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Abstract

Many of the classification algorithms developed in the machine learning literature, including

the support vector machine and boosting, can be viewed as minimum contrast methods that

minimize a convex surrogate of the 0-1 loss function. The convexity makes these algorithms

computationally efficient. The use of a surrogate, however, has statistical consequences that

must be balanced against the computational virtues of convexity. To study these issues, we

provide a general quantitative relationship between the risk as assessed using the 0-1 loss and

the risk as assessed using any nonnegative surrogate loss function. We show that this relationship

gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss

function: that it satisfy a pointwise form of Fisher consistency for classification. The relationship

is based on a simple variational transformation of the loss function that is easy to compute in

many applications. We also present a refined version of this result in the case of low noise,

and we show that, in this case, strictly convex loss functions lead to faster rates of convergence

of the risk than would be implied by standard uniform convergence arguments. Finally, we

present applications of our results to the estimation of convergence rates in function classes that

are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss

functions.

Keywords: machine learning, convex optimization, boosting, support vector machine, Rademacher

complexity, empirical process theory
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1. INTRODUCTION

Convexity has become an increasingly important theme in applied mathematics and engineering,

having acquired a prominent role akin to the one played by linearity for many decades. Build-

ing on the discovery of efficient algorithms for linear programs, researchers in convex optimization

theory have developed computationally tractable methods for large classes of convex programs (Nes-

terov and Nemirovskii, 1994). Many fields in which optimality principles form the core conceptual

structure have been changed significantly by the introduction of these new techniques (Boyd and

Vandenberghe, 2004).

Convexity arises in many guises in statistics as well, notably in properties associated with the

exponential family of distributions (Brown, 1986). It is, however, only in recent years that the

systematic exploitation of the algorithmic consequences of convexity has begun in statistics. One

applied area in which this trend has been most salient is machine learning, where the focus has

been on large-scale statistical models for which computational efficiency is an imperative. Many

of the most prominent methods studied in machine learning make significant use of convexity; in

particular, support vector machines (Boser et al., 1992, Cortes and Vapnik, 1995, Cristianini and

Shawe-Taylor, 2000, Schölkopf and Smola, 2002), boosting (Freund and Schapire, 1997, Collins

et al., 2002, Lebanon and Lafferty, 2002), and variational inference for graphical models (Jordan

et al., 1999) are all based directly on ideas from convex optimization. These methods have had

significant practical successes in applied areas such as bioinformatics, information management and

signal processing (Feder et al., 2004, Joachims, 2002, Schölkopf et al., 2003).

If algorithms from convex optimization are to continue to make inroads into statistical theory

and practice, it is important that we understand these algorithms not only from a computational

point of view but also in terms of their statistical properties. What are the statistical consequences

of choosing models and estimation procedures so as to exploit the computational advantages of

convexity?

In the current paper we study this question in the context of discriminant analysis, a topic

referred to as classification in the machine learning field. We consider the setting in which a
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covariate vector X ∈ X is to be classified according to a binary response Y ∈ {−1, 1}. The goal

is to choose a discriminant function f : X → R, from a class of functions F , such that the sign of

f(X) is an accurate prediction of Y under an unknown joint measure P on (X,Y ). We focus on

0-1 loss; thus, letting ℓ(α) denote an indicator function that is one if α ≤ 0 and zero otherwise, we

wish to choose f ∈ F that minimizes the risk R(f) = Eℓ(Y f(X)) = P (Y 6= sign(f(X))).

Given a sample Dn = ((X1, Y1), . . . , (Xn, Yn)), it is natural to consider estimation procedures

based on minimizing the sample average of the loss, R̂(f) = 1
n

∑n
i=1 ℓ(Yif(Xi)). As is well known,

however, such a procedure is computationally intractable for many nontrivial classes of func-

tions (see, e.g., Arora et al., 1997). Indeed, the loss function ℓ(Y f(X)) is non-convex in its (scalar)

argument, and, while not a proof, this suggests a source of the difficulty. Moreover, it suggests that

we might base a tractable estimation procedure on minimization of a convex surrogate φ(α) for

the loss. In particular, if F consists of functions that are linear in a parameter vector θ, then the

expectation of φ(Y f(X)) is convex in θ (by convexity of φ and linearity of expectation). Given a

convex parameter space, we obtain a convex program and can exploit the methods of convex opti-

mization. A wide variety of classification methods are based on this tactic; in particular, Figure 1

shows the (upper-bounding) convex surrogates associated with the support vector machine (Cortes

and Vapnik, 1995), Adaboost (Freund and Schapire, 1997) and logistic regression (Friedman et al.,

2000). In the machine learning literature, these convexity-based methods have largely displaced

earlier non-convex methods such as neural networks.

A basic statistical understanding of the convexity-based setting has begun to emerge. In par-

ticular, when appropriate regularization conditions are imposed, it is possible to demonstrate the

Bayes-risk consistency of methods based on minimizing convex surrogates for 0-1 loss. Lugosi and

Vayatis (2004) have provided such a result under the assumption that the surrogate φ is differen-

tiable, monotone, strictly convex, and satisfies φ(0) = 1. This handles all of the cases shown in

Figure 1 except the support vector machine. Steinwart (2005) has demonstrated consistency for

the support vector machine as well, in a general setting where F is taken to be a reproducing ker-

nel Hilbert space, and φ is assumed continuous. Other results on Bayes-risk consistency have been

presented by Breiman (2000), Jiang (2004), Mannor and Meir (2001), and Mannor et al. (2002).
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Figure 1: A plot of the 0-1 loss function and surrogates corresponding to various practical classifiers.
These functions are plotted as a function of the margin α = yf(x). Note that a classification error
is made if and only if the margin is negative; thus the 0-1 loss is a step function that is equal to one
for negative values of the abscissa. The curve labeled “logistic” is the negative log likelihood, or
scaled deviance, under a logistic regression model; “hinge” is the piecewise-linear loss used in the
support vector machine; and “exponential” is the exponential loss used by the Adaboost algorithm.
The deviance is scaled so as to majorize the 0-1 loss; see Lemma 8.

Consistency results provide reassurance that optimizing a surrogate does not ultimately hinder

the search for a function that achieves the Bayes risk, and thus allow such a search to proceed within

the scope of computationally efficient algorithms. There is, however, an additional motivation for

working with surrogates of 0-1 loss beyond the computational imperative. Minimizing the sample

average of an appropriately-behaved loss function has a regularizing effect: it is possible to obtain

uniform upper bounds on the risk of a function that minimizes the empirical average of the loss φ,

even for classes that are so rich that no such upper bounds are possible for the minimizer of the

empirical average of the 0-1 loss. Indeed a number of such results have been obtained for function

classes with infinite VC-dimension (Bartlett, 1998, Shawe-Taylor et al., 1998), such as the function
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classes used by AdaBoost (see, e.g., Schapire et al., 1998, Koltchinskii and Panchenko, 2002). These

upper bounds provide guidance for model selection and in particular help guide data-dependent

choices of regularization parameters.

To carry this agenda further, it is necessary to find general quantitative relationships between

the approximation and estimation errors associated with φ and those associated with 0-1 loss.

This point has been emphasized by Zhang (2004), who has presented several examples of such

relationships. We simplify and extend Zhang’s results, developing a general methodology for finding

quantitative relationships between the risk associated with φ and the risk associated with 0-1 loss.

In particular, let R(f) denote the risk based on 0-1 loss and let R∗ = inff R(f) denote the Bayes

risk. Similarly, let us refer to Rφ(f) = Eφ(Y f(X)) as the “φ-risk,” and let R∗
φ = inff Rφ(f) denote

the “optimal φ-risk.” We show that, for all measurable f ,

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ, (1)

for a nondecreasing function ψ : [0, 1] → [0,∞). Moreover, we present a general variational repre-

sentation of ψ in terms of φ, and show that this function is the optimal upper bound of the form

(1), in the sense that any other function that satisfies (1) for all measurable f is everywhere no

larger than ψ.

This result suggests that if ψ is well-behaved then minimization of Rφ(f) may provide a rea-

sonable surrogate for minimization of R(f). Moreover, the result provides a quantitative way to

transfer assessments of statistical error in terms of “excess φ-risk” Rφ(f)−R∗
φ into assessments of

error in terms of “excess risk” R(f) −R∗.

Although our principal goal is to understand the implications of convexity in classification,

we do not impose a convexity assumption on φ at the outset. Indeed, while conditions such as

convexity, continuity, and differentiability of φ are easy to verify and have natural relationships to

optimization procedures, it is not immediately obvious how to relate such conditions to their statis-

tical consequences. Thus, we consider the weakest possible condition on φ: that it is “classification-

calibrated,” which is essentially a pointwise form of Fisher consistency for classification (Lin, 2004).
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In particular, if we define η(x) = P (Y = 1|X = x), then φ is classification-calibrated if, for x such

that η(x) 6= 1/2, every minimizer f∗ of the conditional expectation E[φ(Y f∗(X))|X = x] has the

same sign as the Bayes decision rule, sign(2η(x)− 1). We show that the upper bound (1) on excess

risk in terms of excess φ-risk is nontrivial precisely when φ is classification-calibrated. Obviously,

no such bound is possible when φ is not classification-calibrated.

The difficulty of a pattern classification problem is closely related to the behavior of the posterior

probability η(X). In many practical problems, it is reasonable to assume that, for most X, η(X) is

not too close to 1/2. Mammen and Tsybakov (1999) introduced an elegant formulation of such an

assumption, and Tsybakov (2001) considered the rate of convergence of the risk of a function that

minimizes empirical risk over some fixed class F . He showed that, under the assumption of low

noise, the risk converges surprisingly quickly to the minimum over the class. If the minimum risk

is nonzero, we might expect a convergence rate no faster than 1/
√
n. However, under Tsybakov’s

assumption, it can be as fast as 1/n. We show that minimizing empirical φ-risk also leads to

surprisingly fast convergence rates under this assumption. In particular, if φ is uniformly convex,

the minimizer of the empirical φ-risk has φ-risk that converges quickly to its optimal value, and the

noise assumption allows an improvement in the relationship between excess φ-risk and excess risk.

These results suggest a general interpretation of pattern classification methods involving a

convex contrast function. It is common to view the excess risk as a combination of an estimation

term and an approximation term:

R(f) −R∗ =

(

R(f) − inf
g∈F

R(g)

)

+

(

inf
g∈F

R(g) −R∗

)

.

However, choosing a function with risk near-minimal over a class F—that is, finding an f for which

the estimation term above is close to zero—is, in a minimax setting, equivalent to the problem of

minimizing empirical risk, and hence is computationally infeasible for typical classes F of interest.

Indeed, for classes typically used by boosting and kernel methods, the estimation term in this

expression does not converge to zero for the minimizer of the empirical risk. On the other hand, we
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can also split the upper bound on excess risk into an estimation term and an approximation term:

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ =

(

Rφ(f) − inf
g∈F

Rφ(g)

)

+

(

inf
g∈F

Rφ(g) −R∗
φ

)

.

Often, it is possible to minimize φ-risk efficiently. Thus, while finding an f with near-minimal risk

might be computationally infeasible, finding an f for which this upper bound on risk is near-minimal

can be feasible.

The paper is organized as follows. Section 2 presents basic definitions and a statement and proof

of (1). It also introduces the convexity assumption, and shows how it simplifies the computation

of ψ. Section 3 presents a refined version of our main result in the setting of low noise. Section 4

presents bounds on the rate of convergence of the φ-risk of the empirical minimizer for strictly

convex φ, and describes applications of these results to convex function classes, such as those used

by AdaBoost. It also describes simulations that illustrate the theoretical results. We present our

conclusions in Section 5.

Proofs of all of our results are presented either in the main text or in Appendix A.

2. RELATING EXCESS RISK TO EXCESS φ-RISK

There are three sources of error to be considered in a statistical analysis of classification problems:

the classical estimation error due to finite sample size, the classical approximation error due to the

size of the function space F , and an additional source of approximation error due to the use of a

surrogate in place of the 0-1 loss function. It is this last source of error that is our focus in this

section. Thus, throughout the section we (a) work with population expectations and (b) assume

that F is the set of all measurable functions. This allows us to ignore errors due to the size of the

sample and the size of the function space, and focus on the error due to the use of a surrogate for

the 0-1 loss function.

We follow the tradition in the classification literature and refer to the function φ as a loss

function, since it is a function that is to be minimized to obtain a discriminant. More precisely,

φ(Y f(X)) is generally referred to as a “margin-based loss function,” where the quantity Y f(X) is
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known as the “margin.” (It is worth noting that margin-based loss functions are rather different

from distance metrics, a point that we explore in Appendix B.)

This ambiguity in the use of “loss” will not confuse; in particular, we will be careful to distinguish

the risk, which is an expectation over 0-1 loss, from the “φ-risk,” which is an expectation over φ.

Our goal in this section is to relate these two quantities.

2.1 Setup

Let (X × {−1, 1},G ⊗ 2{−1,1}, P ) be a probability space. Let X be the identity function on X and

Y the identity function on {−1, 1}, so that P is the distribution of (X,Y ), i.e., for A ∈ G ⊗ 2{−1,1},

P ((X,Y ) ∈ A) = P (A). Let PX on (X ,G) be the marginal distribution of X, and let η : X → [0, 1]

be a measurable function such that η(X) is a version of P (Y = 1|X). Throughout this section, f

is understood as a measurable mapping from X into R.

Define the {0, 1}-risk, or just risk, of f as

R(f) = P (sign(f(X)) 6= Y ),

where sign(α) = 1 for α > 0 and −1 otherwise. (The particular choice of the value of sign(0) is

not important, but we need to fix some value in {±1} for the definitions that follow.) Based on an

i.i.d. sample Dn = ((X1, Y1), . . . , (Xn, Yn)), we want to choose a function fn with small risk.

Define the Bayes risk R∗ = inff R(f), where the infimum is over all measurable f . Then any f

satisfying sign(f(X)) = sign(η(X) − 1/2) a.s. on {η(X) 6= 1/2} has R(f) = R∗.

Fix a function φ : R → [0,∞). Define the φ-risk of f as

Rφ(f) = Eφ(Y f(X)).

Let F be a class of functions f : X → R. Let fn = f̂φ be a function in F which minimizes the
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empirical expectation of φ(Y f(X)),

R̂φ(f) = Êφ(Y f(X)) =
1

n

n
∑

i=1

φ(Yif(Xi)).

Thus we treat φ as specifying a contrast function that is to be minimized in determining the

discriminant function fn.

2.2 Basic conditions on the loss function

Define the conditional φ-risk

E(φ(Y f(X))|X = x) = η(x)φ(f(x)) + (1 − η(x))φ(−f(x)) a.e.(x).

It is useful to think of the conditional φ-risk in terms of a generic conditional probability η ∈ [0, 1]

and a generic classifier value α ∈ R. To express this viewpoint, we introduce the generic conditional

φ-risk

Cη(α) = ηφ(α) + (1 − η)φ(−α).

The notation suppresses the dependence on φ. The generic conditional φ-risk coincides with the

conditional φ-risk of f at x ∈ X if we take η = η(x) and α = f(x). Here, varying α in the

generic formulation corresponds to varying f in the original formulation, for fixed x. As a useful

illustration for the definitions that follow, consider a singleton domain X = {x0}. Minimizing φ-risk

corresponds to choosing f(x0) to minimize Cη(x0)(f(x0)).

For η ∈ [0, 1], define the optimal conditional φ-risk

H(η) = inf
α∈R

Cη(α) = inf
α∈R

(ηφ(α) + (1 − η)φ(−α)).

Then the optimal φ-risk satisfies

R∗
φ := inf

f
Rφ(f) = EH(η(X)),
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where the infimum is over measurable functions.

If the infimum in the definition of H(η) is uniquely attained for some α, we can define α∗ :

[0, 1] → R by

α∗(η) = arg min
α∈R

Cη(α).

In that case, we define f∗φ : X → R, up to PX -null sets, by

f∗φ(x) = arg min
α∈R

E(φ(Y α)|X = x)

= α∗(η(x))

and then

Rφ(f∗φ) = EH(η(X)) = R∗
φ.

For η ∈ [0, 1], define

H−(η) = inf
α:α(2η−1)≤0

Cη(α).

This is the optimal value of the conditional φ-risk, under the constraint that the sign of the argument

α disagrees with that of 2η − 1.

We now turn to the basic condition that we impose on φ. This condition generalizes the

requirement that the minimizer of Cη(α) (if it exists) has the correct sign. This is a minimal

condition that can be viewed as a pointwise form of Fisher consistency for classification.

Definition 1. We say that φ is classification-calibrated if, for any η 6= 1/2,

H−(η) > H(η).

Consider again a singleton domain X = {x0}. Minimizing φ-risk corresponds to choosing

f(x0) to minimize Cη(x0)(f(x0)). The classification-calibrated condition requires that adding the

constraint that f(x0) has the incorrect sign always leads to a strictly larger φ-risk.

Example 1 (Exponential loss). Consider the loss function φ(α) = exp(−α) used by AdaBoost.
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Figure 2: Exponential loss. The left panel shows φ(α), its reflection φ(−α), and two different
convex combinations of these functions, for η = 0.3 and η = 0.7. Note that the minima of these
combinations are the values H(η), and the minimizing arguments are the values α∗(η). The right
panel shows H(η) and α∗(η) plotted as a function of η, and the ψ-transform ψ(θ).

Figure 2, left panel, shows φ(α), φ(−α), and the generic conditional φ-risk Cη(α) for η = 0.3 and

η = 0.7. In this case, φ is strictly convex on R, hence Cη(α) is also strictly convex on R, for every

η. So Cη is either minimal at a unique stationary point, or it attains no minimum. Indeed, if η = 0,

then Cη(α) → 0 as α→ −∞; if η = 1, then Cη(α) → 0 as α→ ∞. Thus we have H(0) = H(1) = 0

for exponential loss. For η ∈ (0, 1), solving for the stationary point yields the unique minimizer

α∗(η) =
1

2
log

(

η

1 − η

)

.
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We may then simplify the identity H(η) = Cη(α
∗(η)) to obtain

H(η) = 2
√

η(1 − η).

Notice that this expression is correct also for η equal to 0 or 1. The right panel of Figure 2 shows

the graphs of α∗ and H over the interval [0, 1]. It is easy to check that

H−(η) ≡ exp(0) = 1,

and this is strictly greater than 2
√

η(1 − η) when η 6= 1/2, so the exponential loss is classification-

calibrated.

2.3 The ψ-transform and the relationship between excess risks

We begin by defining a functional transform of the loss function. Theorem 3 below shows that this

transform gives optimal bounds on excess risk in terms of excess φ-risk.

Definition 2. We define the ψ-transform of a loss function as follows. Given φ : R → [0,∞),

define the function ψ : [−1, 1] → [0,∞) by ψ = ψ̃∗∗, where

ψ̃(θ) = H−

(

1 + θ

2

)

−H

(

1 + θ

2

)

,

and g∗∗ : [−1, 1] → R is the Fenchel-Legendre biconjugate of g : [−1, 1] → R, which is characterized

by

epi g∗∗ = co epi g.

Here co S is the closure of the convex hull of the set S, and epi g is the epigraph of the function g,

that is, the set {(x, t) : x ∈ [0, 1], g(x) ≤ t}. The nonnegativity of ψ is established below in Lemma

6, part 7.

Recall that g is convex if and only if epi g is a convex set, and g is closed (epi g is a closed set)

if and only if g is lower semicontinuous (Rockafellar, 1997). By Lemma 6, part 5, ψ̃ is continuous,
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so in fact the closure operation in Definition 2 is vacuous. We therefore have that ψ is simply the

functional convex hull of ψ̃ (also known as the greatest convex minorant of ψ̃):

ψ = co ψ̃ .

This is equivalent to the epigraph convex hull condition of the definition; that is, ψ is the largest

convex lower bound on ψ̃. This implies that ψ = ψ̃ if and only if ψ̃ is convex; see Example 9 for a

loss function where ψ̃ is not convex.

The importance of the ψ-transform is shown by the following theorem.

Theorem 3. 1. For any nonnegative loss function φ, any measurable f : X → R and any

probability distribution on X × {±1},

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ.

2. Suppose |X | ≥ 2. For any nonnegative loss function φ, any ǫ > 0 and any θ ∈ [0, 1], there is

a probability distribution on X × {±1} and a function f : X → R such that

R(f) −R∗ = θ

and

ψ(θ) ≤ Rφ(f) −R∗
φ ≤ ψ(θ) + ǫ.

3. The following conditions are equivalent.

(a) φ is classification-calibrated.

(b) For any sequence (θi) in [0, 1],

ψ(θi) → 0 if and only if θi → 0.

(c) For every sequence of measurable functions fi : X → R and every probability distribution
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on X × {±1},

Rφ(fi) → R∗
φ implies R(fi) → R∗.

Here we mention that classification-calibration implies ψ is invertible on [0, 1], so in that case

it is meaningful to write the upper bound on excess risk in Theorem 3(1) as ψ−1(Rφ(f) − R∗
φ).

Invertibility follows from convexity of ψ together with Lemma 6, parts 6, 8, and 9 below.

Zhang (2004) has given a comparison theorem like Parts 1 and 3b of this theorem, for convex φ

that satisfy certain conditions. These conditions imply an assumption on the rate of growth (and

convexity) of ψ̃. Lugosi and Vayatis (2004) show that a limiting result like Part 3c holds for strictly

convex, differentiable, monotonic φ. The following theorem shows that if φ is convex, classification-

calibration is equivalent to a simple derivative condition on φ at zero. Clearly, the conclusions

of Theorem 3 hold under weaker conditions than those assumed by Zhang (2004) or Lugosi and

Vayatis (2004). Steinwart (2005) has shown that if φ is continuous and classification-calibrated,

then Rφ(fi) → R∗
φ implies R(fi) → R∗. Theorem 3 shows that we may obtain a more quantitative

statement of the relationship between these excess risks, under weaker conditions.

It is useful to note that when φ is convex, classification-calibration is equivalent to a condition

on the derivative of φ at zero, and in that case the ψ-transform takes a simplified form.

Theorem 4. 1. Let φ be convex. Then φ is classification-calibrated if and only if it is differen-

tiable at 0 and φ′(0) < 0.

2. If φ is convex and classification-calibrated, then

ψ(θ) = φ(0) −H

(

1 + θ

2

)

.

In the remainder of this section we present two preliminary lemmas and then we present a proof

of Theorem 3. Note that Section 3 presents several examples of calculations of the ψ-transform;

some readers may want to visit that section first before proceeding to the proof.

The following elementary lemma will be useful throughout the paper.

Lemma 5. Suppose g : R → R is convex and g(0) = 0. Then
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1. for all λ ∈ [0, 1] and x ∈ R,

g(λx) ≤ λg(x).

2. for all x > 0, 0 ≤ y ≤ x,

g(y) ≤ y

x
g(x).

3. g(x)/x is increasing on (0,∞).

Proof. For 1, g(λx) = g(λx+ (1− λ)0) ≤ λg(x) + (1− λ)g(0) = λg(x). To see 2, put λ = y/x in 1.

For 3, rewrite 2 as g(y)/y ≤ g(x)/x.

Lemma 6. For any nonnegative loss function φ, the functions H, H− and ψ have the following

properties:

1. H and H− are symmetric about 1/2 and ψ is symmetric about 0: for all η ∈ [0, 1],

H(η) = H(1 − η), H−(η) = H−(1 − η), ψ(η) = ψ(−η).

2. H is concave and, for 0 ≤ η ≤ 1, it satisfies

H(η) ≤ H

(

1

2

)

= H−

(

1

2

)

.

3. If φ is classification-calibrated, then H(η) < H(1/2) for all η 6= 1/2.

4. H− is concave on [0, 1/2] and on [1/2, 1], and for 0 ≤ η ≤ 1 it satisfies

H−(η) ≥ H(η).

5. H and H− are continuous on [0, 1].

6. ψ and ψ̃ are continuous on [−1, 1].

7. ψ is nonnegative and minimal at 0.
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8. ψ(0) = 0.

9. The following statements are equivalent:

(a) φ is classification-calibrated.

(b) ψ(θ) > 0 for all θ ∈ (0, 1].

Proof. See Appendix A.

Proof. (Of Theorem 3). For Part 1, it is straightforward to show that

R(f) −R∗ = R(f) −R(η − 1/2)

= E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|) ,

where 1 [Φ] is 1 if the predicate Φ is true and 0 otherwise (see, for example, Devroye et al., 1996).

We can apply Jensen’s inequality, since ψ is convex by definition, and the fact that ψ(0) = 0

(Lemma 6, part 8) to show that

ψ(R(f) −R∗) ≤ Eψ (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)

= E (1 [sign(f(X)) 6= sign(η(X) − 1/2)]ψ (|2η(X) − 1|)) .

Now, from the definition of ψ we know that ψ(θ) ≤ ψ̃(θ), so we have

ψ(R(f) −R∗) ≤ E
(

1 [sign(f(X)) 6= sign(η(X) − 1/2)] ψ̃ (|2η(X) − 1|)
)

= E
(

1 [sign(f(X)) 6= sign(η(X) − 1/2)]
(

H−(η(X)) −H(η(X))
))

= E

(

1 [sign(f(X)) 6= sign(η(X) − 1/2)]

(

inf
α:α(2η(X)−1)≤0

Cη(X)(α) −H(η(X))

))

≤ E
(

Cη(X)(f(X)) −H(η(X))
)

= Rφ(f) −R∗
φ,

where we have used the fact that for any x, and in particular when sign(f(x)) = sign(η(x) − 1/2),
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we have Cη(x)(f(x)) ≥ H(η(x)).

For Part 2, the first inequality is from Part 1. For the second, fix ǫ > 0 and θ ∈ [0, 1].

From the definition of ψ, we can choose γ, α1, α2 ∈ [0, 1] for which θ = γα1 + (1 − γ)α2 and

ψ(θ) ≥ γψ̃(α1) + (1 − γ)ψ̃(α2) − ǫ/2. Choose distinct x1, x2 ∈ X , and choose PX such that

PX{x1} = γ, PX{x2} = 1 − γ, η(x1) = (1 + α1)/2, and η(x2) = (1 + α2)/2. From the definition of

H−, we can choose f : X → R such that f(x1) ≤ 0, f(x2) ≤ 0, Cη(x1)(f(x1)) ≤ H−(η(x1)) + ǫ/2

and Cη(x2)(f(x2)) ≤ H−(η(x2)) + ǫ/2. Then we have

Rφ(f) −R∗
φ = Eφ(Y f(X)) − inf

g
Eφ(Y g(X))

= γ
(

Cη(x1)(f(x1)) −H(η(x1))
)

+ (1 − γ)
(

Cη(x2)(f(x2)) −H(η(x2))
)

≤ γ
(

H−(η(x1)) −H(η(x1))
)

+ (1 − γ)
(

H−(η(x2)) −H(η(x2))
)

+ ǫ/2

= γψ̃(α1) + (1 − γ)ψ̃(α2) + ǫ/2

≤ ψ(θ) + ǫ.

Furthermore, since sign(f(x1)) = sign(f(x2)) = −1 but η(x1), η(x2) ≥ 1/2,

R(f) −R∗ = E|2η(X) − 1|

= γ(2η(x1) − 1) + (1 − γ)(2η(x2) − 1)

= θ.

For Part 3, first note that, for any φ, ψ is continuous on [0, 1] and ψ(0) = 0 by Lemma 6, parts

6, 8, and hence θi → 0 implies ψ(θi) → 0. Thus, we can replace condition (3b) by

(3b’) For any sequence (θi) in [0, 1],

ψ(θi) → 0 implies θi → 0.

To see that (3a) implies (3b’), let φ be classification-calibrated, and let (θi) be a sequence that

does not converge to 0. Define c = lim sup θi > 0, and pass to a subsequence with lim θi = c. Then
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limψ(θi) = ψ(c) by continuity, and ψ(c) > 0 by classification-calibration (Lemma 6, part 9). Thus,

for the original sequence (θi), we see lim supψ(θi) > 0, so we cannot have ψ(θi) → 0.

To see that (3b’) implies (3c), suppose that Rφ(fi) → R∗
φ. By Part 1, ψ(R(fi) −R∗) → 0, and

(3b’) implies R(fi) → R∗.

Finally, to see that (3c) implies (3a), suppose that φ is not classification-calibrated. By defi-

nition, we can choose η 6= 1/2 and a sequence α1, α2, . . . such that sign(αi(η − 1/2)) = −1 but

Cη(αi) → H(η). Fix x ∈ X and choose the probability distribution P so that PX{x} = 1

and P (Y = 1|X = x) = η. Define a sequence of functions fi : X → R for which fi(x) = αi.

Then limR(fi) > R∗, and this is true for any infinite subsequence. But Cη(αi) → H(η) implies

Rφ(fi) → R∗
φ.

2.4 Examples

In this section we present several examples of the computation of the ψ-transform.

Example 2 (Exponential loss). Since φ(α) = exp(−α) is convex, differentiable and decreasing,

Theorem 4 Part 1 implies that it is classification-calibrated, as we have seen. We also noted that

H(η) = 2
√

η(1 − η). From Theorem 4 Part 2,

ψ(θ) = 1 −
√

1 − θ2.

The right panel of Figure 2 shows the graph of ψ over the interval [0, 1]. (We shall see below that

ψ(θ) = ψ(−θ) for any ψ and any θ ∈ [−1, 1].)

Example 3 (Truncated quadratic loss). Now consider φ(α) = (max{1 − α, 0})2, as depicted

together with φ(−α), C0.3(α), and C0.7(α) in the left panel of Figure 3. This function is convex,

differentiable, and decreasing at zero, and thus classification-calibrated. If η = 0, it is clear that

any α ∈ (−∞,−1] makes Cη(α) vanish. Similarly, any α ∈ [1,∞) makes the conditional φ-risk

vanish when η = 1. On the other hand, when 0 < η < 1, Cη is strictly convex with a (unique)
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Figure 3: Truncated quadratic loss.

stationary point, and solving for it yields

α∗(η) = 2η − 1. (2)

Notice that, although α∗ is in principle undefined at 0 and 1, we could choose to fix α∗(0) = −1

and α∗(1) = 1, which are valid settings. This would extend (2) to all of [0, 1].

As in Example 1, we may simplify the identity H(η) = Cη(α
∗(η)) for 0 < η < 1 to obtain

H(η) = 4η(1 − η),

18



−2 −1 0 1 2

0
1

2
3

4
5

6
7

φ(α)
φ(− α)
C0.3(α)
C0.7(α)

0.0 0.4 0.8

−
2

−
1

0
1

2

α*(η)
H(η)
ψ(θ)

Figure 4: Hinge loss.

which is also correct for η = 0 and 1, as noted. Thus,

ψ(θ) = θ2.

The right panel of Figure 3 shows α∗, H, and ψ.

Example 4 (Hinge loss). Here we take φ(α) = max{1 − α, 0}, which is shown in the left panel

of Figure 4 along with φ(−α), C0.3(α), and C0.7(α). Again, φ is convex, differentiable at 0 and has

negative derivative at 0, so it is classification-calibrated. By direct consideration of the piecewise-

linear form of Cη(α), it is easy to see that for η = 0, each α ≤ −1 makes Cη(α) vanish, just as in

Example 3. The same holds for α ≥ 1 when η = 1. Now for η ∈ (0, 1), we see that Cη decreases

strictly on (−∞,−1] and increases strictly on [1,∞). Thus any minima must lie in [−1, 1]. But

Cη is linear on [−1, 1], so the minimum must be attained at 1 for η > 1/2, −1 for η < 1/2, and
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anywhere in [−1, 1] for η = 1/2. We have argued that

α∗(η) = sign(η − 1/2) (3)

for all η ∈ (0, 1) other than 1/2. Since (3) yields valid minima at 0, 1/2, and 1 also, we could choose

to extend it to the whole unit interval. Regardless, a simple direct verification as in the previous

examples shows

H(η) = 2min{η, 1 − η}

for 0 ≤ η ≤ 1, and so

ψ(θ) = |θ|.

We present α∗, H, and ψ in the right panel of Figure 4.

Example 5 (Distance weighted discrimination). Marron and Todd (2002) introduced the

distance weighted discrimination method for high dimension, low sample size problems. This

method chooses an element of the unit ball in a reproducing kernel Hilbert space to minimize

a certain criterion. It is straightforward to show that this criterion is an empirical φ-risk, for the

loss function

φ(α) =











1
α if α ≥ γ,

1
α

(

2 − α
γ

)

otherwise.

where γ is a positive constant. Notice that φ is convex, differentiable, decreasing, and hence

classification-calibrated. It is easy to verify that

H(η) =
1

η
(1 + 2min{η, 1 − η}) ,

and hence

ψ(θ) =
|θ|
γ
.
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Example 6 (ARC-X4). Breiman (1999) proposed ARC-X4, a boosting algorithm based on the

convex cost function

φ(α) = |1 − α|5.

More generally, consider the function φ(α) = |1 − α|p for p > 1. It is convex and has φ′(0) < 0, so

it is classification-calibrated. Furthermore, it is easy to verify that, for η ∈ (0, 1),

α∗(η) =
η1/(p−1) − (1 − η)1/(p−1)

η1/(p−1) + (1 − η)1/(p−1)
,

and so

H(η) =
2pη(1 − η)

(

(1 − η)1/(p−1) + η1/(p−1)
)p−1

and

ψ(θ) = φ(0) −H

(

1 − θ

2

)

= 1 − 2p−1(1 − θ2)
(

(1 − θ)1/(p−1) + (1 + θ)1/(p−1)
)p−1 .

Example 7 (Sigmoid loss). We conclude by examining a non-convex loss function. Let φ(α) =

1− tanh(kα) for some fixed k > 0. Figure 5, left panel, depicts φ(α) with k = 1, as well as φ(−α),

C0.3(α), and C0.7(α). Using the fact that tanh is an odd function, we can rewrite the conditional

φ-risk as

Cη(α) = 1 + (1 − 2η) tanh(kα). (4)

From this expression, two facts are clear. First, when η = 1/2, every α minimizes Cη(α), because it

is identically 1. Second, when η 6= 1/2, Cη(α) attains no minimum, because tanh has no maximal

or minimal value on R. Hence α∗ is not defined for any η.

Inspecting (4), for 0 ≤ η < 1/2 we obtain H(η) = 2η by letting α → −∞. Analogously, when

α→ ∞, we get H(η) = 2(1 − η) for 1/2 < η ≤ 1. Thus we have

H(η) = 2min{η, 1 − η}, 0 ≤ η ≤ 1.
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Figure 5: Sigmoid loss.

Since H−((1 + θ)/2) ≡ φ(0) = 1, we have

ψ̃(θ) = |θ|,

and convexity gives ψ = ψ̃. We present H and ψ in the right panel of Figure 5. Finally, the

foregoing considerations imply that sigmoid loss is classification-calibrated, provided we note that

the definition of classification-calibration requires nothing when η = 1/2.

The following example illustrates the difficulties with nondifferentiability at zero, even if φ is

decreasing and strictly convex.
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Example 8. Consider

φ(α) =











e−2α if α ≤ 0,

e−α otherwise.

Then φ is strictly convex and decreasing, but not classification-calibrated.

To see this, notice that

ηφ(α) + (1 − η)φ(−α) =











ηe−2α + (1 − η)eα if α ≤ 0,

ηe−α + (1 − η)e2α otherwise.
(5)

Taking derivatives and setting to zero shows that (5) is minimized on the set {α ≤ 0} at

α = min

(

0,
1

3
ln

2η

1 − η

)

.

Thus, if η < 1/2 and 2η ≥ 1 − η (that is, 1/3 ≤ η < 1/2), the optimal α is at least 0.

2.5 Further analysis of ψ

It is interesting to consider what properties of convex cost functions determine the optimal bound

ψ on excess risk in terms of excess φ-risk. The following lemma shows that a flatter function φ

leads to a better bound ψ. The measure of curvature we consider involves the Bregman divergence

of φ at 0. If φ is convex and classification-calibrated, then it is differentiable at zero, and we can

define the Bregman divergence of φ at 0:

dφ(0, α) = φ(α) − (φ(0) + αφ′(0)).

We consider a symmetrized, normalized version of the Bregman divergence at 0, for α > 0:

ξ(α) =
dφ(0, α) + dφ(0,−α)

−φ′(0)α .
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Since φ is convex on R, both φ and ξ are continuous, so we can define

ξ−1(θ) = inf {α : ξ(α) = θ} .

Lemma 7. For convex, classification-calibrated φ,

ψ(θ) ≥ −φ′(0)θ
2
ξ−1

(

θ

2

)

.

Notice that a slower increase of ξ (that is, a less curved φ) gives better bounds on R(f) − R∗

in terms of Rφ(f) −R∗
φ.

2.6 General loss functions

All of the classification procedures mentioned in earlier sections utilize surrogate loss functions

which are either upper bounds on 0-1 loss or can be transformed into upper bounds via a positive

scaling factor. This is not a coincidence: as the next lemma establishes, it must be possible to scale

any classification-calibrated φ into such a majorant.

Lemma 8. If φ : R → [0,∞) is classification-calibrated, then there is a γ > 0 such that γφ(α) ≥

1 [α ≤ 0] for all α ∈ R.

We have seen that for convex φ, the function ψ̃ is convex, and so ψ = ψ̃. The following example

shows that we cannot, in general, avoid computing the convex lower bound ψ.

Example 9. Consider the following (classification-calibrated) loss function; see the left panel of

Figure 6.

φ(α) =



































4 if α ≤ 0, α 6= −1,

3 if α = −1,

2 if α = 1,

0 if α > 0, α 6= 1.
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Figure 6: Left panel, the loss function of Example 9. Right panel, the corresponding (nonconvex) ψ̃.
The dotted lines depict the graphs for the two linear functions of which ψ̃ is a pointwise minimum.

It is easy to check that

H−(η) =











min{4η, 2 + η} if η ≥ 1/2,

min{4(1 − η), 3 − η} if η < 1/2,

and that H(η) = 4min{η, 1 − η}. Thus,

H−(η) −H(η) =











min{8η − 4, 5η − 2} if η ≥ 1/2

min{4 − 8η, 3 − 5η} if η < 1/2,

so

ψ̃(θ) = min

{

4θ,
1

2
(5θ + 1)

}

.

This function, illustrated in the right panel of Figure 6, is not convex; in fact it is concave. Thus

ψ 6= ψ̃.
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3. TIGHTER BOUNDS UNDER LOW NOISE CONDITIONS

Predicting the optimal class label is difficult in regions where η(X) is close to 1/2, since the

information provided by the labels is most noisy there. In many practical pattern classification

problems, it is reasonable to assume that the posterior probability η(X) is unlikely to be very close

to 1/2. Hence, it is important to understand how pattern classification methods perform under

these ‘low noise’ conditions. In order to quantify the notion of low noise, consider the following

two properties of a probability distribution on X × {±1}, introduced by Mammen and Tsybakov

(1999) and Tsybakov (2001).

Mβ : For some c and all ǫ > 0,

Pr

(

0 <

∣

∣

∣

∣

η(X) − 1

2

∣

∣

∣

∣

≤ ǫ

)

≤ cǫβ.

Nα : For some c and all measurable f : X → {±1},

Pr(f(X)(η(X) − 1/2) < 0) ≤ c(R(f) −R∗)α. (6)

These conditions are equivalent.

Lemma 9. For 0 ≤ β < ∞, a probability distribution satisfies Mβ iff it satisfies Nβ/(1+β). Fur-

thermore, M∞ is equivalent to N1, because

Pr

(

0 <

∣

∣

∣

∣

η(X) − 1

2

∣

∣

∣

∣

<
1

2c

)

= 0 (7)

iff, for all measurable f : X → {±1},

Pr (f(X)(η(X) − 1/2) < 0) ≤ c(R(f) −R∗). (8)
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In what follows, we say that P has noise exponent α ≥ 0 if it satisfies Nα. Recall that

R(f) −R∗ = E (1 [f(X) 6= sign(η(X) − 1/2)] |2η(X) − 1|)

= E (1 [f(X)(η(X) − 1/2) < 0] |2η(X) − 1|) (9)

≤ PX (f(X)(η(X) − 1/2)) ,

which implies α ≤ 1. If α = 0, this imposes no constraint on the noise: take c = 1 to see that every

probability measure satisfies N1.

The following theorem shows that, if the probability distribution is such that η(X) is unlikely

to be close to 1/2, then the bound on the excess risk in terms of the excess φ-risk is improved. In

cases where ψ is strictly convex, such as the exponential, quadratic, and logistic loss functions, this

implies that performance improves in the presence of a favorable noise exponent, without knowledge

of the noise exponent.

Theorem 10. Suppose P has noise exponent 0 < α ≤ 1, and φ is classification-calibrated. Then

there is a c > 0 such that for any f : X → R,

c (R(f) −R∗)α ψ

(

(R(f) −R∗)1−α

2c

)

≤ Rφ(f) −R∗
φ.

Furthermore, this never gives a worse rate than the result of Theorem 3, since

(R(f) −R∗)α ψ

(

(R(f) −R∗)1−α

2c

)

≥ ψ

(

R(f) −R∗

2c

)

.

Proof. Recalling the definition of low noise in (6), fix c > 0 such that for every f : X → R,

PX (sign(f(X)) 6= sign(η(X) − 1/2)) ≤ c (R(f) −R∗)α .

We approximate the error integral separately over a region with high noise, and over the remainder
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of the input space. To this end, fix ǫ > 0 (the noise threshold), and notice that

R(f) −R∗ = E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)

= E (1 [|2η(X) − 1| < ǫ]1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)

+ E (1 [|2η(X) − 1| ≥ ǫ]1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)

≤ cǫ (R(f) −R∗)α

+ E (1 [|2η(X) − 1| ≥ ǫ]1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|) .

Now, for any x,

1 [|2η(x) − 1| ≥ ǫ] |2η(x) − 1| ≤ ǫ

ψ(ǫ)
ψ(|2η(x) − 1|). (10)

Indeed, when |2η(x) − 1| < ǫ, (10) follows from the fact that ψ is nonnegative (Lemma 6, parts

8, 9), and when |2η(x) − 1| ≥ ǫ it follows from Lemma 5(2).

Thus, using the same argument as in the proof of Theorem 3,

R(f) −R∗ ≤ cǫ (R(f) −R∗)α +
ǫ

ψ(ǫ)
E (1 [sign(f(X)) 6= sign(η(X) − 1/2)]ψ (|2η(X) − 1|))

≤ cǫ (R(f) −R∗)α +
ǫ

ψ(ǫ)

(

Rφ(f) −R∗
φ

)

,

and hence,
(

R(f) −R∗

ǫ
− c (R(f) −R∗)α

)

ψ(ǫ) ≤ Rφ(f) −R∗
φ.

Choosing

ǫ =
1

2c
(R(f) −R∗)1−α

and substituting gives the first inequality. (We can assume that R(f)−R∗ > 0, since the inequality

is trivial otherwise.)

The second inequality follows from the fact that ψ(θ)/θ is non-decreasing, which we know from

Lemma 5, part 3.
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4. ESTIMATION RATES

In previous sections, we have seen that the excess risk, R(f)−R∗, can be bounded in terms of the

excess φ-risk, Rφ(f) − R∗
φ. In this section, we give bounds on the excess φ-risk. Combined with

our earlier results, these lead to bounds on the excess risk. We focus on methods that choose a

function from a class F to minimize the empirical φ-risk,

R̂φ(f) = Êφ(Y f(X)) =
1

n

n
∑

i=1

φ(Yif(Xi)).

Let f̂ denote the minimizer of the empirical φ-risk. We are interested in the convergence of f̂ ’s

excess φ-risk, Rφ(f̂) − R∗
φ. We can split this excess φ-risk into an estimation error term and an

approximation error term:

Rφ(f̂) −R∗
φ =

(

Rφ(f̂) − inf
f∈F

Rφ(f)

)

+

(

inf
f∈F

Rφ(f) −R∗
φ

)

.

We focus on the first term, the estimation error term. We assume throughout that some f∗ ∈ F

achieves the infimum,

Rφ(f∗) = inf
f∈F

Rφ(f).

The simplest way to bound Rφ(f̂) −Rφ(f∗) is to use a uniform convergence argument: if

sup
f∈F

∣

∣

∣
R̂φ(f) −Rφ(f)

∣

∣

∣
≤ ǫn, (11)

then

Rφ(f̂) −Rφ(f∗) =
(

Rφ(f̂) − R̂φ(f̂)
)

+
(

R̂φ(f̂) − R̂φ(f∗)
)

+
(

R̂φ(f∗) −Rφ(f∗)
)

≤ 2ǫn +
(

R̂φ(f̂) − R̂φ(f∗)
)

≤ 2ǫn,

since f̂ minimizes R̂φ. However, this approach can give the wrong rate. For example, for a nontrivial
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class F , the expectation of the supremum of the empirical process in (11) can decrease no faster

than 1/
√
n. However, if F is a small class (for instance, if it is a subset of a finite-dimensional

linear class) and Rφ(f∗) = 0, then Rφ(f̂) should decrease as log n/n.

Lee et al. (1996) showed that better rates than those that follow from the uniform convergence

argument can be obtained for the quadratic loss φ(α) = (1−α)2 if F is convex, even if Rφ(f∗) > 0.

In particular, because the quadratic loss function is strictly convex, it is possible to bound the

variance of the excess loss (the difference between the loss of a function f and that of the optimal

f∗) in terms of its expectation. Since the variance decreases as we approach the optimal f∗, the

risk of the empirical minimizer converges more quickly to the optimal risk than the simple uniform

convergence results would suggest. Mendelson (2002) improved this result, and extended it from

prediction in L2(PX) to prediction in Lp(PX) for other values of p. The proof used the idea of

the modulus of convexity of a norm. In this section, we use this idea to give a simpler proof of a

more general bound when the loss function satisfies a strict convexity condition, and we obtain risk

bounds.

The modulus of convexity of an arbitrary strictly convex function (rather than a norm) is a key

notion in formulating our results. Recall that a pseudometric d on a set S satisfies all of the axioms

of a metric except that there can be a 6= b with d(a, b) = 0.

Definition 11 (Modulus of convexity). Given a pseudometric d defined on a convex subset S

of a vector space, and a convex function f : S → R, the modulus of convexity of f with respect to

d is the function δ : [0,∞) → [0,∞] satisfying

δ(ǫ) = inf

{

f(x1) + f(x2)

2
− f

(

x1 + x2

2

)

: x1, x2 ∈ S, d(x1, x2) ≥ ǫ

}

.

If δ(ǫ) > 0 for all ǫ > 0, we say that f is strictly convex with respect to d.

For example, for S = R, d the Euclidean distance, and f(α) = α2, the modulus of convexity

is δ(ǫ) = ǫ2/4. For S = [−a, a] and the same metric, f(α) = eα has modulus of convexity

e−a((1 + eǫ)/2 − eǫ/2) = e−aǫ2/8 + o(ǫ2).

We consider loss functions φ that also satisfy a Lipschitz condition with respect to a pseudo-
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metric d on R: we say that φ : R → R is Lipschitz with respect to d, with constant L, if

for all a, b ∈ R, |φ(a) − φ(b)| ≤ L · d(a, b).

(Note that if d is a metric and φ is convex, then φ necessarily satisfies a Lipschitz condition on any

compact subset of R (Rockafellar, 1997).)

Assumption A. The loss function φ : R → R and the class F of real functions on X satisfy the fol-

lowing conditions. For some pseudometric d on R, there are constants L, c, r, and B, such that the

following conditions obtain:

A.1. φ is classification-calibrated,

A.2. φ is Lipschitz with constant L, with respect to d,

A.3. φ is convex with modulus of convexity δ(ǫ) ≥ cǫr with respect to d,

A.4. F is convex,

A.5. For all f ∈ F , x1, x2 ∈ X , and y1, y2 ∈ Y, d(y1f(x1), y2f(x2)) ≤ B.

Define the excess loss class gF as

gF = {gf : f ∈ F} = {(x, y) 7→ φ(yf(x)) − φ(yf∗(x)) : f ∈ F} ,

where f∗ = arg minf∈F Eφ(Y f(X)). Notice that functions in gF can take negative values, but they

all have nonnegative expectation. We are interested in bounds on the excess φ-risk, Rφ(f̂) − R∗
φ,

where f̂ is the minimizer of the empirical φ-risk. This is equivalent to the expectation of gf̂ , where

gf̂ is the element of the loss class with minimal sample average.

In the following theorem, we exploit the concentration of measure phenomenon to give a bound

on the excess φ-risk. A standard uniform convergence argument, described at the beginning of this

section, could proceed by considering the supremum of the empirical process indexed by the loss
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class,

E sup
{

Eg − Êg : g ∈ gF

}

.

This corresponds to considering the maximal deviation between expectations and sample averages

over the loss class. Instead, we use an approach introduced by Bartlett and Mendelson (2003)—see

also Massart (2000b), Koltchinskii and Panchenko (2000), Mendelson (2002), Lugosi and Wegkamp

(2004) and Bartlett et al. (2002). We divide the excess loss class into subsets of different expectation,

{g ∈ gF : Eg = ǫ}, and consider the suprema of the empirical processes indexed by such subsets,

ξgF (ǫ) = E sup
{

Eg − Êg : g ∈ gF , Eg = ǫ
}

.

(Notice that the function ξgF depends on the sample size n, but we simplify the notation by omitting

this dependence.) For strictly convex, Lipschitz φ and convex F , the variance of each excess loss

function is bounded in terms of its expectation, and this allows us to replace the maximal deviation

over the whole class by the maximal deviation over a small subset of the class: those functions with

expectation ǫ∗n, where ǫ∗n is the fixed point of the map ǫ 7→ ξgF (ǫ).

Theorem 12. Suppose that the loss function φ and the function class F satisfy Assumption A.

Then there is a constant K such that, with probability at least 1 − δ, the minimizer f̂ ∈ F of the

empirical φ-risk satisfies

Rφ(f̂) ≤ inf
f∈F

Rφ(f) + ǫn,

where

ǫn = Kmax

{

ǫ∗n,

(

crL
2 ln(1/δ)

n

)1/(2−β)

,
BL ln(1/δ)

n

}

,

ǫ∗n ≥ ξgF (ǫ∗n),

cr =











(2c)−2/r if r ≥ 2,

(2c)−1B2−r otherwise,

β = min

(

1,
2

r

)

.
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Thus, there is a constant c′ such that, for any probability distribution P on X × Y with noise

exponent α, with probability at least 1 − δ,

c′
(

R(f̂) −R∗
)α

ψ







(

R(f̂) −R∗
)1−α

2c′






≤ ǫn + inf

f∈F
Rφ(f) −R∗

φ.

It is instructive to consider the various components of the classification risk in this bound. The

estimation error, ǫn, increases as the complexity of the class F increases, and decreases as the

sample size increases. The approximation error, inff∈F Rφ(f) − R∗
φ, is expressed in terms of the

φ-risk. It decreases as the class F increases. Finally, the use of the convex surrogate φ in place of

the 0-1 loss affects the bound through the rate of growth of the function of R(f̂)−R∗ that appears

on the left hand side. The rate of decrease of classification risk improves as the noise exponent

increases.

Consider the impact on the bound of the modulus of complexity of the loss function: for flatter

loss functions, where the exponent of the modulus of complexity is r > 2, the rate can be no better

than n−1/(2−2/r) = n−r/(2(r−1)), which approaches n−1/2 as r gets large. For more curved φ, with

r ≤ 2, the rate can be as good as n−1. On the other hand, we have seen that a more curved φ leads

to a worse ψ. However, if the noise exponent is α = 1, the bound is optimized by a more curved φ,

with r ≥ 2.

Shen et al. (2003) show that fast rates are also possible under the low noise assumption for a

particular non-convex φ. In that case, however, minimization of empirical φ-risk requires the use

of heuristics, since the optimization problem cannot be solved efficiently.

In the remainder of this section we present a proof of Theorem 12. There are two key ingredients

in the proof, which we capture in a pair of lemmas. The first lemma shows that if the variance of

an excess loss function is bounded in terms of its expectation, then we can obtain faster rates than

would be implied by the uniform convergence bounds. The second lemma presents simple conditions

on the loss function that ensure that this condition is satisfied for convex function classes.

Lemma 13. Consider a class F of functions f : X → R with supf∈F ‖f‖∞ ≤ B. Let P be a
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probability distribution on X , and suppose that there are c ≥ 1 and 0 < β ≤ 1 such that, for all

f ∈ F ,

Ef2(X) ≤ c(Ef)β. (12)

Fix 0 < α, ǫ < 1. Suppose that if some f ∈ F has Êf ≤ αǫ and Ef ≥ ǫ, then some f ′ ∈ F has

Êf ′ ≤ αǫ and Ef = ǫ. Then with probability at least 1 − e−x, any f ∈ F satisfies

Êf ≤ αǫ⇒ Ef ≤ ǫ.

provided that

ǫ ≥ max

{

ǫ∗,

(

9cKx

(1 − α)2n

)1/(2−β)

,
4KBx

(1 − α)n

}

.

where K is an absolute constant and

ǫ∗ ≥ 6

1 − α
ξF (ǫ∗).

As an aside, notice that assuming that the distribution has noise exponent α can lead to a

condition of the form (12). To see this, let f∗ be the Bayes decision rule, and consider the class of

functions {αgf : f ∈ F , α ∈ [0, 1]}, where

gf (x, y) = ℓ(f(x), y) − ℓ(f∗(x), y)

and ℓ is the 0-1 loss. Then the condition

PX (f(X) 6= f∗(X)) ≤ c (Eℓ(f(X), Y ) − Eℓ(f∗(X), Y ))α

can be rewritten

Eg2
f (X,Y ) ≤ c(Egf (X,Y ))α.

Thus, we can obtain a version of Tsybakov’s result for small function classes from Lemma 13: if
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the Bayes decision rule f∗ is in F , then the function f̂ that minimizes empirical risk has

Êgf̂ = R̂(f) − R̂(f∗) ≤ 0,

and so with high probability has Egf̂ = R(f) − R∗ ≤ ǫ under the conditions of the theorem. If F

is a VC-class, we have ǫ ≤ c log n/n for some constant c, which is surprisingly fast when R∗ > 0.

The second ingredient in the proof of Theorem 12 is the following lemma, which gives conditions

that ensure a variance bound of the kind required for the previous lemma (condition (12)). For a

pseudometric d on R and a probability distribution on X , we can define a pseudometric d̃ on the

set of uniformly bounded real functions on X ,

d̃(f, g) =
(

Ed(f(X), g(X))2
)1/2

.

If d is the usual metric on R, then d̃ is the L2(P ) pseudometric.

Lemma 14. Consider a convex class F of real-valued functions defined on X , a convex loss function

ℓ : R → R, and a pseudometric d on R. Suppose that ℓ satisfies the following conditions.

1. ℓ is Lipschitz with respect to d, with constant L:

for all a, b ∈ R, |ℓ(a) − ℓ(b)| ≤ Ld(a, b).

2. R(f) = Eℓ(f) is a strictly convex functional with respect to the pseudometric d̃, with modulus

of convexity δ̃:

δ̃(ǫ) = inf

{

R(f) +R(g)

2
−R

(

f + g

2

)

: d̃(f, g) ≥ ǫ

}

.

Suppose that f∗ satisfies R(f∗) = inff∈F R(f), and define

gf (x) = ℓ(f(x)) − ℓ(f∗(x)).
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Then

Egf ≥ 2δ̃
(

d̃(f, f∗)
)

≥ 2δ̃





√

Eg2
f

L



 .

We shall apply the lemma to a class of functions of the form (x, y) 7→ yf(x), with the loss

function ℓ = φ. (The lemma can be trivially extended to a loss function ℓ : R×Y → R that satisfies

a Lipschitz constraint uniformly over Y.)

In our application, the following result will imply that we can estimate the modulus of convexity

of Rφ with respect to the pseudometric d̃ if we have some information about the modulus of

convexity of φ with respect to the pseudometric d.

Lemma 15. Suppose that a convex function ℓ : R → R has modulus of convexity δ with respect to

a pseudometric d on R, for some fixed c, r > 0, every ǫ > 0 satisfies

δ(ǫ) ≥ cǫr.

Then for functions f : X → R satisfying supx1,x2
d(f(x1), f(x2)) = B, the modulus of convexity δ̃

of R(f) = Eℓ(f) with respect to the pseudometric d̃ satisfies

δ̃(ǫ) ≥ crǫ
max{2,r},

where cr = c if r ≥ 2 and cr = cBr−2 otherwise.

It is also possible to prove a converse result, that the modulus of convexity of φ is at least the

infimum over probability distributions of the modulus of convexity of R. (To see this, we choose a

probability distribution concentrated on the x ∈ X where f1(x) and f2(x) achieve the infimum in

the definition of the modulus of convexity.)

Proof. (of Theorem 12) Consider the class {gf : f ∈ F} with, for each f ∈ F ,

gf (x, y) = φ(yf(x)) − φ(yf∗(x)),

where f∗ ∈ F minimizes Rφ(f) = Eφ(Y f(X)). Applying Lemma 15, we see that the functional
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R(f) = Eφ(f), defined for functions (x, y) 7→ yf(x), has modulus of convexity

δ̃(ǫ) ≥ crǫ
max{2,r},

where cr = c if r ≥ 2 and cr = cBr−2 otherwise. From Lemma 14,

Egf ≥ 2cr





√

Eg2
f

L





max{2,r}

,

which is equivalent to

Eg2
f ≤ c′rL

2 (Egf )min{1,2/r}

with

c′r =











(2c)−2/r if r ≥ 2

(2c)−1B2−r otherwise

To apply Lemma 13 to the class {gf : f ∈ F}, we need to check the condition. Suppose that

gf has Êgf ≤ αǫ and Egf ≥ ǫ. Then, by the convexity of F and the continuity of φ, some

f ′ = γf + (1 − γ)f∗ ∈ F , for 0 ≤ γ ≤ 1, has Egf = ǫ. Jensen’s inequality shows that

Êgf = Êφ(Y (γf(X) + (1 − γ)f∗(X))) − Êφ(Y f∗(X)) ≤ γ
(

Êφ(Y f(x)) − Êφ(Y f∗(X))
)

≤ αǫ.

Applying Lemma 13 we have, with probability at least 1 − e−x, any gf with Êgf ≤ ǫ/2 also has

Egf ≤ ǫ, provided

ǫ ≥ max

{

ǫ∗,

(

36c′rL
2Kx

n

)1/(2−min{1,2/r})

,
16KBLx

n

}

,

where ǫ∗ ≥ 12ξgF (ǫ∗). In particular, if f̂ ∈ F minimizes empirical risk, then

Êgf̂ = R̂φ(f̂) − R̂φ(f∗) ≤ 0 <
ǫ

2
,

hence Egf̂ ≤ ǫ.
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Combining with Theorem 10 shows that, for some c′,

c′
(

R(f̂) −R∗
)α

ψ







(

R(f̂) −R∗
)1−α

2c′






≤ Rφ(f̂) −R∗

φ

= Rφ(f̂) −Rφ(f∗) +Rφ(f∗) −R∗
φ

≤ ǫ+Rφ(f∗) −R∗
φ.

4.1 Examples

We consider four loss functions that satisfy the requirements for the fast convergence rates: the

exponential loss function used in AdaBoost, the deviance function corresponding to logistic regres-

sion, the quadratic loss function, and the truncated quadratic loss function; see Table 1. These

functions are illustrated in Figures 1 and 3. We use the pseudometric

dφ(a, b) = inf {|a− α| + |β − b| : φ constant on (min{α, β},max{α, β})} .

For all except the truncated quadratic loss function, this corresponds to the standard metric on

R, dφ(a, b) = |a − b|. In all cases, dφ(a, b) ≤ |a − b|, but for the truncated quadratic, dφ ignores

differences to the right of 1. It is easy to calculate the Lipschitz constant and modulus of convexity

for each of these loss functions. These parameters are given in Table 1.

In the following result, we consider the function class used by algorithms such as AdaBoost: the

class of linear combinations of classifiers from a fixed base class. We assume that this base class has

finite Vapnik-Chervonenkis dimension, and we constrain the size of the class by restricting the ℓ1

norm of the linear parameters. If G is the VC-class, we write F = B absconv(G), for some constant

B, where

B absconv(G) =

{

m
∑

i=1

αigi : m ∈ N, αi ∈ R, gi ∈ G, ‖α‖1 = B

}

.

Theorem 16. Let φ : R → R be a convex loss function. Suppose that, on the interval [−B,B], φ
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φ(α) LB δ(ǫ)

exponential e−α eB e−Bǫ2/8

logistic ln(1 + e−2α) 2 e−2Bǫ2/4

quadratic (1 − α)2 2(B + 1) ǫ2/4

truncated quadratic (max{0, 1 − α})2 2(B + 1) ǫ2/4

Table 1: Four convex loss functions defined on R. On the interval [−B,B], each has the indicated
Lipschitz constant LB and modulus of convexity δ(ǫ) with respect to dφ. All have a quadratic
modulus of convexity.

is Lipschitz with constant LB and has modulus of convexity δ(ǫ) = aBǫ
2 (both with respect to the

pseudometric d).

For any probability distribution P on X × Y that has noise exponent α, there is a constant c′

for which the following is true. For i.i.d. data (X1, Y1), . . . , (Xn, Yn), let f̂ ∈ F be the minimizer

of the empirical φ-risk, Rφ(f) = Êφ(Y f(X)). Suppose that F = B absconv(G), where G ⊆ {±1}X

has VC-dimension V , and

ǫ∗n ≥ BLB max

{

(

LBaB

B

)1/(V +1)

, 1

}

n−(V +2)/(2(V +1))

Then with probability at least 1 − δ,

R(f̂) ≤ R∗ + c′
(

ǫ∗n +
LB(LB/(2aB) +B) ln(1/δ)

n
+ inf

f∈F
Rφ(f) −R∗

φ

)1/(2−α)

.

4.2 Simulations

This section describes a set of simulations which illustrate the performance of the excess risk bound

based on the ψ-transform, as well as the theoretical excess φ-risk rates obtained from Theorem 12.

We took X = [−1, 1]10 as our covariate space, with PX equal to the uniform distribution on X . For

the conditional distribution η(x), we used members of a parameterized family based on the logistic

function:

ηq(x) = P (Y = 1|x) = σ(C sign(x1)|x1|q) , q > 0 ,
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where σ(u) = 1/(1 + exp(−u)). Varying q results in different noise exponents for the conditional

distribution: it is straightforward to see that PX (0 < |2ηq(X)−1| < ǫ) < (4/C)1/qǫ1/q, so Lemma 9

implies that ηq has noise exponent 1/(q+1). The constant C was chosen so that ηq(−1) = 1/4 and

ηq(1) = 3/4, for all q.

The margin-based loss functions in our simulations also came from a one-dimensional family,

indexed by p > 1:

φp(α) = (p− 1)(2/p)
p

p−1 − 2α + |α|p .

The leading constant ensures φp is nonnegative for all α ∈ [−1, 1]. For p > 1, φp is convex with

a negative first derivative at 0, so Theorem 4 Part 1 tells us that it is classification-calibrated.

Different choices of p lead to different values for the modulus of convexity exponent of φp, since

(φ(ǫ) + φ(−ǫ))/2 − φ(0) = ǫp for positive ǫ.

We took as a family of real-valued classifiers the convex hull of the coordinate functions, F =

co{x 7→ βi(x) = xi : i = 1, . . . , 10}. Thus each f ∈ F has the form f(u) = λ⊤u for some λ ≥ 0,

λ⊤1 ≤ 1. We simulated datasets of several sizes n between 10 and 10,000, using various values of p

and q, as detailed below. For each choice of n, p, and q, 25 repetitions of the following procedure

were performed. First, we generated a dataset according to (PX , ηq(x)) and found the empirical

risk minimizer f̂n over F , via a constrained convex optimization. Then we computed the 0-1 risk

of f̂n, approximating the relevant integral with adaptive numerical quadrature. Subtracting the

Bayes risk for the chosen distribution (depending on q), also approximated using quadrature, gave

us the excess 0-1 risk of f̂n. Finally, we carried out a similar computation to determine the excess

φ-risk of f̂n.

We illustrate the behavior of the upper bound on excess 0-1 risk obtained from the ψ-transform

using these simulation results. A routine calculation along the lines of the examples in Section 2.3

shows that ψ(θ) = (p− 1)(2θ/p)p/(p−1). We appeal to Theorem 3 to obtain the inequality

(p− 1)

(

2(R(f) −R∗)

p

)
p

p−1

≤ Rφ(f) −R∗
φ .
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Solving this inequality for excess 0-1 risk gives an upper bound as a function of excess φ-risk,

R(f) −R∗ ≤ p

2

(

Rφ(f) −R∗
φ

p− 1

)
p−1

p

.

We verified that, as expected, every excess 0-1 risk in our simulations obeyed the upper bound

determined by its corresponding excess φ-risk, across all values of p and q.

We also used the simulations to illustrate the theoretical rates of convergence for excess φ-

risk implied by Theorem 12. For the class F under consideration, the centered empirical process

ξF (ǫ) utilized in the theorem can be pointwise upper-bounded using a local Rademacher average

symmetrization, which is in turn bounded by the Dudley entropy integral. The derivation closely

follows the proof of Theorem 16 (see also Bartlett et al. (2002)). These calculations reveal that a

suitable upper bound on ǫ∗ in Theorem 12 is c(d/n) log(nL/d), with d = 10 the dimension of F and

c a universal constant. Thus, with probability at least 1 − e−x, we have the excess φ-risk bound

Rφ(f̂) −Rφ(f∗) ≤ cmax

{

(

crL
2x

n

)1/(2−min{1,2/p})

,
BLx

n
,
d

n
log

(

nL

d

)

}

,

recalling that p is the modulus of convexity exponent for φp(α). Treating the logarithmic factor as

approximately constant, we therefore expect a rate of order n−1 for 1 < p < 2, and n−1/(2−2/p) for

p ≥ 2.

Figure 7 presents the simulation results for p ∈ {1.5, 2, 3.5}, all with q = 1. Results with

q ∈ {1.5, 2, 2.5, 3} are similar, and indeed the theoretical rates do not vary with q. The solid lines

are natural cubic spline fits, on the log-log scale, to the sample size and excess φ-risk from each

simulation. The slope of each dashed line is the theoretical rate exponent implied by the bound:

−1.0 for p = 1.5 and 2, and −0.7 for p = 3.5. As the plots reveal, the agreement with theory when

p = 1.5 and 2 is extremely good for large enough n. Though the match when p = 3.5 is less exact,

the simulated results appear compatible with the theoretical rate to within the noise tolerance.
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Figure 7: Rate plots. Each panel shows simulated excess φ-risk on the log scale versus simulated
sample size on the log scale, for the choice of p given at top. We took q = 1 in each case. Natural
cubic spline fits appear as solid lines. The dashed line depicts the slope corresponding to the
theoretical rate for the chosen p (vertical position of the dashed line is not informative).

5. CONCLUSIONS

We have focused on the relationship between properties of a nonnegative margin-based loss function

φ and the statistical performance of the classifier which, based on an i.i.d. training set, minimizes

empirical φ-risk over a class of functions. We first derived a universal upper bound on the popu-

lation misclassification risk of any thresholded measurable classifier in terms of its corresponding

population φ-risk. The bound is governed by the ψ-transform, a convexified variational transform of

φ. It is the tightest possible upper bound uniform over all probability distributions and measurable

functions in this setting.

Using this upper bound, we characterized the class of loss functions which guarantee that every

φ-risk consistent classifier sequence is also Bayes-risk consistent, under any population distribu-

tion. Here φ-risk consistency denotes sequential convergence of population φ-risks to the smallest

possible φ-risk of any measurable classifier. The characteristic property of such a φ, which we

term classification-calibration, is a kind of pointwise Fisher consistency for the conditional φ-risk

at each x ∈ X . The necessity of classification-calibration is apparent; the sufficiency underscores

its fundamental importance in elaborating the statistical behavior of large-margin classifiers.

For the special case of convex φ, which is widespread in practical applications, we demon-
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strated that classification-calibration is equivalent to the existence and strict negativity of the first

derivative of φ at 0, a condition readily verifiable in most practical examples. In addition, the

convexification step in the ψ-transform is vacuous for convex φ, which simplifies the derivation of

closed forms.

Under the low noise assumption of Mammen and Tsybakov (1999) and Tsybakov (2001), we

sharpened our original upper bound. We found that empirical φ-risk minimization yields conver-

gence of φ-risk to that of the best-performing function in F , as the sample size grows. For strictly

convex φ, the convergence rate can be faster than that implied by standard uniform convergence

arguments, depending on the strictness of convexity of φ and the complexity of F . Combined with

the low noise condition, we saw that this implies fast rates of convergence of the misclassification

risk to its optimal value. Simulations confirm the convergence rates of φ-risk predicted by the

theory, for a linear class and a particular probability distribution. Simulations also show that the

relationship between excess φ-risk and excess risk closely follows that predicted by the theory.

Two important issues that we have not treated are the approximation error for population φ-risk

relative to F , and algorithmic considerations in the minimization of empirical φ-risk. In the setting

of scaled convex hulls of a base class, some approximation results are given by Breiman (2000),

Mannor et al. (2002) and Lugosi and Vayatis (2004). Regarding the numerical optimization to

determine f̂ , Zhang and Yu (2003) give novel bounds on the convergence rate for generic forward

stagewise additive modeling (see also Zhang, 2002). These authors focus on optimization of a

convex risk functional over the entire linear hull of a base class, with regularization enforced by an

early stopping rule.

APPENDIX A: PROOFS

Proof of Lemma 6

Proof. 1 is immediate from the definitions.

For 2, concavity follows because H is an infimum of concave (affine) functions of η. Now,

since H is concave and symmetric about 1/2, H(1/2) = H((1/2)η + (1/2)(1 − η)) ≥ (1/2)H(η) +
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(1/2)H(1 − η) = H(η). Thus H is maximal at 1/2. To see that H(1/2) = H−(1/2), notice that

α(2η − 1) ≤ 0 for all α when η = 1/2.

To prove 3, assume that there is an η 6= 1/2 with H(η) = H(1/2). Fix a sequence α1, α2, . . . for

which limi→∞C1/2(αi) = H(1/2). By the assumption,

lim inf
i→∞

(ηφ(αi) + (1 − η)φ(−αi)) ≥ H(η) = H(1/2) = lim
i→∞

φ(αi) + φ(−αi)

2
, (13)

Rearranging, we have

(η − 1/2) lim inf
i→∞

(φ(αi) − φ(−αi)) ≥ 0.

Since H(1 − η) = H(η), the same argument shows that

(η − 1/2) lim inf
i→∞

(φ(−αi) − φ(αi)) ≥ 0.

It follows that

lim
i→∞

(φ(αi) − φ(−αi)) = 0,

so all the expressions in (13) are equal. Hence, H(η) = limi→∞Cη(αi) = limi→∞Cη(−αi), which

implies that H(η) = H−(η). Thus, if H(η) = H(1/2), φ is not classification-calibrated.

For 4, H− is concave on [0, 1/2] by the same argument as for the concavity of H. (Notice that

when η < 1/2, H− is an infimum over a set of concave functions, but in this case when η > 1/2, it

is an infimum over a different set of concave functions.) The inequality H− ≥ H follows from the

definitions.

For 5, first notice that the concavity of H implies that it is continuous on the relative interior

of its domain, i.e., (0, 1). Thus, to show that H is continuous [0, 1], it suffices (by symmetry) to

show that it is left continuous at 1. Because [0, 1] is locally simplicial in the sense of Rockafellar

(1997), his Theorem 10.2 gives lower semicontinuity of H at 1 (equivalently, upper semicontinuity

of the convex function −H at 1). To see upper semicontinuity of H at 1, on the other hand, fix

any ǫ > 0 and choose αǫ such that φ(αǫ) ≤ H(1) + ǫ/2. Then for any η between 1 − ǫ/(2φ(−αǫ))
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and 1 we have

H(η) ≤ Cη(αǫ) ≤ H(1) + ǫ.

Since this is true for any ǫ, lim supη→1H(η) ≤ H(1), which is upper semicontinuity. Thus H is left

continuous at 1. The same argument shows that H− is continuous on (0, 1/2) and (1/2, 1), and

left continuous at 1/2 and 1. Symmetry implies that H− is continuous on the closed interval [0, 1].

The continuity of ψ̃ is now immediate.

To see 6, observe that ψ is a closed convex function with locally simplicial domain [−1, 1], so

its continuity follows by once again applying Theorem 10.2 of Rockafellar (1997).

It follows immediately from 2 and 4 that ψ̃ is nonnegative and minimal at 0. Since epi ψ is the

convex hull of epi ψ̃, i.e., the set of all convex combinations of points in epi ψ̃, we see that ψ is also

nonnegative and minimal at 0, which is 7.

8 follows immediately from 2.

To prove 9, suppose first that φ is classification-calibrated. Then for all θ ∈ (0, 1], ψ̃(θ) > 0.

But every point in epi ψ is a convex combination of points in epi ψ̃, so if (θ, 0) ∈ epi ψ, we can only

have θ = 0. Hence for θ ∈ (0, 1], points in epi ψ of the form (θ, c) must have c > 0, and closure

of ψ̃ now implies ψ(θ) > 0. For the converse, notice that if φ is not classification-calibrated, then

some θ > 0 has ψ̃(θ) = 0, and so ψ(θ) = 0.

Proof of Theorem 4

Recall that a subgradient of φ at α ∈ R is any value mα ∈ R such that φ(x) ≥ φ(α) +mα(x − α)

for all x.

Proof. Part 1: Fix a convex function φ.

(=⇒) Since φ is convex, we can find subgradients g1 ≥ g2 such that, for all α,

φ(α) ≥ g1α+ φ(0)

φ(α) ≥ g2α+ φ(0).
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Then we have

ηφ(α) + (1 − η)φ(−α) ≥ η(g1α+ φ(0)) + (1 − η)(−g2α+ φ(0))

= (ηg1 − (1 − η)g2)α+ φ(0) (14)

=

(

1

2
(g1 − g2) + (g1 + g2)

(

η − 1

2

))

α+ φ(0). (15)

Since φ is classification-calibrated, for η > 1/2 we can express H(η) as infα>0[ηφ(α)+(1−η)φ(−α)].

If (15) were greater than φ(0) for every α > 0, it would then follow that for η > 1/2, H(η) ≥ φ(0) ≥

H(1/2), which, by Lemma 6, part 3, is a contradiction. We now show that g1 > g2 implies this

contradiction. Indeed, we can choose

1

2
< η <

1

2
+

g1 − g2
2|g1 + g2|

to show that |(η − 1/2)(g1 + g2)| < (g1 − g2)/2, so (15) is greater than φ(0) for all α > 0. Thus, if

φ is classification-calibrated, we must have g1 = g2, which implies φ is differentiable at 0.

To see that we must also have φ′(0) < 0, notice that, from (14), we have

ηφ(α) + (1 − η)φ(−α) ≥ (2η − 1)φ′(0)α+ φ(0).

But for any η > 1/2 and α > 0, if φ′(0) ≥ 0, this expression is at least φ(0). Thus, if φ is

classification-calibrated, we must have φ′(0) < 0.

(⇐=) Suppose that φ is differentiable at 0 and has φ′(0) < 0. Then the function Cη(α) =

ηφ(α) + (1 − η)φ(−α) has C ′
η(0) = (2η − 1)φ′(0). For η > 1/2, this is negative. It follows from

the convexity of φ that Cη(α) is minimized by some α∗ ∈ (0,∞]. To see this, notice that for some

α0 > 0, we have

Cη(α0) ≤ Cη(0) + α0C
′
η(0)/2.
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But the convexity of φ, and hence of Cη, implies that for all α,

Cη(α) ≥ Cη(0) + αC ′
η(0).

In particular, if α ≤ α0/4,

Cη(α) ≥ Cη(0) +
α0

4
C ′

η(0) > Cη(0) +
α0

2
C ′

η(0) ≥ Cη(α0).

Similarly, for η < 1/2, the optimal α is negative. This means that φ is classification-calibrated.

Part 2: Part 1 implies that φ is differentiable at zero and φ′(0) < 0. Hence we have

φ(0) ≥ H−(η)

= inf
α:α(η−1/2)≤0

(ηφ(α) + (1 − η)φ(−α))

≥ inf
α:α(η−1/2)≤0

(

η(φ(0) + φ′(0)α) + (1 − η)(φ(0) − φ′(0)α)
)

= φ(0) + inf
α:α(η−1/2)≤0

(

(2η − 1)φ′(0)α
)

= φ(0).

Thus, H−(η) = φ(0). The concavity of H (Lemma 6, part 2) implies ψ̃ = H−(η) − H(η) =

φ(0) −H(η) is convex, which implies that ψ = ψ̃.
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Proof of Lemma 7

Proof. From convexity of φ, we have

ψ(θ) = H

(

1

2

)

−H

(

1 + θ

2

)

= φ(0) − inf
α>0

(

1 + θ

2
φ(α) +

1 − θ

2
φ(−α)

)

= sup
α>0

(

−θφ′(0)α +
1 + θ

2

(

φ(0) − φ(α) + αφ′(0)
)

+
1 − θ

2

(

φ(0) − φ(−α) − αφ′(0)
)

)

= sup
α>0

(

−θφ′(0)α − 1 + θ

2
dφ(0, α) − 1 − θ

2
dφ(0,−α)

)

≥ sup
α>0

(

−θφ′(0)α − dφ(0, α) − dφ(0,−α)
)

= sup
α>0

(θ − ξ(α)) (−φ′(0)α)

≥
(

θ − ξ(ξ−1(θ/2))
)

(−φ′(0)ξ−1(θ/2))

= −φ′(0)θ
2
ξ−1

(

θ

2

)

,

where the first inequality used the fact that, for all α ∈ [0, 1] and all a, b > 0, αa+(1−α)b ≤ a+b.

Proof of Lemma 8

Proof. Proceeding by contrapositive, suppose no such γ exists. Since φ(α) ≥ 1 [α ≤ 0] on (0,∞),

we must then have infα≤0 φ(α) = 0. But φ(α) = C1(α), hence

0 = inf
α≤0

C1(α) = H−(1) ≥ H(1) ≥ 0.

Thus, H−(1) = H(1), so φ is not classification-calibrated.
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Proof of Lemma 9

Proof. We first show that Nα implies Mα/(1−α). Consider the set S = {x : 0 < |η(x) − 1/2| ≤ ǫ},

and let f be such that S = {x : f(x)(η(x) − 1/2) < 0}. Then Nα implies

ǫPr(S) ≥
∫

S

∣

∣

∣

∣

η(x) − 1

2

∣

∣

∣

∣

dPX(x)

=
1

2
(R(f) −R∗)

≥ 1

2

(

1

c
Pr(S)

)1/α

.

Rearranging shows that

Pr(S) ≤ (2ǫ)α/(1−α)c1/(1−α),

and hence the distribution satisfies Mα/(1−α).

To see that Mβ implies Nβ/(1+β), we fix ǫ > 0 and f : X → {±1}, define S = {x : f(x)(η(x) −

1/2) < 0}, and write

R(f) −R∗ = E (1 [X ∈ S] |2η(X) − 1|)

= 2

∫

S

∣

∣

∣

∣

η(x) − 1

2

∣

∣

∣

∣

dPX(x)

≥ 2ǫ

∫

S
1

[∣

∣

∣

∣

η(x) − 1

2

∣

∣

∣

∣

> ǫ

]

dPX(x)

= 2ǫ

(

Pr(S) −
∫

S
1

[

0 <

∣

∣

∣

∣

η(x) − 1

2

∣

∣

∣

∣

≤ ǫ

]

dPX(x)

)

≥ 2ǫ
(

Pr(S) − cǫβ
)

.

With ǫ = (Pr(S)/(c(1 + β)))1/β , this shows that

R(f) −R∗ ≥ 2β

c1/β(1 + β)(β+1)/β
(Pr(S))(β+1)/β ,

and hence the distribution satisfies Nβ/(β+1).

Now consider the second part of the lemma. For any measurable f : X → {±1}, (8) is equivalent
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to

Pr(Af ) ≤ c

∫

Af

|2η(x) − 1| dPX(x)

⇐⇒
∫

Af

1

c
dPX(x) ≤

∫

Af

|2η(x) − 1| dPX(x), (16)

where Af = {x : f(x)(η(x) − 1/2) < 0}. Notice that Af ranges over all measurable subsets of

{x : |η(x) − 1/2| > 0}, so that (16) is true for all such Af iff

Pr

(

0 < |2η(X) − 1| < 1

c

)

= 0,

which is (7).

Proof of Lemma 13

The proof of Lemma 13 uses techniques due to Bartlett and Mendelson (2003), which built on

the work of Massart (2000b), Koltchinskii and Panchenko (2000), Mendelson (2002), Lugosi and

Wegkamp (2004), Bartlett et al. (2002). We use the following concentration inequality, which is a

refinement, due to Rio (2001) and Klein (2002), of a result of Massart (2000a), following Talagrand

(1994) and Ledoux (2001). The best estimates on the constants are due to Bousquet (2002).

Lemma 17. There is an absolute constant K for which the following holds. Let G be a class of

functions defined on X with supg∈G ‖g‖∞ ≤ b. Suppose that P is a probability distribution such

that for every g ∈ G, Eg = 0. Let X1, ...,Xn be independent random variables distributed according

to P and set σ2 = supg∈G var g. Define

Z = sup
g∈G

1

n

n
∑

i=1

g(Xi).

Then, for every x > 0 and every ρ > 0,

Pr

{

Z ≥ (1 + ρ)EZ + σ

√

Kx

n
+
K(1 + ρ−1)bx

n

}

≤ e−x.
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Proof. (of Lemma 13)

From the condition on F , we have

Pr
{

∃f ∈ F : Êf ≤ αǫ, Ef ≥ ǫ
}

≤ Pr
{

∃f ∈ F : Êf ≤ αǫ, Ef = ǫ
}

= Pr
{

sup
{

Ef − Êf : f ∈ F , Ef = ǫ
}

≥ (1 − α)ǫ
}

.

We bound this probability using Lemma 17, with ρ = 1 and G = {Ef − f : f ∈ F , Ef = ǫ}. This

shows that

Pr
{

∃f ∈ F : Êf ≤ αǫ, Ef ≥ ǫ
}

≤ Pr {Z ≥ (1 − α)ǫ} ≤ e−x,

provided that

2EZ ≤ (1 − α)ǫ

3
,

√

cǫβKx

n
≤ (1 − α)ǫ

3
, and

4KBx

n
≤ (1 − α)ǫ

3
.

(We have used the fact that supf∈F ‖f‖∞ ≤ B implies supg∈G ‖g‖∞ ≤ 2B.) Observing that

EZ = ξF (ǫ),

and rearranging gives the result.

Proof of Lemma 14

Proof. The proof proceeds in two steps: the Lipschitz condition allows us to relate Eg2
f to d̃(f, f∗),

and the modulus of convexity condition, together with the convexity of F , relates this to Egf .
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We have

Eg2
f = E (ℓ(f(X)) − ℓ(f∗(X)))2

≤ E (Ld(f(X), f∗(X)))2

= L2
(

d̃(f, f∗)
)2
. (17)

From the definition of the modulus of convexity,

R(f) +R(f∗)

2
≥ R

(

f + f∗

2

)

+ δ̃(d̃(f, f∗))

≥ R(f∗) + δ̃(d̃(f, f∗)),

where the optimality of f∗ in the convex set F implies the second inequality. Rearranging gives

Egf = R(f) −R(f∗) ≥ 2δ̃(d̃(f, f∗)).

Combining with (17) gives the result.

Proof of Lemma 15

Proof. Fix functions f1, f2 : X → R with d̃(f1, f2) =
√

Ed2(f1(X), f2(X)) ≥ ǫ. We have

R(f1) +R(f2)

2
−R

(

f1 + f2

2

)

= E

(

ℓ(f1(X)) + ℓ(f2(X))

2
− ℓ

(

f1(X) + f2(X)

2

))

≥ E (δ(d(f1(X), f2(X))))

≥ cEdr(f1(X), f2(X))

= cE
(

d2(f1(X), f2(X))
)r/2

.

When the function ξ(a) = ar/2 is convex (i.e., when r ≥ 2), Jensen’s inequality shows that

R(f1) +R(f2)

2
−R

(

f1 + f2

2

)

≥ cǫr.
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Otherwise, we use the following convex lower bound on ξ : [0, B2] → [0, Br],

ξ(a) = ar/2 ≥ Br a

B2
,

which follows from (the concave analog of) Lemma 5, part 2. This implies

R(f1) +R(f2)

2
−R

(

f1 + f2

2

)

≥ cBr−2ǫ2.

Proof of Theorem 16

Proof. It is clear that F is convex and satisfies the conditions of Theorem 12. That theorem implies

that, with probability at least 1 − δ,

(

R(f̂) −R∗
)2−α

≤ c′
(

ǫn + inf
f∈F

Rφ(f) −R∗
φ

)

,

provided that

ǫn ≥ Kmax

{

ǫ∗n,
L2

B ln(1/δ)

2aBn
,
BLB ln(1/δ)

n

}

,

where ǫ∗n ≥ ξgF (ǫ∗n). It remains to prove suitable upper bounds for ǫ∗n.

By a classical symmetrization inequality (see, for example, Van der Vaart and Wellner, 1996),

we can upper bound ξgF in terms of local Rademacher averages:

ξgF (ǫ) = E sup
{

Egf − Êgf : f ∈ F , Egf = ǫ
}

≤ 2E sup

{

1

n

n
∑

i=1

σigf (Xi, Yi) : f ∈ F , Egf = ǫ

}

,

where the expectations are over the sample (X1, Y1) . . . , (Xn, Yn) and the independent uniform

(Rademacher) random variables σi ∈ {±1}. The Ledoux and Talagrand (1991) contraction in-
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equality and Lemma 14 imply

ξgF (ǫ) ≤ 4LE sup

{

1

n

n
∑

i=1

σidφ(Yif(Xi), Yif
∗(Xi)) : f ∈ F , Egf = ǫ

}

≤ 4LE sup

{

1

n

n
∑

i=1

σidφ(Yif(Xi), Yif
∗(Xi)) : f ∈ F , d̃φ(f, f∗)2 ≤ 2aBǫ

}

= 4LE sup

{

1

n

n
∑

i=1

σif(Xi, Yi) : f ∈ Fφ, Ef
2 ≤ 2aBǫ

}

,

where

Fφ = {(x, y) 7→ dφ(yf(x), yf∗(x)) : f ∈ F} .

One approach to approximating these local Rademacher averages is through information about

the rate of growth of covering numbers of the class. For some subset A of a pseudometric space

(S, d), let N (ǫ,A, d) denote the cardinality of the smallest ǫ-cover of A, that is, the smallest set

Â ⊂ S for which every a ∈ A has some â ∈ Â with d(a, â) ≤ ǫ. Using Dudley’s entropy integral

(Dudley, 1999), Mendelson (2002) has shown the following result: Suppose that F is a set of

[−1, 1]-valued functions on X , and there is a γ > 0 and 0 < p < 2 for which

sup
P

N (ǫ,F , L2(P )) ≤ γǫ−p,

where the supremum is over all probability distributions P on X . Then for some constant Cγ,p

(that depends only on γ and p),

1

n
E sup

{

n
∑

i=1

σif(Xi) : f ∈ F , Ef2 ≤ ǫ

}

≤ Cγ,p max
{

n−2/(2+p), n−1/2ǫ(2−p)/4
}

.

Since dφ(a, b) ≤ |a − b|, any ǫ-cover of {f − f∗ : f ∈ F} is an ǫ-cover of Fφ, so N (ǫ,Fφ, L2(P )) ≤

N (ǫ,F , L2(P )).

Now, for the class absconv(G) with dV C(G) = d, we have

sup
P

N (ǫ, absconv(G), L2(P )) ≤ Cdǫ−2d/(d+2);
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(see, for example, Van der Vaart and Wellner, 1996). Applying Mendelson’s result shows that

1

n
E sup

{

n
∑

i=1

σif(Xi) : f ∈ B absconv(G), Ef2 ≤ ǫ

}

≤ Cd max
{

Bn−(d+2)/(2d+2), Bd/(d+2)n−1/2ǫ1/(d+2)
}

.

Solving for ǫ∗n ≥ ξgF (ǫ∗n) shows that it suffices to choose

ǫ∗n = C ′
dBLB max

{

(

LBaB

B

)1/(d+1)

, 1

}

n−(d+2)/(2d+2),

for some constant C ′
d that depends only on d.

APPENDIX B: LOSS, RISK, AND DISTANCE

We could construe Rφ as the risk under a loss function ℓφ : R×{±1} → [0,∞) defined by ℓφ(ŷ, y) =

φ(ŷy). The following result establishes that loss functions of this form are fundamentally unlike

distance metrics.

Lemma 18. Suppose ℓφ : R
2 → [0,∞) has the form ℓφ(x, y) = φ(xy) for some φ : R → [0,∞).

Then

1. ℓφ is not a distance metric on R,

2. ℓφ is a pseudometric on R iff φ ≡ 0, in which case ℓφ assigns distance zero to every pair of

reals.

Proof. By hypothesis, ℓφ is nonnegative and symmetric. Another requirement of a distance metric

is definiteness: for all x, y ∈ R,

x = y ⇐⇒ ℓφ(x, y) = 0. (18)

But we may write any z ∈ (0,∞) in two different ways, as
√
z
√
z and, for example,

√
2z
√

(1/2)z.

To satisfy (18) requires φ(z) = 0 in the former case and φ(z) > 0 in the latter, an impossibility.
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This proves 1.

To prove 2, recall that a pseudometric relaxes (18) to the requirement

x = y =⇒ ℓφ(x, y) = 0. (19)

Since each z ≥ 0 has the form xy for x = y =
√
z, (19) amounts to the necessary condition that

φ ≡ 0 on [0,∞). The final requirement on ℓφ is the triangle inequality, which in terms of φ becomes

φ(xz) ≤ φ(xy) + φ(yz), for all x, y, z ∈ R. (20)

Since φ must vanish on [0,∞), taking y = 0 in (20) shows that only the zero function can (and

does) satisfy the constraint.
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