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Abstract

We investigate the behavior of the empirical minimization algo-
rithm using various methods. We first analyze it by comparing the
empirical, random, structure and the original one on the class, either
in an additive sense, via the uniform law of large numbers, or in a mul-
tiplicative sense, using isomorphic coordinate projections. We then
show that a direct analysis of the empirical minimization algorithm
yields a significantly better bound, and that the estimates we obtain
are essentially sharp. The method of proof we use is based on Tala-
grand’s concentration inequality for empirical processes.

Keywords: empirical processes, error bounds, isomorphic coordinate projec-
tions, empirical minimization.

1 Introduction

Let F be a class of real-valued functions defined on a set X , and suppose
that X1, . . . , Xn, X ∈ X are independent and identically distributed. An
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empirical minimizer f̂ ∈ F is a function that minimizes

Enf =
1
n

n∑
i=1

f(Xi).

In case no such minimum exists, we consider ρ-approximate empirical min-
imizers, which are functions f̂ ∈ F satisfying

Enf̂ ≤ inf
f∈F

Enf + ρ,

where ρ ≥ 0.
In this article, we study the expectation of the empirical minimizer,

defined as
E
[
f̂(X)|X1, . . . , Xn

]
,

and for brevity, we write this conditional expectation as Ef̂ . For reasons
that will be made clear immediately, it is natural to assume that for every
f ∈ F , Ef ≥ 0, although functions in F can take negative values.

The study of bounds on Ef̂ that hold with high probability arises in
many applied areas, including the analysis of randomized optimization meth-
ods involving Monte Carlo estimates of integrals, and prediction problems
that arise in machine learning and nonparametric statistics. We focus on
the latter motivation here: Suppose that a learning algorithm is presented
with a sequence of observation-outcome pairs (x, y) ∈ X × Y, and the aim
is to choose a function g : X → Y that accurately predicts the outcome
given the observation. We assume that (X, Y ), (X1, Y1), . . . , (Xn, Yn) are
chosen independently from a probability distribution P on X × Y, but P
is unknown. The difference between the true outcome and the prediction
is measured using a loss function, ` : Y2 → [0, 1], where `(ŷ, y) represents
the cost incurred by predicting ŷ when the true outcome is y. The risk of
a function g : X → Y is defined as E`(g(X), Y ), and the aim is to use the
sequence (X1, Y1), . . . , (Xn, Yn) to choose a function g with minimal risk.
For f(x, y) = `(g(x), y), this task corresponds to minimizing Ef . In empir-
ical risk minimization, one chooses g from a set G to minimize the sample
average of `(g(x), y), which corresponds to choosing f ∈ F to minimize Enf ,
where F = {(x, y) 7→ `(g(x), y) : g ∈ G}. More frequently, we are concerned
with excess loss functions,

f(x, y) = `(g(x), y)− `(g∗(x), y),

where g∗ ∈ G satisfies E`(g∗(X), Y ) = infg∈G E`(g(X), Y ). Since g∗ is
fixed, choosing g ∈ G to minimize risk (respectively, empirical risk) again
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corresponds to choosing f ∈ F to minimize Ef (respectively, Enf), where

F = {(x, y) 7→ `(g(x), y)− `(g∗(x), y) : g ∈ G} .

Notice that Ef ≥ 0 for all f ∈ F , but functions in F can take negative
values. Indeed, the case of functions that can be negative is prevalent; if ` is
a metric and for each x, y there is a g ∈ G with g(x) = y, the assumption that
every f ∈ F is nonnegative corresponds to assuming that Y = g∗(X) almost
surely. The existence of such a g∗ is typically an unreasonable assumption
about the probability distribution P , even more so that this function is in
the class G.

For most of the remainder of the paper, we ignore the underlying Y-
valued class G, and consider classes F of uniformly bounded real functions.
The following lemma shows that, under mild conditions, such a class corre-
sponds to an excess loss class. The proof is presented in the appendix.

Lemma 1.1 Suppose that (X ,F) is a measurable space, F ⊆ [−1, 1]X is a
set of measurable functions, 0 ∈ F , and x 7→ inf{f(x) : f ∈ F} is mea-
surable. Suppose also that ` : Y2 → R+ is such that for some y0 ∈ Y,
{`(y, y0) : y ∈ Y} contains a closed interval of length sup{f1(x) − f2(x) :
x ∈ X , f1, f2 ∈ F}. Then there is a class G ⊆ YX and a function g∗ ∈ G
for which

F = {x 7→ `(g(x), y0)− `(g∗(x), y0) : g ∈ G}

and x 7→ `(g(x), y0) is measurable for each g ∈ G. Thus, if the distribution
of X is such that Ef ≥ 0 for all f ∈ F , then g∗ ∈ G minimizes E`(g(X), y0)
and F is the excess loss class for G.

One case in which Lemma 1.1 clearly applies is when Y = [−1, 1] and
`(y, y0) = (y − y0)2 when one takes y0 = 0. Thus, subject to mild measura-
bility assumptions, every class of functions bounded by 1 with a nonnegative
expectation is a squared excess loss of some class G.

We consider several approaches to estimating the expectation of the em-
pirical minimizer, all of which depend on expectations of the following cen-
tered empirical processes, indexed by certain subsets of F .

ξn(r1, r2) = E sup {Ef − Enf : f ∈ F, r1 ≤ Ef < r2} ,

ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r} .

The first two approaches are based on the ability to relate the empirical
(random) structure endowed on F by the measure Pn = n−1

∑n
i=1 δXi with
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the real one, endowed by µ. In the classical approach, which involves a
uniform law of large numbers argument, one estimates the “worst deviation”
of Ef from Enf over the entire class. It is possible to show that typically
the dominant term in the upper bound for Ef̂ is in this case

sup {r > 0 : ξn(0, 1)− r ≥ 0} . (1.1)

Essentially equivalent results were presented in [11, 1, 20].
If the class F satisfies an additional regularity condition (namely that it is

star-shaped around zero—see Section 2.2 for the definition) and if variances
of functions in F are bounded by their expectations, then this result can be
improved. Indeed, one can show that for 0 < ε < 1, with high probability
(which depends on ε), for a “large portion” of F , which contains the functions
with “large expectations”,

(1− ε)Enf ≤ Ef ≤ (1 + ε)Enf.

Note that this notion of similarity is multiplicative, and means that, for a
large subset of F , the empirical and actual structures are equivalent, in the
sense that a random coordinate projection of that portion of F preserves
the L1 structure. In this case, the dominant term in the estimate on Ef̂
becomes

sup {r > 0 : ξn(r)− θr ≥ 0}

for some 0 < θ < 1.
This is an improvement on the estimate (1.1) (that is, on ξn(0, 1)). In-

deed, it is possible to show under the star-shape assumption on F the the
sets A = {r ≥ 0 : ξn(r) ≥ θr} and B = {r ≥ 0 : ξn(0, r) ≥ θr} are intervals
containing 0 (see Lemma 2.10). Denote by a∗ = supA and b∗ = supB and
observe that, a∗ ≤ b∗, without loss of generality, b∗ > 0 and (again, by lemma
2.10), ξn(0, r) is continuous and monotone. Thus, ξn(0, b∗) = θb∗, implying
that θb∗ ≤ θξn(0, b∗) ≤ ξn(0, 1), and in particular, that θa∗ ≤ ξn(0, 1).

This estimate also improves earlier related error bounds from [18, 19, 12,
2, 16]. In particular, the function ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r}
that appears in our bound is replaced in these earlier results by various
upper bounds on the larger function E sup

{
Ef − Enf : f ∈ F, Ef2 ≤ r

}
. It

is important to emphasize that the bound obtained in Section 2.2 using
the indexing set {f : Ef = r} is significantly sharper than any bound that
could be established using the localization {f : Ef2 ≤ r}, and can lead to
improved convergence rates in some examples. The reason is that the latter
set can be much larger than the former for small values of r. Moreover,
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in some applications (see, for example, [22]), the fact that the indexing set
is determined by the expectation rather than the second moment plays an
integral part in obtaining the error bound for a squared loss class.

The same comments apply in comparison with convergence rate results
for M-estimators in terms of a fixed point of the modulus of continuity of
the relevant empirical process (see [26, 29, 28, 27]).

The proof of the error bound in Section 2.2 is surprisingly simple (partic-
ularly in light of the considerable effort required for the proofs of the results
it improves), and is based on a ratio limit theorem type of argument. Al-
though the ratio limit theorem we prove is new and could have implications
in other areas of mathematics (e.g. various embedding problems in the local
theory of normed spaces), it is close in nature to other ratio limit theorems
[7, 13]. The main novelty is the way in which the ratio limit theorem, com-
bined with the mild structural assumptions on F , yield the required bound
on Ef̂ , which is the optimal estimate one can obtain using this strategy.

It turns out that the latter estimate can be improved even further, using
a direct analysis of the empirical minimization algorithm, rather than by
means of a structural result which holds for every function in the class. We
show that the dominant term in the upper bound on Ef̂ is, roughly,

arg max
r>0

(ξn(r)− r) ,

and that this bound is essentially sharp. Moreover, it significantly improves
the structural estimates. To that end, we present an example where the
upper bound decreases from 1/4 using the structural approach to 1/n using
the direct analysis.

1.1 Concentration inequalities

In this section we present the concentration inequalities we require. The
first is Bernstein’s inequality (see, for example, [29]).

Theorem 1.2 Let P be a probability measure on X and set X1, ..., Xn to be
independent random variables distributed according to P . Given a function
f : X → R, set Z =

∑n
i=1 f(Xi), let b = ‖f‖∞ and put σ2 = nEf2. Then

Pr {|Z − EZ| ≥ x} ≤ 2 exp
(
− x2

2(σ2 + bx/3)

)
.

The second concentration result is a functional version of Bernstein’s
inequality, due to Talagrand [25, 14]. The random variable Z defined by a
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single function in Bernstein’s inequality becomes the supremum of a centered
empirical process.

Theorem 1.3 Let F be a class of functions defined on X and set P to be
a probability measure such that for every f ∈ F , ‖f‖∞ ≤ b and Ef = 0. Let
X1, ..., Xn be independent random variables distributed according to P and
set σ2 = n supf∈F var [f ]. Define

Z = sup
f∈F

n∑
i=1

f(Xi),

Z̄ = sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣∣ .
Then, for every x > 0,

Pr ({|Z − EZ| ≥ x}) ≤ C exp
(
− x

Kb
log
(

1 +
bx

σ2 + bEZ̄

))
, (1.2)

where C and K are absolute constants. The same inequality is also true
when Z̄ replaces Z in (1.2).

In most of the applications we explore, it is easier to use the following
version of Talagrand’s inequality.

Theorem 1.4 There is an absolute constant K for which the following
holds. Let F , Z and Z̄ be as in Theorem 1.3. Then, for every x > 0
and every α > 0,

Pr
({

Z ≥ (1 + α)EZ + σ
√

Kx + K(1 + α−1)bx
})

≤ e−x,

P r
({

Z ≤ (1− α)EZ − σ
√

Kx−K(1 + α−1)bx
})

≤ e−x,

and the same inequalities hold for Z̄.

The inequality for Z̄ is due to Massart [17]. The one sided versions were
shown by Rio [24] and Klein [10]. The best estimates on the constants in
all cases are due to Bousquet [5].

Finally, a notational convention. All absolute constants are positive
numbers, which will be denoted by C, c,K, k. Their values may change from
line to line.
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2 Comparing the empirical and actual structures

In this section we investigate various notions of similarity and conditions
which ensure that with high probability, the empirical and the actual struc-
tures on a class (that is, the expectations and empirical means) are suffi-
ciently close. This is important from our point of view because, when the
two structures are comparable, an empirical minimizer must have a small
expectation.

2.1 The uniform law of large numbers

The first notion of similarity we explore is based on the uniform law of large
numbers. Recall that a class of functions F satisfies the uniform law of large
numbers with respect to a probability measure P if, for every ε > 0,

lim
n→∞

Pr ({‖P − Pn‖F ≥ ε}) = 0,

where

‖P − Pn‖F = sup
f∈F

|Ef − Enf | ,

Enf =
1
n

n∑
i=1

f(Xi),

X1, ..., Xn are independent random variables distributed according to P , and
Pn = n−1

∑n
i=1 δXi , which is the empirical measure supported on X1, ..., Xn.

This leads to the first notion of similarity between the empirical and
actual structures.

Definition 2.1 Given an integer n and a probability measure P , we say
that the empirical and actual structures on F are (λ, δ)-close if

Pr ({‖P − Pn‖F ≥ λ}) ≤ δ.

In this case, the measure of similarity is additive, uniformly on the entire
class. Observe that if 0 ∈ F , the empirical and actual structures are (λ, δ)-
close, and f satisfies Enf ≤ inff∈F Enf + ρ, then with probability at least
1 − δ, Ef ≤ λ + ρ. In particular, if f̂ is an empirical minimizer then with
probability larger than 1− δ, Ef̂ ≤ λ.

The following results reveal the benefits and limitations of this notion
of similarity. Although they are not new, we present them for the sake of
completeness.
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Theorem 2.2 There exists an absolute constant C for which the following
holds. For any class of functions F , and every 0 < δ < 1, the empirical and
actual structures are (λn, δ) close, provided that

λn ≥ C max

{
E ‖P − Pn‖F , σF

√
log(1/δ)

n
,
b log(1/δ)

n

}
,

where σ2
F = supf∈F var [f ] and b = supf∈F ‖f‖∞.

The proof of this claim follows immediately from Theorem 1.4, and is
omitted.

The following theorem shows that the estimates in Theorem 2.2 cannot
be improved by more than a constant factor, unless n is small.

Theorem 2.3 There are absolute constants c, c′ and C for which the fol-
lowing holds. Let F be a class of functions satisfying supf∈F ‖f‖∞ ≤ 1 and
set σ2

F = supf∈F var [f ]. Then,

E ‖P − Pn‖F ≥ c
σF√

n
.

Furthermore, for every integer n ≥ 1/σ2
F , with probability at least c′,

‖P − Pn‖F ≥ CE ‖P − Pn‖F .

Theorem 2.3 is most likely not new, but we could not locate an appro-
priate reference. We include the proof in the appendix.

These upper and lower bounds clearly reveal the limitation of this notion
of similarity. Even for “very small” classes, one cannot hope to have λn

decay to 0 faster than O(1/
√

n), while for larger classes, the dominating
term becomes the “global” average E ‖P − Pn‖F . In particular, it would be
impossible to use this notion of similarity to obtain an asymptotic result
stronger than Ef̂ ≤ 1/

√
n with high probability.

As an example (which is also well known), consider a class of binary-
valued functions which has a finite Vapnik-Chervonenkis dimension (see [30]).

Lemma 2.4 There exist absolute constants C and c for which the following
holds. Let F be a class of {0, 1}-valued functions, such that vc(F ) ≤ d.
Then for any probability measure and every integer n,

E ‖P − Pn‖F ≤ C

√
d

n
,
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In particular, for every probability measure P , the empirical and actual
structures are (λn, δ)-close, provided that

λn ≥ C max

{√
d

n
,

√
log(1/δ)

n

}
.

On the other hand, for any two integers n and d, there exists a probability
measure P for which

E ‖P − Pn‖F ≥ cmin

{√
d

n
, 1

}
.

The proof of Lemma 2.4 is standard and thus omitted.
Finally, notice that E‖P − Pn‖F = ξn(0, 1) for supf∈F ‖f‖∞ ≤ 1. To

conclude, this notion of similarity involves bounding E ‖P − Pn‖F . No sig-
nificant structural assumptions (other than an L∞ bound on the elements
of F ) are required, and the empirical and actual structures are “close” on
the entire class. Unfortunately, λn cannot decrease faster than 1/

√
n, which

limits the usefulness of this approach to estimate Ef̂ .

2.2 Isomorphic coordinate projections

Here, we focus on a slightly different notion of similarity of the empirical
and actual structures. The question we investigate is when “most” random
coordinate projections are isomorphisms.

Definition 2.5 For τ = (X1, . . . , Xn), we say that the coordinate projection
Πτ : f 7→ (f(X1), . . . , f(Xn)) is an ε-isomorphism if for every f ∈ F ,

(1− ε)Ef ≤ Enf ≤ (1 + ε)Ef.

The reason for the name ε-isomorphism is that if F = {|g1−g2| : g ∈ G},
then Πτ is an ε-isomorphism if and only if

(1− ε)‖f‖L1(P ) ≤ ‖Πτf‖Ln
1
≤ (1 + ε)‖f‖L1(P ),

and thus the random projection Πτ : (G, L1 (P )) → (G, Ln
1 ) is a bi-Lipschitz

function.
Observe that Πτ is an ε-isomorphism on F in the sense of Definition 2.5

if and only if the same holds for the linear span of F .
In order to ensure that a coordinate projection is a good isomorphism

for a single function, the “mass” of the function must be more-or-less evenly
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spread on the space (Ω, P ). To that end, it suffices to have a lower bound on
the expectation of the function (total mass) and an upper bound on, say, the
L∞ norm of the function. Thus, the mass can not be concentrated on “few”
atoms in Ω and a random choice of coordinates is a good representation of the
function. The use of a random coordinate projection approach for individual
functions is common in asymptotic geometry, most notably, in the context
of embedding finite dimensional subspaces of Lp in `n

p (see [9] and references
therein). Here, we establish a similar bound that holds uniformly over a set
of functions and not just for an individual function. More significantly, we
use this approach to obtain an improved error bound with a simple proof.

It turns out that while most projections are not ε-isomorphisms for
the entire class F in the sense of Definition 2.5, most projections are ε-
isomorphisms for a large portion of F , which suffices for our investigation.

We make three mild structural assumptions about the class. The first, as
in the previous section, is the assumption that functions in F are bounded
by b. The second is that the class F is star-shaped around 0, that is, for
every 0 ≤ a ≤ 1 and any f ∈ F , af ∈ F . For the third assumption we
require the following definition.

Definition 2.6 We say that F is a (β, B)-Bernstein class with respect to
the probability measure P (where 0 < β ≤ 1 and B ≥ 1), if every f in F
satisfies

Ef2 ≤ B(Ef)β.

We say that F has Bernstein type β with respect to P if there is some
constant B for which F is a (β, B)-Bernstein class.

Observe that if f belongs to a Bernstein class then Ef ≥ 0. The name
“Bernstein class” arises because this property allows better concentration,
and thus a faster rate of convergence via “function class” generalizations
of Bernstein’s inequality. Obviously, if F consists of nonnegative func-
tions bounded by b then F is a (1, b)-Bernstein class with respect to any
probability measure. One such example is when F is a loss class, that is,
F = {(x, y) 7→ `(g(x), y) : g ∈ G} for some function ` : R2 → [0,∞) satisfy-
ing supf∈F ‖f‖∞ = b < ∞. In fact, many loss classes that do not consist
of nonnegative functions have similar properties. For example, let G be a
convex class of functions bounded by 1. Let ` : R × Y → [0, 1] be a loss
function for which, for some constants L, c, r, and for all y ∈ Y, the function
ŷ 7→ `(ŷ, y) is L-Lipschitz and has modulus of convexity satisfying δ(ε) ≥ cεr.
Here, the modulus of convexity of a function f : R → R is defined as

δ(ε) = inf {(f(x) + f(y))/2− f((x + y)/2) : |x− y| ≥ ε} .
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Recall that for a probability distribution P on X×Y, g∗ ∈ G is the minimizer
of E`(g(X), Y ), and the excess loss class is defined by

F = {(x, y) 7→ `(g(x), y)− `(g∗(x), y) : g ∈ G} .

Then F is a β-Bernstein class, with β = min{1, 2/r}. This is true, in
particular, for `(ŷ, y) = (y− ŷ)p, where β = 1 for 1 ≤ p ≤ 2 and β = 2/p for
2 < p < ∞. See [15, 19, 23, 3].

Theorem 2.7 There is an absolute constant c for which the following holds.
Let F be a class of functions, such that for every f ∈ F , Ef = λ and
‖f‖∞ ≤ b. Assume that F is a (β, B)-Bernstein class, and suppose that
0 < ε < 1 and 0 < θ < 1 satisfy

λ ≥ cmax

{
bx

nθ2ε
,

(
Bx

nθ2ε2

)1/(2−β)
}

.

1. If E ‖P − Pn‖F ≥ (1 + θ)λε, then

Pr {Πτ is not an ε-isomorphism of F} ≥ 1− e−x.

2. If E ‖P − Pn‖F ≤ (1− θ)λε, then

Pr {Πτ is an ε-isomorphism of F} ≥ 1− e−x.

For example, if F consists of nonnegative functions bounded by 1, then
β = 1 and b = B = 1, and the condition on λ becomes

λ ≥ x

nθ2ε2
.

Proof: The proof follows in a straightforward way from Theorem 1.4.
Define Z = n ‖P − Pn‖F , set σ2 = n supf∈F var [f ] and note that Πτ is an
ε-isomorphism of F if and only if Z ≤ ελn.

To prove the first part of our claim, recall that by Theorem 1.4, for every
α, x > 0, with probability larger than 1− e−x,

Z > (1− α)EZ − σ
√

Kx−K

(
1 +

1
α

)
bx.

To ensure that Z > ελn, select α = θ/(2(1 + θ)), and observe that by the
assumption that F is a Bernstein class, it suffices to show that

1
2
θnλε ≥ (BnλβKx)1/2 + K

(
1 +

2(1 + θ)
θ

)
xb,
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which holds by the condition on λ.
The second part of the claim also follows from Theorem 1.4: for every

α, x > 0, with probability larger than 1− e−x,

Z < (1 + α)EZ + σ
√

Kx + K

(
1 +

1
α

)
bx.

Choosing α = θ/(2(1− θ)), we see that Z < nλε if

1
2
θnλε ≥ (BnλβKx)1/2 + K

(
1 +

2(1− θ)
θ

)
xb,

so the condition on λ again suffices.

Next, let us turn to a similar result, without the assumption that all
class members have the same expectation. From here on, denote Fλ = {f ∈
F : Ef = λ}. The assumption that F is star-shaped around 0 ensures
that the sets Fλ become “richer” as λ approaches 0. As our results show,
there is a critical value of λ below which the sets Fλ are too rich to allow a
comparison between the empirical and actual structures. In the next lemma
we show that if one can control the structures on the set Fλ, it automatically
guarantees the same for {f ∈ F : Ef ≥ λ}.

Lemma 2.8 Let F be star-shaped around 0 and let τ ∈ X n. For any λ > 0
and 0 < ε < 1, the projection Πτ is an ε-isomorphism of Fλ if and only if it
is an ε-isomorphism of {f ∈ F : Ef ≥ λ}.

Proof: It suffices to show that if Πτ is an ε-isomorphism of Fλ, then the
same holds on {f ∈ F : Ef ≥ λ}. To that end, observe that if Ef = t > λ,
and since F is star-shaped around 0, g = λf/t ∈ Fλ; hence, (1 − ε)Ef ≤
Enf ≤ (1 + ε)Ef if and only if the same holds for g.

From this result one easily obtains the following error bound:

Corollary 2.9 Let F be a class of functions bounded by b, which is star-
shaped around 0 and is a (β, B)-Bernstein class. For 0 < ε, λ, θ < 1 and
x > 0, if

λ ≥ cmax

{
bx

nθ2ε
,

(
Bx

nθ2ε2

)1/(2−β)
}

,

and E ‖P − Pn‖Fλ
≤ (1− θ)λε, then with probability at least 1− e−x, every

f ∈ F satisfies

Ef ≤ max
{

Enf

1− ε
, λ

}
.
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Proof: By our assumption on E ‖P − Pn‖Fλ
and λ, Theorem 2.7 implies

that, with “large” probability, (1 − ε)Ef ≤ Enf ≤ (1 + ε)Ef , for every
f ∈ Fλ. By Lemma 2.8, the same is true for every f ∈ F that satisfies
Ef ≥ λ.

Let us present a similar “one sided” result, which will be used later.
Define

ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r}
= E sup {Ef − Enf : f ∈ Fr} .

Lemma 2.10 If F is star-shaped at 0, then for 0 < α, λ < 1,

ξn(αλ) ≥ αξn(λ).

In particular, if αλ ≤ ξn(λ) then for all 0 < λ′ ≤ λ, αλ′ ≤ ξn(λ′).
The same result is true for the function ξn(0, r).

Observe that Lemma 2.10 implies that for every 0 < α < 1, the set
{0 ≤ r ≤ 1 : ξn(r) ≥ αr} is an interval containing 0.
Proof: Fix τ = (X1, ..., Xn) and without loss of generality, suppose that
supf∈Fλ

Ef − Enf is attained at f . Then for any 0 < α < 1, f ′ = αf ∈ Fαλ

satisfies
Ef ′ − Enf ′ = α sup

f∈Fλ

Ef − Enf,

and the first part follows.
For the second part, note that if λ′ ≤ λ,

ξn(λ′) ≥ λ′

λ
ξn(λ) ≥ λ′

λ
αλ = αλ′.

Here is a one-sided version of Corollary 2.9.

Theorem 2.11 There exists an absolute constant c for which the following
holds. Let F be a (β, B)-Bernstein class of functions bounded by b which is
star-shaped around 0. Then for any 0 < θ, ε, λ < 1 satisfying

λ ≥ max

{
ξn(λ)

(1− θ)ε
, c

bx

nθ2ε
, c

(
Bx

nθ2ε2

)1/(2−β)
}

,

with probability at least 1− e−x, every f ∈ F satisfies

Ef ≤ max
{

Enf

1− ε
, λ

}
.
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In particular, there is an absolute constant c such that if

r′ = max

{
inf {r > 0 : ξn(r) ≤ r/4} ,

cbx

n
, c

(
Bx

n

)1/(2−β)
}

,

then with probability at least 1− e−x, a ρ-approximate empirical minimizer
f̂ ∈ F satisfies

Ef̂ ≤ max{2ρ, r′}.

The way one should interpret Theorem 2.11 is as follows. The second
and third terms in the definition of r′ are the natural restrictions one has to
impose to ensure that a random coordinate projection is a good isomorphism
for a single function. Indeed, if Ef is larger than those two terms, (combined
with the assumption on the L∞ norm and the second moment of f), then
the mass of f is equally spread on Ω and a random coordinate projection
would preserve its expectation. The first, and more significant term, is
a complexity measure for the entire class, and is needed to ensure that a
simultaneous coordinate selection is possible.
Proof: The first part of the claim follows a similar path to that of the
previous result (with the one-sided concentration result in Theorem 1.4),
and is omitted. The second part is evident by taking ε = θ = 1/2 and
applying the first part for λ = r′. In particular, Lemma 2.10 shows that if

r′ ≥ inf
{

r > 0 : ξn(r) ≤ r

4

}
then ξn(r′) ≤ r′/4. Thus, with large probability, if f ∈ F satisfies Ef ≥ r′,
then Ef ≤ 2Enf . Since f̂ is a ρ-approximate empirical minimizer and F is
star-shaped at 0, it follows that Enf̂ ≤ ρ, so either Ef̂ ≤ r′ or Ef̂ ≤ 2ρ, as
claimed.

As mentioned in the introduction, this error bound improves previous
error bounds, in which the dominating terms were various upper bounds on
the fixed point of φ(r) = E sup |Ef − Enf |, where the supremum is taken
with respect to {f ∈ F : Ef2 ≤ r} (see, for example [2, 12, 27, 28, 29]).

We end this section with the example of a binary-valued class with a
finite VC dimension. (The first result of this form is due to Vapnik and
Chervonenkis; see, for example, [4]).

Theorem 2.12 There are absolute constants c and c′ for which the follow-
ing holds. Let G be a class of binary-valued functions which contains 0,

14



such that vc(G) ≤ d, and set F = star(G, 0). Then, for every 0 < ε < 1,
E ‖P − Pn‖Fλ

≤ ελ/2 provided that

λ ≥ c

ε2
· d

n
log
( n

ed

)
.

In particular, for every n ≥ d, with probability larger than 1 −
(

ed
n

)c′d
, if

Enĝ ≤ infg∈G Eng + ρ, then

Eĝ ≤ cmax
{

d

n
log
( n

ed

)
, ρ

}
.

Before presenting the proof, recall that the covering number of a metric
space (X, d) at scale ε is the minimal number of open balls (with respect to
the metric d) of radius ε needed to cover X, and is denoted by N(ε,X, d).
Proof: Since G is a VC class, then by Haussler’s inequality [8],

N (ε,G, L2 (P )) ≤ Cd(4e)dε−2d,

where d = vc(G). A standard argument shows (see, e.g. [19]) the covering
numbers of the star-shaped hull of G with 0 satisfy

N (ε, F, L2 (P )) ≤ N
( ε

2
, G, L2 (P )

)
·
(⌈

2
ε

⌉
+ 1
)

,

which implies that

log N (ε, F, L2 (P )) ≤ Cd log
(

2
ε

)
.

Applying a symmetrization argument, and since a Rademacher process is
subgaussian (see [21] for more details),

E ‖P − Pn‖Fλ
≤ C max

{
d

n
log
(

1
λ

)
,

√
dλ

n
log
(

1
λ

)}
,

and the result follows from an easy computation.

3 Empirical minimization

In this section we investigate the properties of the empirical minimizer, and
compare the estimates we obtain to the ones obtained via the structural

15



results in the previous section. In particular, we show that there are cases
where a direct analysis of the empirical minimization yields much sharper
estimates than the structural approach. The approach we use bears some
similarity to the technique of peeling. Recall that

ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r} .

The main result of this section is that the expectation of the empirical
minimizer is essentially the maximizer of the function ξn(r) − r. For the
sake of simplicity, we shall assume that the supremum is achieved at some
s, that is,

ξn(s)− s = sup{ξn(r)− r : r > 0},

and if this is not the case, a standard limiting argument can be applied.
It is easy to verify that this estimate does not violate the upper bounds

of the previous section. By fixing any function in Fr, it is evident that
ξn(r) ≥ 0. Hence, considering r near zero shows that the maximal value of
ξn(r)− r must be at least 0. Thus, the maximizer s cannot be larger than

inf {r > 0 : ξn(r) ≤ r} ≤ inf
{

r > 0 : ξn(r) ≤ r

4

}
,

and this is no larger than r′ introduced in the previous section.
To obtain upper and lower bounds on the expectation of the empirical

minimizer, we consider values of r that do not quite maximize ξn(r) − r.
Specifically, for ε > 0, define

rε,+ = sup
{

0 ≤ r ≤ b : ξn(r)− r ≥ sup
s

(ξn(s)− s)− ε

}
,

rε,− = inf
{

0 ≤ r ≤ b : ξn(r)− r ≥ sup
s

(ξn(s)− s)− ε

}
.

Clearly, if s denotes the maximum and either r > rε,+ or r < rε,−, then

ξn(s)− s > ξn(r)− r + ε.

The following theorem shows that, with a suitable choice of ε, the expec-
tation of the empirical minimizer is approximately between rε,− and rε,+.
For the lower bound, we need an additional condition on the complexity of
the subset of functions in F with “small” expectations. To that end, recall
that for r1 < r2,

ξn(r1, r2) = E sup {Ef − Enf : f ∈ F, r1 ≤ Ef < r2} .
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Theorem 3.1 For any c1 > 0, there is a constant c (depending only on
c1) such that the following holds. Let F be a (β, B)-Bernstein class that is
star-shaped at 0. Define s, rε,+, and rε,− as above, and set

r′ = max

{
inf {r > 0 : ξn(r) ≤ r/4} ,

cb(x + log n)
n

, c

(
B(x + log n)

n

)1/(2−β)
}

,

For 0 < ρ < r′/2, let f̂ denote a ρ-approximate empirical risk minimizer. If

ε ≥ c

(
max

{
sup
s>0

(ξn(s)− s) , r′
β
}

(B + b)(x + log n)
n

)1/2

+ ρ,

then

1. With probability at least 1− e−x,

Ef̂ ≤ max
{

1
n

, rε,+

}
.

2. If
ξn(0, c1/n) < sup

s>0
(ξn(s)− s)− ε,

then with probability at least 1− e−x,

Ef̂ ≥ rε,−.

It is easy to verify that if F consists of nonnegative functions, then
Theorem 3.1 recovers the error bound established in the previous section,
but does not improve it. Also, the lower bound is vacuous in this case, as
f = 0 is always an empirical minimizer, and thus it is impossible to obtain
any nontrivial lower bound for such a class. Of course, as stated in the
introduction, classes of nonnegative functions are not of interest here.

The proof of Theorem 3.1 involves splitting F into the subsets Fr =
{f ∈ F : Ef = r}, and using concentration to show that there is likely to
be a function with Ef = s for which the empirical mean is smaller than any
function with Ef > rε,+ or Ef < rε,−. (Here, s is the value which maximizes
the difference ξn(r) − r.) We do this by progressively eliminating subsets
Fr. For the upper bound, we first use the results of the previous section to
show that it is unlikely that f̂ ∈ Fr for r ≥ r′, and then we split the interval
(rε,+, r′) into intervals of width ∆, and separately eliminate each of these.
For the lower bound, we first use the condition on ξn(0, c1/n) to eliminate
any r < c1/n, and then separately eliminate intervals of width ∆ from the
interval [c1/n, rε,−). The following lemma is the main tool in eliminating
these intervals.
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Lemma 3.2 Let f̂ be a ρ-approximate empirical risk minimizer from F and
set r, s,∆ ≥ 0 and 0 < α < 1. If

ξn(s)− s ≥ ξn(r, r + ∆)− r + αξn(s) + αξn(r, r + ∆)

+

√
BKx

n

(
sβ/2 + (r + ∆)β/2

)
+ 2K

(
1 +

1
α

)
bx

n
+ ρ

then with probability at least 1− 2e−x,

Ef̂ 6∈ [r, r + ∆).

Note that the proof of the lemma uses the full strength of Talagrand’s
concentration inequality, particularly the fact that the constant α in Theo-
rem 1.4 can be made arbitrarily close to 0.
Proof: By Theorem 1.4 (together with some easy manipulations), it fol-
lows that with probability at least 1− 2e−x, both

sup {Ef − Enf : Ef = s} − s

> (1− α)ξn(s)− s−
√

BKxsβ

n
−K

(
1 +

1
α

)
bx

n

and

sup {Ef − Enf : r ≤ Ef < r + ∆} − r

< (1 + α)ξn(r, r + ∆)− r +

√
BKx(r + ∆)β

n
+ K

(
1 +

1
α

)
bx

n
.

In that case, if

(1− α)ξn(s)− s

≥ (1 + α)ξn(r, r + ∆)− r +

√
BKxsβ

n
+

√
BKx(r + ∆)β

n

+ 2K

(
1 +

1
α

)
bx

n
+ ρ

then

sup {Ef − Enf : Ef = s} − s > sup {Ef − Enf : r ≤ Ef < r + ∆} − r + ρ

and thus

inf {Enf : Ef = s} < inf {Enf : r ≤ Ef < r + ∆} − ρ,
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as claimed.

Since the lemma compares ξn(s)−s with ξn(r, r+∆)−r, we need to relate
ξn(r, r + ∆) to ξn(r). The following result will suffice, provided r > 0 and
∆ is sufficiently small. (For the proof of the lower bound, it does not give a
useful bound on ξn(0,∆), and we need to deal with that case separately.)

Lemma 3.3 If F is star-shaped around 0, then for every r, ∆ > 0,

ξn(r) ≤ ξn(r, r + ∆) ≤ ξn(r)
(

1 +
∆
r

)
.

Proof: The first inequality is immediate from the definitions. For the
second, we can assume that ξn(r, r +∆) > 0. Fix (X1, . . . , Xn), some f ∈ F
and δ > 0 for which r ≤ Ef < r + ∆ and

Ef − Enf ≥ sup {Eg − Eng : r ≤ Eg < r + ∆} − δ > 0.

Set f̃ = rf/Ef and note that Ef̃ = r and that

sup {Eg − Eng : Eg = r} ≥ Ef̃ − Enf̃ =
r

Ef
(Ef − Enf)

>
r

r + ∆
(Ef − Enf)

>
1

1 + ∆/r
(sup {Eg − Eng : r ≤ Eg < r + ∆} − δ) .

The assertion follows by taking the expectation with respect to X1, . . . , Xn,
and letting δ → 0.

We are now ready to prove Theorem 3.1.
Proof: (of Theorem 3.1) (1) Fix x > 0, which might be different from the
x of the theorem statement. First, Theorem 2.11 and the fact that ρ ≤ r′/2
imply that, with probability at least 1− e−x,

Ef̂ ≤ r′.

Next, for any ε > 0, if r > max{1/n, rε,+}, then ξn(s)−s > ξn(r)−r+ ε.
Therefore, by Lemma 3.3,

ξn(s)− s > ξn(r, r + ∆)− r + ε− ∆
r

ξn(r).
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Let

ε0 = αξn(s) +
(

α

(
1 +

∆
r

)
+

∆
r

)
ξn(r)

+

√
BKx

n

(
sβ/2 + (r + ∆)β/2

)
+ 2K

(
1 +

1
α

)
bx

n
+ ρ,

and fix ∆ = min{α/n, r′ − r}, where α ≤ 1 will be specified later.
For any ε ≥ ε0, Lemma 3.2 and Lemma 3.3 show that with probability

at least 1− 2e−x, we have Ef 6∈ [r, r + ∆). Since r ≥ 1/n, then

ε0 ≤ α(ξn(s)− s) + cα(ξn(r)− r) + α(s + cr)

+

√
BKx

n

(
sβ/2 + (r + ∆)β/2

)
+ 2K

(
1 +

1
α

)
bx

n
+ ρ

≤ c

α(ξn(s)− s) + αr′ +

√
Bxr′β

n
+

bx

nα

+ ρ.

Observe that by the definition of r′, if we select

α =

√
bx

n max{ξn(s)− s, r′}
,

then α ≤ 1, hence

ε0 ≤ cmax


√

bx(ξn(s)− s)
n

,

√
bxr′

n
,

√
Bxr′β

n

+ ρ.

Thus, we have shown that if ε satisfies the condition of the theorem,
with probability at least 1 − 2e−x, we have Ef̂ 6∈ [r, r + ∆). To complete
the proof, we repeatedly apply this result to a grid V of values of r, ranging
from max{1/n, rε,+} to r′. Clearly,

log |V | ≤ log
⌈

r′

∆

⌉
= log

⌈
r′n

α

⌉
≤ c log n,

and the result is evident by the union bound.
(2) We start by showing that Ef̂ is probably outside the interval [0, c1/n).

Indeed, since
ξn(0, c1/n) < sup

s>0
(ξn(s)− s)− ε
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and by Lemma 3.2, if

ε ≥ c

(
α (ξn(s)− s) + αr′ +

√
Bx

n
r′β +

bx

αn

)
+ ρ,

then with probability at least 1− 2e−x, Ef̂ 6∈ [0, c1/n). The same argument
as in part (1) shows that it suffices to choose

ε ≥ c max


√

bx(ξn(s)− s)
n

,

√
bxr′

n
,

√
Bxr′β

n

+ ρ.

Next, we split the interval [c1/n, rε,−) into smaller intervals, [r, r + ∆),
and show that Ef̂ is unlikely to be in one of these intervals. For any δ > 0,
if r ≤ rε,− − δ then

ξn(s)− s > ξn(r)− r + ε.

Since c1/n ≤ r < rε,− < r′, we can use Lemmas 3.2 and 3.3 in the same way
as in part (1). Letting δ approach zero completes the proof.

4 Direct approach vs. structural results

Finally, we show that a direct analysis of the empirical minimization al-
gorithm can yield much better estimates than the structural results pre-
sented in Section 2.2 under the assumptions we used throughout this article,
namely, that F is a star-shaped class of uniformly bounded functions, which
satisfies a Bernstein condition (and in particular, Ef ≥ 0 for every f ∈ F ).

Indeed, for every fixed integer n, we can construct a class and a proba-
bility measure for which every coordinate projection will not be an isomor-
phism (for any 0 < ε < 1) on the set {f : Ef ≥ 1/4}, in the sense that
for every sample X1, ..., Xn, there will be a function f , with Enf = 0, but
Ef = 1/4. (There is no magic in the number 1/4; any sufficiently small
positive constant will do.) Thus, any kind of a structural approach will only
yield a trivial upper bound on Ef̂ . On the other hand, we will show that
with probability larger than 1− δ, we have Ef̂ ≤ 1/n.

Although the theorem in this section is formulated as an existence result,
it is clear that the structural results of Section 2 will be loose whenever the
set of functions with expectation near zero is sufficiently rich. We use the
following lemma to construct an example of such a function class.
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Lemma 4.1 For every positive integer n and all m ≥ 2(n2 + n), the fol-
lowing holds. If P is the uniform probability measure on {1, ...,m}, then for
every 1

n ≤ λ ≤ 1/2 there exists a function class Gλ such that

1. For every g ∈ Gλ, −1 ≤ g(x) ≤ 1, Eg = λ and Eg2 ≤ 2Eg.

2. For every set τ ⊂ {1, ...,m} with |τ | ≤ n, there is some g ∈ Gλ such
that for every i ∈ τ , g(i) = −1.

Also, there exist a function class Hλ such that

1. For every h ∈ Hλ, 0 ≤ h(x) ≤ 1, Eh = λ.

2. For every set τ ⊂ {1, ...,m} with |τ | ≤ n, there is some h ∈ Hλ such
that for every i ∈ τ , h(i) = 0.

Proof: Let J ⊂ {1, ...,m}, |J | = n; for every I ⊂ J define g = gI,J in the
following manner. For i ∈ I, set g(i) = 1, if i ∈ J\I, set g(i) = −1, and for
i 6∈ J put g(i) = t, where

t =
λm + |J\I| − |I|

m− n
.

Observe that if m ≥ n2 + 2n, then 0 < t ≤ 2λ ≤ 1 for every I, J . Also, by
the definition of t, EgI,J = λ. Next, note that

Eg2 =
1
m

(
|I| − |J\I|+ t2(m− n) + 2|J\I|

)
≤ Eg +

2|J\I|
m

≤ Eg + 2
n

m
< Eg +

1
n
≤ 2Eg,

where the last inequality holds because Eg = λ ≥ 1/n, and m ≥ 2n2.
The second property of Gλ is clear by the construction, and the claims

regarding Hλ can be verified using a similar argument.

Theorem 4.2 There is an absolute constant c for which the following holds.
If 0 < δ < 1 and n > N0(δ) there is a probability measure P and a star-
shaped class F , which consists of functions bounded by 1 and has Bernstein
type 1 with constant 2, such that

1. For every X1, ..., Xn there is a function f ∈ F with Ef = 1/4 and
Enf = 0.
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2. For the class F , the function ξn satisfies

ξn(r) =


(n + 1)r if 0 < r ≤ 1/n,
r if 1/n < r ≤ 1/4,
0 if r > 1/4.

Thus, inf {r > 0 : ξn(r) ≤ r/4} = 1/4.

3. If f̂ is a ρ-approximate empirical minimizer, where 0 < ρ < 1/8, then
with probability larger than 1− δ,

1
n

(
1− c

√
log n

n
− ρ

)
≤ Ef̂ ≤ 1

n
.

Proof: For any integer n, let m and P be as in Lemma 4.1, put F̃ = H1/4∪
G1/n, and set F = star(F̃ , 0). Observe that H1/4 consists of nonnegative
functions and that G1/n is a Bernstein class of type 1 with constant 2. Thus,
as a star-shaped hull of a Bernstein class, F has type 1 with a constant 2.

Next, we estimate the function ξn(r) associated with F . Clearly, ξn

vanishes for r > 1/4. For r = 1/4, and since |{X1, ..., Xn}| ≤ n, there is
a function in H1/4 which is nonnegative, vanishes on (X1, ..., Xn), but its
expectation is 1/4. Thus, supf∈F1/4

Ef − Enf = 1/4, and ξn(1/4) = 1/4. It
is easy to see that for 1/n < r < 1/4,

Fr = {4rf : f ∈ H1/4},

and thus, on (1/n, 1/4), ξn(r) = r. As for r = 1/n, recall that if τ ⊂
{1, ...,m}, |τ | ≤ n, then there is some f ∈ F1/n which is −1 on τ , implying
that

ξn(1/n) = E sup
{
Ef − Enf : f ∈ F1/n

}
≥ 1

n
+ 1.

Clearly, this is also an upper bound on ξn(1/n), and ξn decays linearly to 0
for r < 1/n.

We next consider the conditions of Theorem 3.1. It is easy to verify that
r′ = 1/4 if n is sufficiently large, and that

sup
s>0

(ξn(s)− s) = 1.

Fix 0 < c1 < 1/2, let c be as in Theorem 3.1 and choose

ε = c

(
log(1/δ) + log n

n

)1/2

+ ρ.
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Observe that rε,+ = 1/n and that

rε,− =
1− ε

n
=

1
n

(
1− c

(
log(n/δ)

n

)1/2

− ρ

)
.

Thus, by Theorem 3.1, Ef̂ ≤ 1/n, with probability at least 1 − δ. For the
lower bound, note that ξn(0, c1/n) = c1(1 + 1/n); hence for suitably large n
ξn(0, c1/n) < sups>0(ξn(s)− s)− ε, and by Theorem 3.1,

Ef̂ ≥ 1
n

(
1− c

√
log(n/δ)

n
− ρ

)
with probability at least 1− δ.

A Appendix: Proofs

Proof: (of Lemma 1.1) Suppose that, a < b ∈ [0, 1] satisfies b − a =
sup{f1(x) − f2(x) : x ∈ X , f1, f2 ∈ F} and [a, b] ⊆ {`(y, y0) : y ∈ Y}.
Choose a mapping u : [a, b] → Y such that `(u(α), y0) = α for α ∈ [a, b]
(for example, u can be taken as a selection of the pre-image of `(·, y0)). For
f ∈ F , define gf (x) = u(f(x) − inf{f ′(x) : f ′ ∈ F} + a), and note that
x 7→ `(gf (x), y0) is measurable by assumption. Let G = {gf : f ∈ F} and
set g∗ = g0. Therefore,

{x 7→ `(g(x), y0)− `(g∗(x), y0) : g ∈ G}
= {x 7→ `(gf (x), y0)− `(g0(x), y0) : f ∈ F}
= F.

If Ef ≥ 0 for every f ∈ F then clearly the choice g∗ = g0 minimizes
E`(g(X), y0), as claimed.

The proof of Theorem 2.3 uses the following lemma.

Lemma A.1 For independent random variables X1, . . . , Xn, define

Y =
n∑

i=1

(Xi − EXi)

and σ2 = EY 2. If |Xi| ≤ 1 and σ2 ≥ 1, then

Pr
(
|Y | ≥ σ

2

)
≥ c

for some universal constant c.

24



Proof: First we show that there is an absolute constant K such that

EY 2χ{|Y |≥Kσ} ≤
σ2

4
.

Indeed, for every integer k,

EY 2χ{|Y |≥kσ} =
∞∑

m=k

EY 2χ{mσ≤|Y |≤(m+1)σ}

≤ σ2
∞∑

m=k

(m + 1)2 Pr {(|Y | ≥ mσ})

≤ 2σ2
∞∑

m=k

(m + 1)2e−3m/8,

where the last inequality follows from Bernstein’s inequality and the fact
that σ2 ≥ 1. Thus, the assertion follows by taking k sufficiently large.

Since EY 2χ{|Y |≤σ/2} ≤ σ2/4, then

σ2 = EY 2

≤ σ2

4
+ EY 2χ{σ/2≤|Y |≤Kσ} +

σ2

4

≤ σ2

2
+ K2σ2Pr

({σ

2
≤ |Y | ≤ Kσ

})
,

and the result follows.

Proof: (of Theorem 2.3) Without loss of generality, assume that σ2
F =

var [g] for some g ∈ F . Let Y =
∑n

i=1 (g(Xi)− Eg) and set v = EY 2 = nσ2
F .

By the assumption, v ≥ 1, and thus, Lemma A.1 implies that

Pr

({
‖P − Pn‖F ≥ σF

2
√

n

})
≥ Pr

({
1
n
|Y | ≥

√
v

2n

})
≥ c

for some absolute constant c. Integrating, E ‖P − Pn‖F ≥ cσF /(2
√

n). Since
nσ2

F ≥ 1,

σF

√
x

n
+

x

n
≤ 2σF

√
x

n
≤ 1

4 max
{

3K,
√

K
}E ‖P − Pn‖F ,

where K is the constant in Theorem 1.4, and the last inequality holds for
an appropriate choice of x, which will be an absolute constant. The claim
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now follows from Talagrand’s inequality; by Theorem 1.4, with probability
at least 1− e−x and selecting ρ = 1/2,

‖Pn − P‖F ≥ 1
2

E‖Pn − P‖F −
√

KσF

√
x

n
− 3

Kx

n

≥ 1
2

E‖Pn − P‖F −max
{

3K,
√

K
}(

σF

√
x

n
+

x

n

)
≥ 1

4
E‖Pn − P‖F .
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