical minimization algorithm in bBd

1 .
Let µ be a probability measure on Rd and consider a real-valued random

variable Y . Let T ⊂ Rd be a compact, convex, symmetric set and to each
β ∈ T associate the function fβ =

〈
β, ·
〉

: Rd → R. Recall that our goal is
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to estimate the random variable Y by an element in T (more precisely, by a
function fβ where β ∈ T ) with respect to the squared loss, using empirical
data, which is a random sample (Xi, Yi)

n
i=1 drawn from the joint distribution

of µ and Y .
Set F = {

〈
β, ·
〉

: β ∈ T}, let `(x, y) = (x − y)2 and for every f ∈ F ,
define `f = `(f(X), Y ) to be the squared loss associated with f and Y .

Note that if E‖X‖`d2 < ∞ then F ⊂ L2 is compact and since T is
convex, F is a compact, convex class of functions. By the strict convexity
of the L2(µ) norm, P`f has a unique minimizer in F , and we will denote
it by f∗ = fβ∗ , where β∗ ∈ T (note that β∗ is not unique if the measure µ
is supported on a subspace of Rd; our analysis, however, only requires the
uniqueness of fβ∗). Thus, we can define the excess loss function associated
with f by Lf = `f − `f∗ and the excess loss class

LF = {`f − `f∗ : f ∈ F}.

For the sake of simplicity, we shall sometimes abuse notation and write Lβ
and `β for Lfβ and `fβ , respectively.

Let f̂ be the empirical minimizer

f̂ = argmin
f∈F

Pn`f .

With this notation, our problem is to obtain a high-probability bound on
the conditional expectation

R̂ = E
(
Lf̂ |(Xi, Yi)

n
i=1

)
= PLf̂

as a function of the sample size n.
The function class LF has certain properties that will be used in our

analysis. First of all, for every f ∈ F , PLf ≥ 0 and equality holds only when
f = f∗. The second property we require is more delicate. To formulate it,
define for any λ ≥ 0,

LF,λ = {Lf : PLf ≤ λ}.

Lemma 3.1 Let F ⊂ L2 be a compact, convex set of functions and let LF
be the as above. Then, for any λ > 0

LF,λ ⊂ {Lf : E|f − f∗|2 ≤ λ}.

Lemma 3.1 ensures that if PLf is small then f must be close to the true
minimizer f∗ with respect to the L2(µ) norm.
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This lemma appeared implicitly in several places (see, for example [27],
Cor. 3.4 and [2], Lemma 14) and in more general situations (for example,
loss functions that are uniformly convex rather than the squared loss).

It is well known [3] that one way of obtaining an estimate on the error
of the empirical minimizer is by finding a small λ (that depends on n) such
that with high probability, for every f ∈ F with PLf ≥ λ,

1

2
PLf ≤

1

n

n∑
i=1

Lf (Xi, Yi) ≤
3

2
PLf .

Under such an event, the empirical minimizer must satisfy PLf̂ ≤ λ: if not
then we could conclude from PnLf̂ ≤ 0 that PLf̂ ≤ 0.

One way to find such a λ is to bound E‖Pn − P‖Gλ , where

Gλ = {θLf : f ∈ F, 0 ≤ θ ≤ 1, P (θLf ) = λ}.

Indeed, it was first noted in [3] that if E‖Pn − P‖Gλ ≤ αλ for some 0 <
α < 1 and one has a strong concentration phenomenon for ‖Pn − P‖Gλ
around its expectation then, with high probability, the risk of the empirical
minimizer is at most c(α)λ. In fact, one can obtain the same result without
the strong concentration if one is willing to have confidence that is less than
exponential. Although the proof is essentially a trivial modification of the
proof in [3], it is fairly short and so we include it for completeness.

Theorem 3.2 Define

Gλ = {θLf : f ∈ F, 0 ≤ θ ≤ 1, P (θLf ) = λ} .

If E‖Pn − P‖Gλ ≤ δλ then with probability at least 1− 2δ, PLf̂ ≤ λ.

Proof. By rewriting Gλ as

Gλ = {θLf : 0 ≤ θ ≤ 1, P (θLf ) = λ} =

{
λLf
PLf

: PLf ≥ λ
}
, (3.1)

it is evident that

sup
{Lf :PLf≥λ}

∣∣∣∣PnLf − PLfPLf

∣∣∣∣ =
‖Pn − P‖Gλ

λ
.

By Markov’s inequality, with probability at least 1− 2δ,

‖Pn − P‖Gλ
λ

≤ 1

2δλ
E‖Pn − P‖Gλ ≤

1

2
.
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This gives an isomorphic condition on {Lf : PLf ≥ λ}: by (3.1), with
probability at least 1− 2δ, for all Lf with PLf ≥ λ,

1

2
PLf ≤ PnLf ≤

3

2
PLf .

Since the loss function of the empirical minimizer, Lf̂ , does not satisfy this

inequality (because PnLf̂ ≤ 0), then PLf̂ ≤ λ, as claimed.

Given a class of functions F and a sample σ = (Xi, Yi)
n
i=1, recall that

PσF is the coordinate projection of F onto σ, that is,

PσF = {(f(Xi, Yi))
n
i=1 : f ∈ F} ⊂ Rn.

A key part of our analysis is to bound the Rademacher process indexed by
coordinate projections of LF,λ which, by symmetrization, leads to the desired
bound on E‖Pn−P‖Gλ . Recall that by Höffding’s inequality [20], if A ⊂ Rn
then the Rademacher process indexed by A, given by x 7→

∑n
i=1 εixi = Zx

is subgaussian with respect to the Euclidean metric.
Consider the L2 metric endowed on the parameter space Rd by the co-

variance structure ‖β‖2L2
= E|

〈
X,β

〉
|2 and denote its unit ball by D. Thus,

D = {x ∈ Rd : E|
〈
X,x

〉
|2 ≤ 1}.

The following lemma allows one to control the Rademacher process in-
dexed by PσLF,λ using the distances between the indexing parameters in
T . This overcomes the difficulty arising from the fact that Lfβ is a shift of〈
β, ·
〉2

, which leads to a process that is very different and considerably more
difficult to handle than the one indexed by the linear functionals

〈
β, ·
〉
.

Lemma 3.3 For every σ = (Xi, Yi)
n
i=1 the Rademacher process indexed by

PσLF,λ is subgaussian with respect to the metric d on T , defined by

d(β1, β2) = 4‖β1 − β2‖∞,n

(
sup

v∈
√
λD∩2T

n∑
i=1

〈
Xi, v

〉2
+

n∑
i=1

`f∗(Xi, Yi)

)1/2

(3.2)
where ‖β1 − β2‖∞,n = max1≤i≤n |

〈
Xi, β1 − β2

〉
|.

In other words, d(β1, β2) is the random `∞ distance, multiplied by what
is essentially the empirical `2 diameter of the localized set

√
λD ∩ 2T .

Proof. Denote ‖g‖2`n2 =
∑n

i=1 g
2(Xi, Yi) and observe that for every v, u ∈

Rd,

‖Lu − Lv‖2`n2 = ‖`u − `v‖2`n2 =
n∑
i=1

〈
Xi, u− v

〉2 (〈
Xi, u+ v

〉
− 2Yi

)2
.
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Recall that β∗ ∈ T is an element for which infβ∈T P`fβ is attained. By
Lemma 3.1,

{v ∈ T : Lfv ∈ LF,λ} ⊂ {v ∈ T : ‖v − β∗‖L2 ≤
√
λ} = T ∩ (β∗ +

√
λD)

⊂ β∗ + (2T ∩
√
λD),

where we use the notation a + B = {a + b : b ∈ B}. (Recall that ‖ · ‖L2

is not necessarily the standard Euclidean norm, but rather it is induced by
the distribution of X).

Now, if u, v ∈ T and ‖v − β∗‖L2 , ‖u− β∗‖L2 ≤
√
λ then

(u+ v)/2− β∗ ∈ 2T ∩
√
λD.

Thus, for every Lu,Lv ∈ LF,λ,

‖Lu − Lv‖2`n2 =
n∑
i=1

〈
Xi, u− v

〉2 (〈
Xi, u+ v

〉
− 2Yi

)2
(3.3)

≤ max
1≤i≤n

〈
Xi, u− v

〉2 · 4 n∑
i=1

(〈
Xi,

u+ v

2
− β∗

〉
+
(〈
Xi, β

∗〉− Yi))2

≤ 8‖u− v‖2∞,n

(
sup

t∈2T∩
√
λD

n∑
i=1

〈
Xi, t

〉2
+

n∑
i=1

`β∗(Xi, Yi)

)
,

where the last inequality follows from (a+b)2 ≤ 2a2+2b2. The result follows
from Höffding’s inequality.

The next step is to bound the random diameter(
sup

t∈2T∩
√
λD

n∑
i=1

〈
Xi, t

〉2)1/2

from above using the random `∞ metric. To simplify notation, set for a
given sample (X1, ..., Xn) the random metric

d∞,n(f, g) = max
1≤i≤n

|f(Xi)− g(Xi)|,

and for a class of functions F let

Un(F ) =
(
ED2(F, d∞,n)

)1/2
and σF =

(
sup
f∈F

Ef2(X)

)1/2

.

The following is a result from [18].

12



Theorem 3.4 There exists an absolute constant c for which the following
holds. Let F be a class of functions on (Ω, µ), let X be distributed according
to µ and set X1, . . . , Xn to be independent copies of X. Then,

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f2(Xi)− Pf2(X))

∣∣∣∣∣ ≤ cmax
(√
nσFUn(F ), U2

n(F )
)
. (3.4)

In particular,

E sup
t∈2T∩

√
λD

n∑
i=1

〈
t,Xi

〉2
≤ nλ+ cmax

(√
nλUn(2T ∩

√
λD), U2

n(2T ∩
√
λD)

)
. (3.5)

Thus, the dominating term in the expectation of the worst deviation of
Pnf

2 from the mean Pf2 can be upper bounded in terms of the L2 norm of
the random entropy integral D(2T ∩

√
λD, d∞,n).

The next theorem is the key technical result. In using the notation
Un(K) for a set K ⊆ Rd, we identify K with the class of functions {

〈
x, ·
〉

:
x ∈ K}.

Theorem 3.5 There exists an absolute constant c for which the following
holds. For every convex and symmetric T ⊂ Rd and every λ > 0,

E‖Pn − P‖LF,λ ≤ c
Un(Kλ)√

n
·
(
λ+ P`β∗ +

√
λ
Un(Kλ)√

n
+
U2
n(Kλ)

n

)1/2

,

where Kλ = 2T ∩
√
λD.

Proof. By Theorem 2.4, Lemma 3.1 and the definition of the L2 metric on
Rd endowed by X,

E‖Pn − P‖LF,λ ≤ EEε sup
β∈W

2

n

∣∣∣∣∣
n∑
i=1

εiLfβ (Xi, Yi)

∣∣∣∣∣ = (∗),

where
W = {β ∈ T : ‖β − β∗‖L2 ≤

√
λ} ⊂ β∗ + (2T ∩

√
λD),

recalling that D = {x ∈ Rd : E|
〈
x,X

〉
|2 ≤ 1} and that ‖β‖2L2

= E
〈
β,X

〉2
.

13



By Lemma 3.3, for every fixed sample (Xi, Yi)
n
i=1, this Rademacher pro-

cess is subgaussian with respect to the metric d defined in that lemma. By
Theorem 2.3,

(∗) ≤ c1
n
E

D(β∗ +Kλ, d∞,n)

(
sup
t∈Kλ

n∑
i=1

〈
t,Xi

〉2
+

n∑
i=1

`β∗(Xi, Yi)

)1/2


=
c1
n
E

D(Kλ, d∞,n)

(
sup
t∈Kλ

n∑
i=1

〈
t,Xi

〉2
+

n∑
i=1

`β∗(Xi, Yi)

)1/2
 ,

≤ c1√
n

(
ED2(Kλ, d∞,n)

)1/2 ·(E sup
t∈Kλ

1

n

n∑
i=1

〈
Xi, t

〉2
+ P`β∗

)1/2

,

where the first equality follows because the metric d∞,n is translation in-
variant, and thus D(β∗ +Kλ, d∞,n) = D(Kλ, d∞,n), and the last inequality
is the Cauchy-Schwarz inequality. The claim now follows from (3.5).

Note that the bound that we have established thus far is for E‖Pn −
P‖LF,λ where LF,λ = {Lf : PLf ≤ λ} for any λ > 0. To control E‖Pn−P‖Gλ
we require an additional “peeling” argument, following the same path as in
[28].

To simplify notation, define

φn(λ) =
Un(Kλ)√

n
·
(
λ+ P`β∗ +

√
λ
Un(Kλ)√

n
+
U2
n(Kλ)

n

)1/2

,

where (as before) Kλ = 2T ∩
√
λD.

Theorem 3.6 There exist absolute constants c1, c2 and c3 for which the
following holds. For every λ > 0,

E‖Pn − P‖Gλ ≤ c1
∞∑
i=0

2−iφn(2i+1λ).

In particular, for every λ > 0

E‖Pn − P‖Gλ ≤ c2
Un(T )√

n
·
(
λ+ P`β∗ +

√
λ
Un(T )√

n
+
U2
n(T )

n

)1/2

,

and thus E‖Pn − P‖Gλ ≤ δλ provided that

λ ≥ c3
δ2

max

{
Un(T )√

n

√
P`β∗ ,

U2
n(T )

n

}
.

14



Proof. Observe that for every λ > 0,

Gλ =

{
λLf
PLf

: PLf ≥ λ
}

=

∞⋃
i=0

{
λLf
PLf

: 2iλ ≤ PLf ≤ 2i+1λ

}
.

Hence, setting Hi =
{
λLf
PLf : 2iλ ≤ PLf ≤ 2i+1λ

}
, then

E‖Pn − P‖Gλ ≤
∞∑
i=0

E‖Pn − P‖Hi

≤
∞∑
i=0

2−iE sup
{Lf :2iλ≤PLf≤2i+1λ}

|PnLf − PLf |

≤
∞∑
i=0

2−iE‖Pn − P‖LF,2i+1λ

≤ c1
∞∑
i=0

2−iφn(2i+1λ),

where the last inequality is evident from Theorem 3.5.
The second and third claims follow using the fact that

2T ∩
√

2i+1λD ⊂ 2T

and a straightforward computation.

Combining Theorem 3.2 and Theorem 3.6 with the trivial bound P`β∗ ≤
‖Y ‖2L2

, one obtains an error estimate for the empirical minimization prob-
lem:

Corollary 3.7 There exists an absolute constant c for which the following
holds. Let T ⊂ Rd be as above and take β̂ ∈ T to be the empirical min-
imization estimate. Then, for all 0 < δ ≤ 1/2, with probability at least
1− 2δ,

PLβ̂ ≤
c

δ2
max

{
Un(T )√

n
‖Y ‖L2 ,

U2
n(T )

n

}
.

Thus, to obtain an estimate on the risk of the empirical minimization
algorithm, all that one has to do is to bound Un(T ), which, in the case we
are interested in, is Un(bBd

1).

Remark 3.8 Corollary 3.7 and the second and third parts of Theorem 3.6
follow from the trivial estimate that Kλ ⊂ 2T , which is rather loose unless T
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is very small. The fact that the complexity of the indexing set is governed by
the intersections 2T ∩

√
λD is one of the benefits gained by the localization

argument and becomes more significant the larger T is. For the case that
interests us, when T = bBd

1 , it turns out that for a wide range of choices
of d = d(n) and b = b(n) one may safely replace bBd

1 ∩
√
λD with bBd

1 ,
and bounding Un(bBd

1) is enough to obtain a sharp estimate (up to logarith-
mic factors) in the persistence problem addressed in [17]. However, when
d � n, bBd

1 ∩
√
λD is better approximated by

√
λD, as will be explained in

Section 4.5.

4 Empirical minimization is persistent

From the results of the previous section, it is evident that one can prove
persistence for empirical minimization by bounding ED(bBd

1 ∩
√
λD, d∞,n)2.

In Section 4.1, we bound this quantity using the fact that bBd
1∩
√
λD ⊆ bBd

1 .
In Section 4.2, we bound it using bBd

1 ∩
√
λD ⊆

√
λD, and we combine these

results.
To obtain these bounds, we need some assumption on the probability

distribution µ that gives control of the tails of ‖Xi‖`d∞ . We consider two
examples which provide the control we need. In the first example, the ran-
dom variable ‖X‖`d∞ bounded almost surely, while the second consists of
log-concave and isotropic measures.

Definition 4.1 A measure µ on Rd is called log-concave if for all nonempty
and measurable sets A,B ⊂ Rd and every 0 ≤ λ ≤ 1,

µ(λA+ (1− λ)B) ≥ µλ(A)µ1−λ(B).

A measure µ on Rd is called isotropic if for every θ ∈ Rd with |θ| = 1,

E
〈
X, θ

〉2
= 1,

where X is distributed according to µ.

The main result of this section is that, for either of these two families
(‖X‖`d∞ bounded in L∞ or the distribution of X log-concave and isotropic),
with high probability, the error PLβ̂ of the empirical minimizer is bounded
by an expression that grows as

min

(
b2n
n

+
dn
n
,
bn√
n

(
1 +

bn√
n

))
,

up to a poly-logarithmic factor in n and dn.
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4.1 Error rates from the entropy integral of bBd
1

The idea behind the following result appeared in [18] but we will present a
detailed proof for the sake of completeness.

Lemma 4.2 There exists an absolute constant c for which the following
holds. For every b > 0,

D(bBd
1 , d∞,n) ≤ cbQh(n, d),

where Q = max1≤i≤n ‖Xi‖`d∞ and h(d, n) = log3/2 nmax{log1/2 d, log1/2 n}.

Proof. First, assume that d ≥ n. Fix X1, ..., Xn ∈ Rd and define the
quasi-norm ‖ · ‖Hn by

‖u‖Hn = max
1≤i≤n

|
〈
u,Xi

〉
|.

Let Hn = {u : max1≤i≤n |
〈
u,Xi

〉
| ≤ 1} be the unit ball of ‖ · ‖Hn .

Consider the operator A : `n1 → Rd defined by Aei = Xi and observe that
the number of translates of εHn needed to cover Bd

1 , denoted by N(Bd
1 , εHn),

satisfies
N(Bd

1 , εHn) = N(A∗Bd
1 , εB

n
∞).

Indeed, this is the case because u ∈ Hn if and only if A∗u ∈ Bn
∞.

Recall that for an operator A : X → Y between the normed spaces X
and Y , the `-entropy number of A is given by

e`(A) = inf{ε > 0 : N(ABX , εBY ) ≤ 2`},

where BX and BY are the unit balls in X and Y respectively. By a well
known result of Carl [8], if A : `n1 → `d∞ then for ` ≤ n ≤ d,

e`(A
∗) ≤ c1‖A∗‖`d1→`n∞

(
log(1 + n/`) · log(1 + d/`)

`

)1/2

,

and clearly, ‖A∗‖ = ‖A‖ = max1≤i≤n ‖Xi‖`d∞ ≡ Q.
Therefore, since n ≤ d, then for every

ε > c2Qb

√
log d

n
≡ ε0,

logN(bBd
1 , εHn) ≤ c3

b2Q2 log d · log n

ε2
.
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Using a standard volumetric estimate (see, for example, [34] Chapter 5), for
every ε ≤ ε0

logN(bBd
1 , εHn) ≤ logN(bBd

1 , ε0Hn) + logN(ε0Hn, εHn)

≤ c3
b2Q2

ε20
log d · log n+ n log

(
1 +

ε0
ε

)
≤ c4n

(
log
(

1 +
ε0
ε

)
+ log n

)
.

Also,

sup
v∈bBd1

‖v‖Hn = b max
1≤j≤d

max
1≤i≤n

|
〈
ej , Xi

〉
| = b max

1≤i≤n
‖Xi‖`d∞ = bQ.

Hence,

D(bBd
1 , d∞,n) =

∫ bQ

0

√
logN(bBd

1 , εHn)dε

≤ c6
(∫ ε0

0

√
n log

(
1 +

ε0
ε

)
+

∫ bQ

ε0

bQ
√

log d · log n

ε
dε

)
≤ c7

(√
n log nε0 + bQ

√
log d · log n log

(
bQ

ε0

))
≤ c8bQ

√
log d · (log n)3/2.

as claimed.
If n ≥ d then Bd

1 ⊂ Bn
1 , and one can extend each Xi ∈ Rd to Xi⊕0 ∈ Rn.

Now the bound is as before, but with d replaced by n.

Let us mention that we have made no effort to optimize the dependency
of D on n and d, since our estimates yield a poly-logarithmic dependency in
those parameters. Using a much more delicate approach – a generic chaining
bound rather than an entropy integral – the power of the logarithms can be
reduced (though not completely eliminated). This was done in [19].

We measure the decay of the tails of |
〈
X, ei

〉
| using the Orlicz norm.

Definition 4.3 Let Y be a random variable. For α ≥ 1 define the α-Orlicz
norm of Y by

‖Y ‖ψα = inf

{
C > 0 : E exp

(
|Y |α

Cα

)
≤ 2

}
.
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For basic facts regarding Orlicz norms we refer the reader to [10, 40]. A
well known fact that follows from Borell’s inequality (see, e.g. [30], Appendix
III) is that if µ is log-concave and if X is distributed according to µ, then
for every x ∈ Rd,

‖
〈
X,x

〉
‖ψ1 ≤ c‖

〈
X,x

〉
‖L1 , (4.1)

where c is an absolute constant.

Lemma 4.4 There exists an absolute constant c for which the following
holds. Let µ be a measure on Rd and suppose that X1, ..., Xn are independent
and distributed according to µ. Then(

E max
1≤i≤n

‖Xi‖2`d∞

)1/2

≤ c log(nd) · max
1≤j≤d

‖
〈
X, ej

〉
‖ψ1 .

If µ is log-concave then(
E max

1≤i≤n
‖Xi‖2`d∞

)1/2

≤ c log(nd) · max
1≤j≤d

‖
〈
X, ej

〉
‖L2 ,

and if µ is log-concave and isotropic then(
E max

1≤i≤n
‖Xi‖2`d∞

)1/2

≤ c log(nd).

Proof. A well-known observation due to Pisier (see, e.g. [40]) is that if
Z1, ..., Zm are random variables then

‖ max
1≤i≤m

Zi‖ψ1 ≤ c1 max
1≤i≤m

‖Zi‖ψ1 logm,

where c1 is an absolute constant.
Since Q = max1≤i≤n ‖Xi‖`d∞ = maxi,j |

〈
Xi, ej

〉
| then

‖Q‖L2 ≤ c2‖Q‖ψ1 ≤ c3 log(nd) max
1≤j≤d

‖
〈
X, ej

〉
‖ψ1 .

If µ is log-concave,

max
1≤j≤d

‖
〈
X, ej

〉
‖ψ1 ≤ c4 max

1≤j≤d
‖
〈
X, ej

〉
‖L1 ≤ c4 max

1≤j≤d
‖
〈
X, ej

〉
‖L2 ,

by (4.1) and Jensen’s inequality. If, in addition, µ is isotropic, then

max
1≤j≤d

‖
〈
X, ej

〉
‖L2 = max

1≤j≤d
‖ej‖ = 1.
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We are now ready to formulate the first error rate estimate for T = bBd
1 ,

which follows directly from Lemmas 4.2 and 4.4.

Theorem 4.5 There exists an absolute constant c for which the following
holds. Set h(n, d) = log3/2 n · log3/2(nd) and ρ = max1≤j≤d ‖

〈
X, ej

〉
‖ψ1.

If T = bBd
1 then with probability at least 1−2δ, any empirical minimizer

β̂ satisfies

PLβ̂ ≤
c

δ2
max

{
bhρ√
n
·
√
P`β∗ ,

b2h2ρ2

n

}
. (4.2)

If ‖X‖`d∞ is bounded almost surely by U then (4.2) holds with ρ = cU

and h(n, d) = log3/2 n · log1/2(nd). If X is distributed according to a log-
concave measure then (4.2) holds with ρ = max1≤j≤d ‖

〈
X, ej

〉
‖L2, and if µ

is distributed according to a measure that is both log-concave and isotropic
then (4.2) holds with ρ = 1.

By taking a slowly decreasing sequence δn, Theorem 4.5 immediately
implies Theorem 1.1.

4.2 Error rates from the entropy integral of bBd
1 ∩
√
λD

Theorem 4.5 yields an estimate on the error rate of the empirical minimizer
for each choice of b, d and n, but a careful look at the estimate there shows
that it is suboptimal for certain choices. For example, for fixed values of
b and d that do not grow with n, one would expect an error rate that is
roughly of the order of 1/n rather than 1/

√
n. The reason for that looseness

in Theorem 4.5 comes from its use of the inclusion bBd
1 ∩
√
λD ⊂ bBd

1 .
However, if b and d are constant with respect to n and the distribution of X
is isotropic, then bBd

1 ∩
√
λD = bBd

1 ∩
√
λBd

2 =
√
λBd

2 as long as λ ≤ b2/d.
Hence, if there is any hope that the error rate λn converges to 0 then one
should approximate bBd

1 ∩
√
λBd

2 by
√
λBd

2 rather than by bBd
1 . In this

section, we do this, and combine the result with the result of the previous
section.

Note that the work in this section may not be interesting for the study
of `1-penalized regression, in which the regime d � n may be the more
interesting one. However, the case d < n has implications for aggregation.
As mentioned in the introduction, we can achieve rates of (up to logarithms)
d/n when d < n, a claim which we will prove in this section.

It turns out that for certain cases (e.g. if X is an isotropic, Gaussian
vector) one can prove sharp bounds for the “complexity” of the interpolation
body bBd

1 ∩
√
λD for all values of n, b, d and λ (see [15]). This analysis shows
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that the gap between the exact estimates and the bound given by considering
the two “extreme” cases of bBd

1 and
√
λD is logarithmic in the parameters

b, d and n. Since the analysis of the complexity of the interpolation body
even in the Gaussian case is technically involved and its gains are rather
minimal we shall not present it here.

Our starting point is a modified version of Theorem 3.6. To formulate
it, recall that if T ⊂ Rd and β ∈ T then Lfβ is the excess loss associated
with the parameter β, and Gλ = {λLf/PLf : PLf ≥ λ}.

Theorem 4.6 There exists an absolute constant c for which the following
holds. If

λ ≥ c

δ2
max

{
U2
n(T )

n
,
U2
n(D)

n
P`β∗

}
then E‖Pn − P‖Gλ ≤ δλ. In particular,

PLβ̂ ≤
c

δ2
max

{
U2
n(T )

n
,
U2
n(D)

n
P`β∗

}
with probability at least 1− 2δ.

Proof. Recall that

φn(λ) =
Un(Kλ)√

n
·
(
λ+ P`β∗ +

√
λ
Un(Kλ)√

n
+
U2
n(Kλ)

n

)1/2

,

where Kλ = 2T ∩
√
λD, and that by Theorem 3.6,

E‖Pn − P‖Gλ ≤ c1
∞∑
i=0

2−iφn(2i+1λ).

Setting Ai = Un(K2i+1λ)/
√
n, we have

2−iφn(2i+1λ) ≤
(

2−i
(
Aiλ

1/2 +A
3/2
i λ1/4 +A2

i

)
+ 2−iAi (P`β∗)

1/2
)

≤ 2−i

(
Un(T )√

n
λ1/2 +

(
Un(T )√

n

)3/2

λ1/4 +

(
Un(T )√

n

)2
)

+ 2−i
Un(D)√

n

(
2i+1λP`β∗

)1/2
,

where we used K2i+1λ ⊂ 2(i+1)/2
√
λD for the last term and K2i+1λ ⊂ T for

all the others.
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Summing over i, it is evident that
∑∞

i=0 2−iφn(2i+1λ) is at most

c2

(
Un(T )√

n
λ1/2 +

Un(D)√
n

(λP`β∗)
1/2 +

(
Un(T )√

n

)3/2

λ1/4 +

(
Un(T )√

n

)2
)
.

Therefore, by a straightforward computation, E‖Pn − P‖Gλ is smaller than
δλ provided that

λ ≥ c3
δ2

max

{
U2
n(T )

n
,
U2
n(D)

n
P`β∗

}
.

The second part of the claim is a direct application of Theorem 3.2.

Since we have already bounded Un(T ) for the sets T we are interested

in, it remains to bound Un(D). Note that D = {x ∈ Rd : E
〈
X,x

〉2 ≤ 1}
is an ellipsoid in Rd, as the unit ball of an inner product on Rd defined by
[x, y] = E

〈
X,x

〉〈
X, y

〉
. Thus, D = ABd

2 for a certain linear operator A.
Moreover, if X is a random vector distributed according to µ then A∗X is
an isotropic random vector on Rd. Indeed, whenever |θ| = 1, Aθ is on the
boundary of D, and thus

E
〈
θ,A∗X

〉2
= E

〈
Aθ,X

〉2
= 1.

Lemma 4.7 There is an absolute constant c for which the following holds.
Let X1, ..., Xn ∈ Rd and set Z = max ‖A∗Xi‖`d2 . Then,

D(D, d∞,n) ≤ cZ
√

log n log d.

In particular,
Un(D) ≤ c(EZ2)1/2

√
log n log d.

Proof. Define

Hn = {x ∈ Rd : max
1≤i≤n

|
〈
x,Xi

〉
| ≤ 1},

H ′n = {x ∈ Rd : max
1≤i≤n

|
〈
x,A∗Xi

〉
| ≤ 1},

‖x‖Hn = max
1≤i≤n

|
〈
x,Xi

〉
|,

‖x‖H′n = max
1≤i≤n

|
〈
x,A∗Xi

〉
|.

Again, and at the price of a logarithmic looseness, the proof will be
based on a covering numbers argument. Observe that for every ε > 0,
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N(D, εHn) = N(Bd
2 , εH

′
n). Indeed, ‖Ax‖Hn = ‖x‖H′n and thus the func-

tion A : (Rd, H ′n) → (Rd, Hn) is an isometry, implying that N(D, εHn) =
N(Bd

2 , εH
′
n).

Let G = (g1, ..., gd) ∈ Rd be a Gaussian vector on Rd. By the dual
Sudakov inequality [31],√

logN(Bd
2 , εH

′
n) ≤ c1

E‖G‖H′n
ε

,

and observe that

E‖G‖H′n = E max
1≤i≤n

|
〈
G,A∗Xi

〉
| ≤ c2

√
log nmax ‖A∗Xi‖`d2 .

Fix ε0 = Z
√

log n/
√
d. By a volumetric argument, for ε < ε0,

logN(Bd
2 , εH

′
n) ≤ logN(Bd

2 , ε0H
′
n) + logN(ε0H

′
n, εH

′
n)

≤ c3

(√
log nmax1≤i≤n ‖A∗Xi‖`d2

ε0

)2

+ d log
(

1 +
ε0
ε

)
≤ (c3 + 1)d log

(
1 +

ε0
ε

)
.

Also, supv∈Bd2
‖v‖H′n ≤ max1≤i≤n ‖A∗Xi‖`d2 = Z. Using an entropy integral

argument,

D(D, d∞,n) ≤ c4
(√

d

∫ ε0

0

√
log
(

1 +
ε0
ε

)
dε+ Z

√
log n

∫ Z

ε0

dε

ε

)
≤ c5

(√
dε0 + Z

√
log n log

(
Z

ε0

))
≤ c6Z

√
log n log d.

Combining the two error bounds, the first obtained in the previous
section by using bBd

1 ∩
√
λD ⊆ bBd

1 and the second obtained by using
bBd

1 ∩
√
λD ⊆

√
λD, we obtain an improved error bound for empirical min-

imization.

Corollary 4.8 There is an absolute constant c for which the following holds.
Let h1(n, d) = max{

√
log n,

√
log d} and h2(n, d) = log n log2 d. Set

λ1 =
c

δ2
max

{
b√
n

(
‖Q‖L2h1(log3/2 n)

√
P`β∗

)
,
b2

n

(
h21‖Q‖2L2

log3 n
)}

,

λ2 =
c

δ2
max

{
b2

n

(
‖Q‖2L2

h21 log3 n
)
,
‖Z‖2L2

n
(h2P`β∗)

}
,
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where Z = max1≤i≤n ‖A∗Xi‖`d2 , Q = max1≤i≤n ‖Xi‖`d∞, and A is the linear

operator satisfying D = ABd
2 . Then PLβ̂ ≤ min{λ1, λ2} with probability at

least 1− 2δ.

Let us return to the two families of measures we considered above and for
the sake of simplicity assume in both cases that µ is isotropic (i.e. D = Bd

2).
First, if ‖X‖`d∞ is bounded in L∞ by U then Q ≤ U and Z ≤ U

√
d.

Hence,

λ1 = cmax

{(
U · h1(log3/2 n)P`β∗

) b√
n
,
(
U2 · h21 log3 n

)
· b

2

n

}
,

λ2 = cmax

{(
U2 · h21 log3 n

) b2
n
, (h2P`β∗) ·

d

n

}
.

Therefore, up to a poly-logarithmic factor in n and d, the error rate is

min

{
b2

n
+
d

n
,
b√
n

(
1 +

b√
n

)}
.

Note that this implies that empirical minimization over the simplex gives
the optimal rate for convex aggregation up to log factors, as mentioned in
Section 1.

For the second example, assume that µ is an isotropic, log-concave mea-
sure on Rd. As we showed above, in this case ‖Q‖L2 ≤ c log nd ≤ ch21. To
bound Z in a sharp way, we will use a deep result of Paouris [32]:

Theorem 4.9 There are absolute constants c1 and c2 for which the follow-
ing holds. Let X be distributed according to an isotropic log-concave measure
on Rd. If d ≤ n ≤ exp(c1

√
d) and X1, ..., Xn are independent copies of X

then (
E max

1≤i≤n
‖Xi‖2`d2

)1/2

≤ c2
√
d.

Thus, one obtains an estimate on λ1 and λ2:

λ1 = cmax

{
b√
n

(
h31(log3/2 n)

√
P`β∗

)
,
b2

n

(
h61 · log3 n

)}
,

λ2 = cmax

{
b2

n

(
h61 · log3 n

)
,
d

n
(h2P`β∗)

}
,

Again, the error rate is

min

{
b2

n
+
d

n
,
b√
n

(
1 +

b√
n

)}
up to a poly-logarithmic factor in n and d.
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5 An oracle inequality for error rates

Now that we have good bounds for the complexity of the bodies bBd
1 , we

can prove the oracle inequality (Theorem 1.2) that was mentioned in the
introduction. It is important to note once again that the oracle inequality we
obtain is exact (that is, with constant 1). The price for this exact inequality
is the resulting slow rate of 1/

√
n. However, as shown in [22], our methods

can be used to get an oracle inequality with a leading constant of 1 + ε, and
much faster rates.

Our main result in this section, is that if ‖Xi‖∞ is bounded almost surely
then the LASSO estimator

β̂ = argmin
β∈Rd

(
n∑
i=1

(
〈
β,Xi

〉
− Yi)2 + ρn‖β‖1

)

performs almost as well as the empirical minimizer over bBd
1 for the best

choice of b. For convenience, let us denote the approximation error by

Ad(b) = inf
β∈bBd1

P`β.

Clearly, Ad(b) is a decreasing function of b. In general, we would expect it
to be bounded away from zero, but in very nice cases (for example, if there
is some true noiseless parameter) it might tend to zero as b→∞.

Our analysis of this problem will rely on two ingredients: a model-
selection inequality and an “almost-isomorphic” result that holds with ex-
ponential confidence. The second component will be based on the estimates
we have already established for E‖Pn − P‖Gλ .

The “almost-isomorphic” result we need is very similar to one which first
appeared in [3] and has appeared several times since then.

Theorem 5.1 [29] There exists an absolute constant c for which the fol-
lowing holds. Let LF be a squared loss class associated with a convex class
F and a random variable Y . Set Gλ to be the localization at level λ of the
star-shaped hull of F (that is, Gλ = {θLf : 0 ≤ θ ≤ 1 and θPLf = λ}). If
R = max{supf∈F ‖f‖∞, ‖Y ‖∞} and E‖Pn − P‖Gλ ≤ λ/8, then with proba-
bility at least 1− exp(−u), for every f ∈ F

1

2
PnLf −

λ

2
− c(1 +R2)

u

n
≤ PLf ≤ 2PnLf +

λ

2
+ c(1 +R2)

u

n
.

To apply this theorem in our case, suppose that ‖X‖`d∞ ≤ M and

|Y | ≤ M almost surely. If F = {fβ : β ∈ bBd
1} then supf∈F ‖f‖∞ ≤ bM .
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In particular, max{supf∈F ‖f‖∞, ‖Y ‖∞} ≤ max{1, b}M and we obtain the
following corollary of Theorem 5.1, Theorem 3.6 and Lemma 4.2:

Corollary 5.2 Suppose that X is distributed such that max{‖X‖`d∞ , |Y |} ≤
M almost surely. Then with probability at least 1 − exp(−u), for every
β ∈ bBd

1 ,

1

2
PnLf −

λ

2
− c(1 + b2)

M2u

n
≤ PLf ≤ 2PnLf +

λ

2
+ c(1 + b2)

M2u

n

where

λ = c′M max

{
b
log3/2 n log1/2(dn)

√
Adn(b)√

n
, b2M

log3 n log(dn)

n

}
,

and c, c′ are absolute constants.

For the model selection result that we require, we will first need a few
definitions:

Definition 5.3 Let F be a class of functions and let {Fr; r ≥ 1} be a collec-
tion of subsets of F . We say that {Fr; r ≥ 1} is an ordered, parameterized
hierarchy of F if the following conditions hold:

1. {Fr : r ≥ 1} is monotone (that is, whenever r ≤ s, Fr ⊆ Fs);

2. for every r ≥ 1, there exists a unique element f∗r ∈ Fr such that
P`f∗r = inff∈Fr P`f ;

3. the map r 7→ P`f∗r is continuous;

4. for every r0 ≥ 1,
⋂
r>r0

Fr = Fr0; and

5.
⋃
r≥1 Fr = F .

Define, for f ∈ F ,

r(f) = inf{r ≥ 1; f ∈ Fr}.

Note that from the semi-continuity property of an ordered, parameterized
hierarchy (property 4), it follows that f ∈ Fr(f) for all f ∈ F . Also, the
second property of an ordered, parameterized hierarchy allows us to define,
for r ≥ 1 and f ∈ Fr, the excess loss function Lr,f = (f − Y )2 − (f∗r − Y )2.
That is, Lr,f is the excess loss function with respect to the class Fr.
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One can easily check that Fr = {fβ : ‖β‖1 ≤ r − 1} defines an ordered
parameterized hierarchy of F = {fβ : β ∈ Rd} with r(f) = ‖β‖1 + 1; the
only condition that is not trivial to check is the third condition. A proof
of this fact is given in [29] when Fr is the unit ball of a reproducing kernel
Hilbert space, but the same argument works in our case and so we omit it.

The model selection result we require was established in [1]:

Theorem 5.4 Let {Fr : r ≥ 1} be an ordered, parameterized hierarchy and
define, for convenience, Lf = Lr(f),f . Suppose that ρn(r) is a positive,
increasing, continuous function. If for every f ∈ F ,

1

2
PnLf − ρn(r(f)) ≤ PLf ≤ 2PnLf + ρn(r(f))

then a regularized minimizer

f̂ ∈ argmin
f∈F

(Pn`f + cρn(r(f)))

satisfies
P`f̂ ≤ inf

f∈F

(
P`f + c′ρn(r(f))

)
,

where c and c′ are absolute constants.

Note that the hypothesis in Theorem 5.4 is one that we are prepared
for: it is an “almost-isomorphic” condition of the sort that we obtain from
Theorem 5.1. However, Theorem 5.1 only gives us an almost-isomorphic
condition for each Fr with high probability, while Theorem 5.4 requires
an isomorphic condition for every Fr simultaneously. Fortunately, the ex-
ponential confidence in Theorem 5.1 allows us to apply a union bound to
Theorem 5.4, bringing us to the following result:

Theorem 5.5 Let {Fr : r ≥ 1} be an ordered, parameterized hierarchy and
suppose that ρn(r, x) is a positive, continuous function that is increasing
in both r and x. Suppose that for every r ≥ 1, with probability at least
1− exp(−x), for every f ∈ Fr,

1

2
PnLf − ρn(r, x) ≤ PLf ≤ 2PnLf + ρn(r, x).

Then for every x > 0, with probability at least 1−exp(−x), every regularized
minimizer

f̂ ∈ argmin
f∈F

(Pn`f + c1ρn(2r(f), θ(r(f), x)))
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satisfies
P`f̂ ≤ inf

f∈F
(P`f + c2ρn(2r(f), θ(r(f), x)))

where

θ(r, x) = x+ c3 + c4 log

(
1 +

P`f∗1
ρn(1, x+ c3)

+ log r

)
and c1 through c4 are absolute constants.

Proof. Let (ri)
∞
i=1 be an increasing sequence (to be determined later) such

that r1 = 1 and ri → ∞ as i → ∞. Fix u > 0 and define, for each i ≥ 1,
ui = u+ ln(π2/6) + 2 ln i. Then

∞∑
i=0

e−ui = e−u

and so, by the union bound, with probability at least 1 − e−u, for every
i ≥ 1,

1

2
PnLri,f − ρn(ri, ui) ≤ PLri,f ≤ 2PnLri,f + ρn(ri, ui).

If we only cared about a sequence of ri, this would be enough for our
result. However, we need an almost-isomorphic condition for all r ≥ 1 and
so the next step must be to find an almost-isomorphic condition for Fr when
r ∈ [rj−1, rj ]. In one direction, we have

PLr,f = PLrj ,f − PLrj ,f∗r
≤ 2PnLrj ,f + ρn(rj , uj)− PLrj ,f∗r
= 2PnLr,f + 2PnLrj ,f∗r + ρn(rj , uj)− PLrj ,f∗r
≤ 2PnLr,f + 5ρn(rj , uj) + 3PLrj ,f∗r
≤ 2PnLr,f + 5ρn(rj , uj) + 3PLrj ,f∗rj−1

(5.1)

while in the other direction, we get

2PLr,f = 2PLrj ,f − 2PLrj ,f∗r
≥ PnLrj ,f − 2ρn(rj , uj)− 2PLrj ,f∗r
= PnLr,f + PnLrj ,f∗r − 2ρn(rj , uj)− 2PLrj ,f∗r

≥ PnLr,f −
5

2
ρn(rj , uj)−

3

2
PLrj ,f∗r

≥ PnLr,f −
5

2
ρn(rj , uj)−

3

2
PLrj ,f∗rj−1

(5.2)
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Now we can choose our sequence ri: recall that r1 = 1 and set ri, for all
i ≥ 2, to be the largest number satisfying both

ri ≤ 2ri−1

PLri,f∗ri−1
≤ ρn(ri, ui). (5.3)

Note that choosing the largest number is not a problem because both ρn(r, u)
and PLr,f∗rj−1

are continuous functions of r; that is, the supremum of the

set of r satisfying (5.3) is attained.
Our choice of ri ensures that, for all i ≥ 1,

i ≤
P`f∗r1

ρn(r1, u1)
−

P`f∗ri
ρn(ri, ui)

+ log2(2ri) ≤
P`f∗r1

ρn(r1, u1)
+ log2(2ri). (5.4)

Indeed, for i = 1 this is trivial. For larger i we can proceed by induction: our
definition of ri ensures that either ri = 2ri−1 or P`f∗ri−1

= P`f∗ri
+ ρn(ri, ui).

In the first case, log2 ri = log2 ri−1 + 1 and the inductive step follows. In
the second case, assuming that

i− 1 ≤
P`f∗r1

ρn(r1, u1)
−

P`f∗ri−1

ρn(ri−1, ui−1)
+ log2(2ri−1)

then

i ≤
P`f∗r1

ρn(r1, u1)
−

P`f∗ri−1

ρn(ri−1, ui−1)
+ 1 + log2(2ri)

≤
P`f∗r1

ρn(r1, u1)
−

P`f∗ri−1

ρn(ri, ui)
+ 1 + log2(2ri)

=
P`f∗r1

ρn(r1, u1)
−

P`f∗ri
ρn(ri, ui)

+ log2(2ri)

which proves (5.4) by induction. In particular, for any i ≥ 1 and any r ≥ ri,
ui ≤ θ(r, u). Therefore

ρn(2r, θ(r, u)) ≥ ρn(ri, ui)

for any r ∈ [ri−1, ri].
Note that (5.4) implies that the sequence ri tends to infinity with i.

Then by (5.1), (5.2) and (5.3), with probability at least 1−e−u, for all r ≥ 1
and all f ∈ Fr,

1

2
PnLr,f − 2ρn(2r, θ(r, u)) ≤ PLr,f ≤ 2PnLr,f + 8ρn(2r, θ(r, u)).

We conclude the proof by applying Theorem 5.4.
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Combining this model selection result with our previous estimates on
the complexity of Bd

1 , we obtain an oracle inequality for our problem:

Corollary 5.6 There are absolute constants c and c′ for which the following
holds. Let (dn) be any increasing sequence and let (µn) be a sequence of
measures on Rdn ×R. For every n, for (X,Y ) ∼ µn, assume that ‖X‖

`dn∞
≤

M and |Y | ≤M almost surely. Then for all u > 0, with probability at least
1− exp(−u), for any integer n and any

β̂ ∈ argmin
β∈Rdn

(
Pn`β + ρn(1 + ‖β‖`d1 , u)

)
,

we have
P`β̂ ≤ inf

β∈Rdn

(
P`β + ρn(1 + ‖β‖`d1 , u)

)
where ρn(r, u) ≥ τn(r, u) and

τn(r, u) = c(1 +M) max

{
r

log3/2 n log1/2(dnn)
√
Adn(r)√

n
,

r2M
log3 n log(dnn)

n
, r2M

u

n
,
Mr2 log log r

n

}
.

Proof. With Corollary 5.2 in mind, define

ρn(r, u) = c(1 +M) max

{
r

log3/2 n log1/2(dnn)
√
Adn(r)√

n
,

Mr2
log3 n log(dn)

n
,
Mr2u

n

}
.

By Corollary 5.2, it is evident that ρn satisfies the hypothesis of Theorem 5.5.
To complete the proof, we only need to expand the θ(r, u) function from
Theorem 5.5 and simplify. Indeed, ρn(1, u) ≥ ρn(1, 0) ≥ cM2n−1 and so

P`f∗1
ρ(1, u+ c3)

≤ M2

ρ(1, 0)
≤ cn.

Then θ(r, u) ≤ u+ c(1 + log n+ log log r) and thus,

ρn(r, θ(r, u)) ≤ c(1 +M) max

{
r

log3/2 n log1/2(dnn)
√
Adn(r)√

n
,

r2M
log3 n log(dnn)

n
,
r2Mu

n
,
Mr2 log log r

n

}
= τn(r, u).
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Note that this is not the LASSO-type regularization that we promised.
Indeed, the regularization parameter contains quadratic terms like ‖β‖21 in-
stead of only linear terms like ‖β‖1. In addition, it contains the (unknown)
approximation error Adn(r). Our next and final proof will use the trivial
bound Adn(b) ≤ Adn(0) ≤ ‖Y ‖2L2

to simplify Corollary 5.6 and provide the
promised regularization parameter. First, though, let us briefly discuss the
case in which Adn(b) is, for sufficiently large n and b, zero, which is the case
when there is a true, noiseless parameter for all sufficiently large n. Then
there exists s ∈ R such that for a sufficiently large n,

inf
β∈Rdn

(
P`β + τn(1 + ‖β‖`d1 , u)

)
≤ Adn(s) + τn(s, u)

= cs2(1 +M2) max

{
log3 n log(dnn)

n
,
u

n
,
log log s

n

}
.

If, for example, dn is at most polynomial in n, then one obtains error rates
that are ∼ 1/n up to logarithmic factors in n.

We conclude with a proof of this section’s main result:
Proof of Theorem 1.2. Define

ρ̃n(r, u) = c(1 +M2) max

{
r

log3/2 n log1/2(dnn)√
n

,

r2
log3 n log(dnn)

n
, r2

u

n
,
r2 log log r

n

}
and note that (for an appropriate choice of the absolute constant c) ρ̃n ≥ τn.
Therefore Corollary 5.6 holds with ρn = ρ̃n. To complete the proof, one has
to remove the r2 terms from ρ̃n. To this end, fix u = log3 n log(dnn), and
define

σn(r) = c(1 +M2)r
log3/2 n log1/2(dnn)√

n
,

and

Sn(β) = P`β + cρ̃n(1 + ‖β‖`d1 , u)

Ŝn(β) = Pn`β + c′ρ̃n(1 + ‖β‖`d1 , u)

Tn(β) = P`β + cσn(1 + ‖β‖`d1)

T̂n(β) = Pn`β + c′σn(1 + ‖β‖`d1).

We claim that
argmin
β∈Rdn

Ŝn(β) ⊃ argmin
β∈Rdn

T̂n(β) (5.5)
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and that
inf

β∈Rdn
Sn(β) ≤ inf

β∈Rdn
Tn(β). (5.6)

Observe that if (5.5) and (5.6) hold, then they, together with Corollary 5.6,
imply the desired result, because

argmin(Pn`β + σn(1 + ‖β‖1)) = argmin(Pn`β + σn(‖β‖1)),

as σn(r) is a linear function of r.
Suppose there is some α such that Sn(α) > Tn(α). Then

ρ̃n(1 + ‖α‖1, u) > σn(1 + ‖α‖1),

which implies (setting r = 1 + ‖α‖1 for ease of notation) that

r
log3/2 n log1/2(dnn)√

n
< max

{
r2

log3 n log(dnn)

n
, r2

u

n
, r2 log log r

1

n

}
.

With our choice of u, the first two terms on the right hand side are the same,
and we infer that either

r
log3/2 n log1/2(dnn)√

n
< r2

log3 n log(dnn)

n

or

r
log3/2 n log1/2(dnn)√

n
<
r2 log log r

n
.

In either case, for sufficiently large n,

r
log3/2 n log1/2(dnn)√

n
> 1

Indeed, the first case is immediate and the second case implies that

√
n log

√
n ≤ r log r

and so r ≥
√
n. In particular, Tn(α) ≥ cσn(1 + ‖α‖1) ≥ c(1 +M2). On the

other hand,

inf
β
Tn(β) ≤ Tn(0) ≤M + cσn(1) ≤M + c̃

(1 +M2) log3/2 n log1/2(dnn)√
n

.

Therefore, if log dn = o(n), then infβ Tn(β) ≤ 2M for sufficiently large
n, and thus, Tn(α) > infβ Tn(β), provided that the c in the definition of Tn
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satisfies c > 1. In other words, the only way to come close to the infimum of
Tn(β) is if Sn(β) ≤ Tn(β), which implies that infβ Sn(β) ≤ infβ Tn(β) and
so (5.6) is confirmed.

Suppose we can choose α such that Ŝn(α) > T̂n(α). Then ρ̃n(1 +
‖α‖1, u) > σn(1+‖α‖1), and repeating the previous argument, it follows that
for sufficiently large n (depending only on M and dn), α is not a minimizer of
T̂n. That is, α ∈ argmin T̂n only if T̂n(α) ≥ Ŝn(α). Since T̂n(β) ≤ Ŝn(β) for
every β, then T̂n(α) = Ŝn(α). Hence, α is a minimizer of Ŝn, proving (5.5).
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