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Abstract

We present a modification of the algorithm of Dani
et al. [8] for the online linear optimization prob-
lem in the bandit setting, which with high proba-
bility has regret at most O∗(

√
T ) against an adap-

tive adversary. This improves on the previous al-
gorithm [8] whose regret is bounded in expecta-
tion against an oblivious adversary. We obtain
the same dependence on the dimension (n3/2) as
that exhibited by Dani et al. The results of this
paper rest firmly on those of [8] and the remark-
able technique of Auer et al. [2] for obtaining high-
probability bounds via optimistic estimates. This
paper answers an open question: it eliminates the
gap between the high-probability bounds obtained
in the full-information vs bandit settings.

1 Introduction
In the online linear optimization problem, there is a fixed de-
cision set D ∈ Rn and the player (or decision maker) makes
a decision xt at time t ∈ {1, . . . , T}. Simultaneously, an ad-
versary chooses a loss vector Lt and the player suffers loss
L†txt. The goal is to minimize regret which measures how
much worse the player did as compared to any fixed decision,
even one chosen with complete knowledge of the sequence
L1, . . . , LT ,

R =
T∑
t=1

L†txt −min
x∈D

T∑
t=1

L†tx .

The adversary can be oblivious to the player’s moves in which
case it chooses the entire sequence L1, . . . , Lt in advance of
the player’s moves. An adaptive adversary can, however,
choose Lt based on the player’s moves x1, . . . , xt−1 up to
that point.

In the full information version of the problem, the loss
vector Lt is revealed to the player at the end of round t. For
this case, Kalai and Vempala [12] gave an efficient algorithm
assuming that the offline problem (given L minimize L†x
over x ∈ D) can be solved efficiently. Note that the standard
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“experts” problem is a special case of this problem because
we can choose the set D to be {e1, . . . , en}, the unit vectors
forming the standard basis of Rn. Kalai and Vempala sepa-
rated the issue of the number of available decisions from the
dimensionality of the problem and gave an algorithm with
expected regret O(poly(n)

√
T ). In many important cases,

for example the online shortest path problem [15], the size
of the decision set can be exponential in the dimensionality.
So, it is important to design algorithms that have polynomial
dependence on the dimension.

In the partial information or “bandit” version of the prob-
lem, the only feedback that the player receives at the end of
round t is its own loss L†txt. The bandit version of the ex-
perts problem was considered by Auer et al. [2] who gave
a number of algorithms for the problem. Their Exp3 algo-
rithm achieves O(

√
T ) expected regret against oblivious ad-

versaries. However, due to the large variance of the estimates
kept by Exp3 it fails to enjoy a similar regret bound with
high probability. To address this issue, the authors used the
idea of high confidence upper bounds to derive the Exp3.P
algorithm which achieves O(

√
T ) regret with high probabil-

ity. The regret of these algorithms also has a
√
|D| depen-

dence on the number |D| of available actions. Hence, these
cannot be used directly if |D| is large.

Awerbuch and Kleinberg [4] were the first to consider
the general online linear optimization problem in the ban-
dit setting. For oblivious adversaries, they proved a regret
bound of O∗(poly(n)T 2/3). The case of a general adaptive
adversary was handled by McMahan and Blum [14] but they
could only prove a regret bound of O∗(poly(n)T 3/4). Dani
and Hayes [7] later showed that McMahan and Blum’s al-
gorithm actually enjoys a regret bound ofO∗(poly(n)T 2/3).
However, the known lower bound for the bandit problem was
the same as that in the full information case, namely Ω(

√
T ).

Therefore, it was an important open question if there is an al-
gorithm with a regret bound ofO(poly(n)

√
T ) for the bandit

online linear optimization problem. An affirmative answer
was recently given by Dani et al. [8]. Their algorithm has
expected regret at most O∗(poly(n)

√
T ) against an obliv-

ious adversary. It was still not known if the same bounds
could be achieved with high probability and against adaptive
adversaries as well. In this paper, we show how to do this
by combining Dani et al.’s techniques with those of Auer et
al. [2]. Like Exp3.P, our GEOMETRICHEDGE.P algorithm



keeps biased estimates of the losses of different actions such
that, with high probability, the sums of these estimates are
lower bounds (because we use losses not gains) on the actual
unknown cumulative losses (Lemma 5).

The bandit version of the online shortest path problem
has recently received a lot of attention. It can be used to
model, for example, routing in ad hoc wireless networks. If
we want to make our routing algorithm secure against ad-
versarial attacks, it is necessary to design algorithms that
work against adaptive adversaries [3, 13]. Therefore, ob-
taining low regret against adaptive adversaries is not only
an important theoretical problem but it also has practical
implications. The algorithm with the best regret guaran-
tee so far is by György et al. [11]. There the authors con-
sider a number of feedback models. Our feedback model in
this paper corresponds to what they call the “path-bandit”
model. For this model, they give an efficient algorithm spe-
cially designed for the bandit online shortest path problem
that achieves O∗(poly(n)T 2/3) regret with high probability
against an adaptive adversary where n is the number of edges
in the graph. Our results imply that it is actually possible to
achieveO∗(n3/2

√
T ) regret with high probability. However,

since our algorithm is not efficient, the quest for an efficient
algorithm with the same regret, even for this special problem,
is still on.

The key tools from probability theory that we use in our
proofs are Bernstein-type inequalities, such as Freedman’s.
These provide sharper concentration bounds for martingales
in the presence of variance information. There is a simple
corollary of Freedman’s inequality that we think is useful not
just in our setting but more generally. We state it as Lemma 2
in Section 4.

The present work closes the gap between full informa-
tion and bandit online optimization against the adaptive ad-
versary in terms of the growth of regret with T . As we said
above, our algorithm is not necessarily efficient, because the
decision space might need to be discretized to a fine level.
We mention that a parallel work by Abernethy, Hazan, and
Rakhlin [1] provides an efficient algorithm for the setting;
however, their result holds in expectation only (against an
oblivious adversary). The present paper and [1] are address-
ing disparate aspects of the problem and neither result can
be concluded from the other. It remains an open question
whether there exists an efficient algorithm which enjoys high
probability bounds on the regret.

2 Preliminaries
Let D ⊂ [−1, 1]n denote the decision space. At each t of
T time steps, the environment selects a cost vector Lt, and
simultaneously, the player (decision maker) selects xt ∈ D.
The loss incurred by the decision maker for this prediction is
L†txt. Let

Lmin := min
x∈D

T∑
t=1

L†tx

be the loss of the best single decision in hindsight. The goal
of the decision maker is to minimize the regret,

R =
T∑
t=1

L†txt − Lmin .

We assume that L†tx ∈ [0, 1] for all x ∈ D. We also as-
sume that the environment is adaptive, i.e., the cost vector Lt
selected by the environment at time t may depend arbitrar-
ily on the history (L1, x1, . . . , Lt−1, xt−1) (note that without
loss of generality this dependence may be assumed to be de-
terministic.) We show that even against such a powerful en-
vironment, it is possible to ensure that R is small with high
probability.

As in [8], we will require a barycentric spanner for D.
Recall that a barycentric spanner for D is a set

{y1, . . . , yn} ⊆ D
such that every x ∈ D can be written as a linear combination
of yi’s with coefficients in [−1, 1]. A c-barycentric spanner is
defined similarly where we allow coefficients to be in [−c, c].
For c > 1, c-barycentric spanners for D may be found effi-
ciently (see [4].) However, for ease of exposition we’ll as-
sume that we have an actual barycentric spanner. (Using a
c-barycentric spanner instead will only affect the constants.)
Finally, if the set D is too large (for example if it is infinite)
we can replace it by a cover of size at most (4nT )n/2, as the
loss of the optimal decision in this cover is within an addi-
tive
√
nT of the optimal loss in D; see [8][Lemma 3.1] for

details. Accordingly, after doing this transformation if neces-
sary, we may assume thatD is finite and ln |D| = O(n lnT ).
Only the logarithm of the cardinality of the set will enter in
our bounds.

3 Algorithm and Main Result
The algorithm presented below is a modification of the algo-
rithm in [8]. Note that the difference is in the way we update
weights wt, using lower confidence intervals. This idea of
using confidence intervals is motivated by the Exp3.P algo-
rithm of Auer et al. [2]. Feeding in confidence bounds, as
opposed to unbiased estimates of the losses, to the exponen-
tial updates is the crucial change we make to the algorithm
of Dani et al [8]. Lemma 5 below shows that, with high
probability, for any x ∈ D,

∑
t L̃t(x) lower bounds

∑
t L
†
tx

(up to an additive O(
√
T ) term). Our algorithm reduces to

Exp3.P in the special case of the n-armed bandit problem
(when D = {e1, . . . , en}. As we point out in the next sec-
tion, Auer et al.’s proof can be simplified by using the sim-
ple corollary of Freedman’s inequality [10] that we state as
Lemma 2 below.

The main result of this paper is the following guarantee
on the algorithm.

Theorem 1 Let T ≥ 4, n ≥ 2 and δ ≤ 1
e . If we set γ =

n3/2
√
T

, δ′ = δ
|D| log2 T

, and η = 1√
nT+2

√
ln(1/δ′)

, then against

any adaptive adversary with probability at least 1− 4δ,

R = O(n3/2
√
T ln(nT/δ)).

The dependence on T is optimal (up to logarithmic fac-
tors). We get the same dependence on n as Dani et al. [8].
The lower bound known for this problem is Ω(n

√
T ) [8].

Recently, O(n
√
T ) regret bounds have been obtained for the

stochastic version of the problem [9]. This leads us to con-
jecture that the lower bound is tight and it remains an open



Algorithm 3.1: GEOMETRICHEDGE.P(D, γ, η, δ′)

∀x ∈ D,w1(x) := 1
W1 := |D|
for t = 1 to T
∀x ∈ D,

pt(x) = (1− γ)wt(x)
Wt

+ γ
n I{x ∈ spanner}

Sample xt according to distribution pt
Incur and observe loss `t := L†txt
Ct := Ept [xx†]
L̂t := `tC−1

t xt

∀x ∈ D, L̃t(x) := L̂†tx− 2x†C−1
t x

√
ln(1/δ′)
nT

∀x ∈ D,wt+1(x) := wt(x) exp{−ηL̃t(x)}
Wt+1 =

∑
x∈D wt+1(x)

question to close the gap (for the dependence on n) between
upper and lower bounds. We also note here that although the
analysis we provide is for losses, essentially the same algo-
rithm, with a similar analysis, works for gains. We just have
to make a few obvious changes to the algorithm: instead of
subtracting, we add the correction term to the gain estimates
and replace −η with η in the exponential update.

4 Concentration for Martingales
In this section we derive a concentration inequality for mar-
tingale difference sequences. It is a direct application of
Freedman’s inequality.

Lemma 2 Suppose X1, . . . , XT is a martingale difference
sequence with |Xt| ≤ b. Let

VartXt = Var (Xt |X1, . . . , Xt−1) .

Let V =
∑T
t=1 VartXt be the sum of conditional variances

of Xt’s. Further, let σ =
√
V . Then we have, for any δ <

1/e and T ≥ 4,

Prob

(
T∑
t=1

Xt > 2 max
{

2σ, b
√

ln(1/δ)
}√

ln(1/δ)

)
≤ log2(T )δ .

Proof: Note that a crude upper bound on VartXt is b2.
Thus, σ ≤ b

√
T . We choose a discretization 0 = α−1 <

α0 < . . . < αl such that αi+1 = 2αi for i ≥ 0 and
αl ≥ b

√
T . We will specify the choice of α0 shortly. We

then have,

Prob

(∑
t

Xt > 2 max{2σ, α0}
√

ln(1/δ)

)

=
l∑

j=0

Prob
(∑

tXt > 2 max{2σ, α0}
√

ln(1/δ)
& αj−1 < σ ≤ αj

)

≤
l∑

j=0

Prob
(∑

tXt > 2αj
√

ln(1/δ)
& α2

j−1 < V ≤ α2
j

)

≤
l∑

j=0

Prob

(∑
t

Xt > 2αj
√

ln(1/δ) & V ≤ α2
j

)
(?)

≤
l∑

j=0

exp

 −4α2
j ln(1/δ)

2α2
j + 2

3

(
2αj
√

ln(1/δ)
)
b


=

l∑
j=0

exp

 −2αj ln(1/δ)

αj + 2
3

(√
ln(1/δ)

)
b


where the inequality (?) follows from Freedman’s inequal-

ity (Theorem 9). If we now choose α0 = b
√

ln(1/δ) then
αj ≥ b

√
ln(1/δ) for all j and hence every term in the above

summation is bounded by exp
(
−2 ln(1/δ)

1+2/3

)
< δ. Choosing

l = log2(
√
T ) ensures that αl ≥ b

√
T . Thus we have

Prob

(
T∑
t=1

Xt > 2 max{2σ, b
√

ln(1/δ)}
√

ln(1/δ)

)

= Prob

(∑
t

Xt > 2 max{2σ, α0}
√

ln(1/δ)

)
≤ (l + 1)δ = (log2(

√
T ) + 1)δ ≤ log2(T )δ .

This inequality says that, roughly speaking,
∑
tXt is of

the order of σ
√

ln(1/δ) which is a central limit theorem-
like behavior except that σ here is not fixed but is the actual
sum of conditional variances, a random quantity. The overall
constant in front of σ is 4. This can be improved to 2 by
a slightly more careful analysis. We already know of two
instances in the literature where Lemma 2 can be used to
give shorter proofs of certain probabilistic upper bounds.

1. The first is in the proof of Exp3.P’s regret bound it-
self. To show that the estimates are upper bounds on
the actual losses of an action, the authors explicitly use
the exponential moment method in the proof of their
Lemma 6.1. Essentially the same lemma can be proved
by a direction application of the above lemma.

2. The other instance is in Cesa-Bianchi and Gentile’s pa-
per [5] on online to batch conversions. When an online
algorithm is run on i.i.d. data with a non-negative and
bounded loss function, the conditional variance of the
loss at time t can immediately be bounded by the risk
of the hypothesis at time t − 1. The authors use this
fact along with an application of Freedman’s inequal-
ity to prove a sharp upper bound (Proposition 2 in their
paper) on the average risk of the hypotheses generated
by the online algorithm in terms of its actual cumula-
tive loss. The same result can be quickly derived by an
application of the above lemma.



5 Analysis
The remainder of the paper is devoted to the proof of Theo-
rem 1. We first state several results obtained in Dani et al [8]
which will be important in our proofs.

Lemma 3 For any x ∈ D and t ∈ {1, . . . , T}, it holds that

1. |L̂†tx| ≤ n2/γ

2. x†C−1
t x ≤ n2/γ.

3.
∑
x∈D pt(x)x†C−1

t x = n.

4. Et
(
L̂†tx

)2

≤ x†C−1
t x.

We now prove a bound on the perturbed estimated costs,
L̃t, which are used to update the distribution.

Lemma 4 For all x ∈ D, |L̃t(x)| ≤
√
nT + 2

√
ln(1/δ′).

Proof: For each x ∈ D,

|L̃t(x)| ≤ |L̂t · x|+

∣∣∣∣∣2x†C−1
t x

√
ln(1/δ′)
nT

∣∣∣∣∣
≤ n2

γ
+ 2

n2

γ

√
ln(1/δ′)
nT

≤
√
nT + 2

√
ln(1/δ′)

using Lemma 3 and the choice of γ = n3/2
√
T

.

5.1 High Confidence Bounds
Let Et[·] denote E[·|x1, . . . , xt−1]. Since we are considering
adaptive (but deterministic) adversaries, Lt is not random
given x1, . . . , xt−1. Observe that Et[xtx†t ] = Ex∼pt [xx

†]
and thus, Et[L̂t] = Lt. However, the fluctuations of the
random variable L̂t are very large. The following lemma
provides a bound on these fluctuations.

Lemma 5 Assume T ≥ 4. Let δ′ = δ
|D| log2 T

. Then with
probability at least 1− δ, simultaneously for all x ∈ D,∑

t

L̃t(x) ≤
∑
t

L†tx+ 2
(

1 +
√
nT
)

ln(1/δ′)

Proof: Fix x ∈ D. Let Mt = Mt(x) = L̂†tx − L
†
tx. Then

(Mt) is a martingale difference sequence. Using Lemma 3,
|Mt| ≤ n2

γ + 1 =
√
nT + 1. Let V =

∑
t Vart(Mt) and let

σ =
√
V . Using Lemma 2, we have that with probability at

least 1− δ′ log2 T ,∑
t

L̂†tx ≤
∑
t

L†tx+ 2 max{2σ,

(1 +
√
nT )

√
ln(1/δ′)}

√
ln(1/δ′) (1)

Now note that

σ ≤
√∑

t

x†C−1
t x ≤ 1

2

(∑
t x
†C−1

t x√
nT

+
√
nT

)
,

by the arithmetic mean-geometric mean inequality.
Substituting this into (1), we have

∑
t

L̂†tx ≤
∑
t

L†tx+ 2 max
{(

1 +
√
nT
)√

ln(1/δ′),(∑
t x
†C−1

t x√
nT

+
√
nT

)}√
ln(1/δ′)

with probability at least 1− δ′ log2 T .
Finally, taking a union bound over all x ∈ D and rear-

ranging (using the fact that max{a+ b, c} ≤ a+ max{b, c}
if a ≥ 0) gives the required result.

5.2 Potential Function Analysis

By Lemma 4 and our choice of η = 1√
nT+2

√
ln(1/δ′)

, we

have

|ηL̃t(x)| ≤ 1 .

In the following computation, we will use the facts that e−a ≤
1− a+ a2 whenever |a| ≤ 1.

Wt+1

Wt
=
∑
x∈D

wt(x) exp(−ηL̃t(x))
Wt

≤
∑
x∈D

wt(x)
Wt

(1− ηL̃t(x) + η2(L̃t(x))2)

≤ 1 +
η

1− γ

(
−
∑
x∈D

pt(x)L̃t(x)

+
∑

x∈spanner

γ

n
L̃t(x) +

∑
x∈D

pt(x)η(L̃t(x))2
)

since by definition of pt,

wt(x)
Wt

=
pt(x)− γ

n I{x ∈ spanner}
1− γ

.

Note that we have,

−
∑
x∈D

pt(x)L̃t(x)

= −
∑
x∈D

pt(x)L̂†tx+ 2
∑
x∈D

pt(x)x†C−1
t x

√
ln(1/δ′)
nT

= −
∑
x∈D

pt(x)L̂†tx+ 2n

√
ln(1/δ′)
nT

where the last step is by Lemma 3.
Further, since (b+ c)2 ≤ 2(b2 + c2) for every b, c, apply-



ing the definition of L̃t(x), we also have∑
x∈D

pt(x)η(L̃t(x))2

≤ 2η
∑
x∈D

pt(x)
(

(L̂†tx)2 + (2x†C−1
t x)2

ln(1/δ′)
nT

)
≤ 2η

∑
x∈D

pt(x)
(

(L̂†tx)2 + 4x†C−1
t x

n2 ln(1/δ′)
γnT

)

= 2η

[∑
x∈D

pt(x)(L̂†tx)2 +
4 ln(1/δ′)√

nT

∑
x∈D

pt(x)x†C−1
t x

]

= 2η

[∑
x∈D

pt(x)(L̂†tx)2 +
4
√
n ln(1/δ′)√

T

]

by successive applications of Lemma 3.
Putting these together, we have

Wt+1

Wt
≤ 1 +

η

1− γ

(
−
∑
x∈D

pt(x)L̂†tx

+ 2

√
n ln(1/δ′)

T

+
∑

x∈spanner

γ

n
L̃t(x)

+ 2η
∑
x∈D

pt(x)(L̂†tx)2

+ 8η
√
n ln(1/δ′)√

T

)
Taking logs, using the fact that ln(1 + x) ≤ x, and sum-

ming over t, we have

ln
(
WT+1

W1

)
≤ η

1− γ

[
−

T∑
t=1

∑
x∈D

pt(x)L̂†tx

+ 2
√
nT ln(1/δ′)

+
T∑
t=1

∑
x∈spanner

γ

n
L̃t(x)

+ 2η
T∑
t=1

∑
x∈D

pt(x)(L̂†tx)2

+ 8η ln(1/δ′)
√
nT

]
(2)

The next three lemmas will bound the three summations
that appear on the right hand side above.

Lemma 6 With probability at least 1− δ,

T∑
t=1

L†txt −
T∑
t=1

∑
x

pt(x)L̂†tx

≤ (
√
n+ 1)

√
2T ln(1/δ) +

4
3

ln(1/δ)
(
n2

γ
+ 1
)
.

Proof: Let us define x := Ex∼ptx =
∑
x∈D pt(x)x and

Yt := `t − L̂†tx. Note that Et L̂†tx = Et `t and therefore Yt
is a martingale difference sequence.

We bound the conditional variance of Yt as follows.√
Vart Yt =

√
Et(Y 2

t )

=

√
Et
((

L̂†tx− `t
)2
)

≤
√

Et
(
L̂†tx

)2

+
√

Et (`2t ) by Cauchy-Schwarz

≤
√

Et
(
L̂†tx

)2

+ 1 since |`t| ≤ 1

≤
√
x†C−1

t x+ 1 by Lemma 3

≤
√

E
x∼pt

x†C−1
t x+ 1 by Jensen’s inequality

=
√
n+ 1 by Lemma 3.

Moreover, |Yt| ≤ n2/γ + 1 by Lemma 3. Applying Bern-
stein’s inequality for martingale differences (see Appendix)
to the sequence Yt, we obtain that with probability at least
1− δ,
T∑
t=1

Yt ≤ (
√
n+ 1)

√
2T ln(1/δ) +

4
3

ln(1/δ)
(
n2

γ
+ 1
)
,

which is the desired bound.

Lemma 7 With probability at least 1− δ,
T∑
t=1

∑
x∈spanner

γ

n
L̃t(x) ≤ γT + 2γ

(
1 +
√
nT
)

ln(1/δ′) .

Proof: Using Lemma 5, with probability at least 1 − δ, we
have, for all x ∈ spanner,
γ

n

∑
t

L̃t(x) ≤ γ

n

∑
t

L†tx+
2γ
n

(
1 +
√
nT
)

ln(1/δ′)

≤ γT

n
+

2γ
n

(
1 +
√
nT
)

ln(1/δ′) ,

because L†tx, being the loss of an element of the spanner, is
bounded by 1. Summing over the n elements of the spanner,
we get the desired bound.

Lemma 8 With probability at least 1− δ,
T∑
t=1

∑
x

pt(x)(L̂†tx)2 ≤ nT + T
√

2n ln(1/δ).

Proof: First we observe that for 1 ≤ t ≤ T ,∑
x

pt(x)(L̂†tx)2 =
∑
x

pt(x)L̂†txx
†L̂t

= L̂†t

(∑
x

pt(x)xx†
)
L̂t

= `2tx
†
tC
−1
t CtC−1

t xt

≤ x†tC−1
t xt



Summing over t,

T∑
t=1

∑
x

pt(x)(L̂†tx)2 ≤
T∑
t=1

x†tC
−1
t xt .

Lemma 3 tells us that, on the one hand, the summands x†tC
−1
t xt

are uniformly bounded by n2/γ =
√
nT , and on the other

hand, that each one has expectation n, even conditioned on
the previous ones.

Applying the Hoeffding-Azuma inequality to the martin-
gale difference sequence

x†tC
−1
t xt − Ex∼pt

x†C−1
t x

it follows that, with probability at least 1− δ,

T∑
t=1

x†tC
−1
t xt ≤ nT + T

√
2n ln(1/δ),

completing the proof.

Substituting the bounds of Lemmas 6, 7 and 8 into (2),
we obtain that with probability at least 1− 3δ,

ln
(
WT+1

W1

)
≤ η

1− γ

[
−

T∑
t=1

L†txt

+ (
√
n+ 1)

√
2T ln(1/δ)

+
4
3

ln(1/δ)
(
n2

γ
+ 1
)

+ 2
√
nT ln(1/δ′) + γT

+ 2γ
(

1 +
√
nT
)

ln(1/δ′)

+ 2ηnT + 2ηT
√

2n ln(1/δ)

+ 8η ln(1/δ′)
√
nT

]
(3)

On the other hand, using Lemma 5, we have with proba-
bility at least 1− δ, for all x ∈ D,

ln
WT+1

W1
≥ −η

(
T∑
t=1

L̃t(x)

)
− ln |D|

≥ −η
T∑
t=1

L†tx− 2η(1 +
√
nT ) ln(1/δ′)− ln |D|. (4)

Combining (3) with (4), we have that with probability at least

1− 4δ, for every x ∈ D,

T∑
t=1

L†txt ≤
T∑
t=1

L†tx

+ 2(1 +
√
nT ) ln(1/δ′)

+
1
η

ln |D|

+ (
√
n+ 1)

√
2T ln(1/δ)

+
4
3

ln(1/δ)
(
n2

γ
+ 1
)

+ 2
√
nT ln(1/δ′) + γT

+ 2γ
(

1 +
√
nT
)

ln(1/δ′)

+ 2ηnT + 2ηT
√

2n ln(1/δ)

+ 8η ln(1/δ′)
√
nT

Recall that η = 1√
nT+2

√
ln(1/δ′)

, γ = n3/2
√
T

, δ′ = δ/(|D| log2 T ),

and ln |D| = O(n lnT ). Plugging in these values yields

T∑
t=1

L†txt ≤ Lmin +O(n3/2
√
T ln(nT/δ)),

completing the proof of Theorem 1.

6 Conclusions and Open Problems
We presented an algorithm that achieves the desired regret
bound of O∗(

√
T ) with high probability. However, the quest

for an efficient algorithm with the same high-probability guar-
antee, even for the special case of bandit online shortest paths,
is still open. Achieving similar results for general convex
functions is also an intriguing open question.

A Concentration Inequalities
The following inequalities are well known. Theorem 9 is
from [10]. Lemmas 10 and 11 can be found, for instance,
in [6], Appendix A.

Theorem 9 (Freedman) Suppose X1, . . . , XT is a martin-
gale difference sequence, and b is an uniform upper bound
on the steps Xi. Let V denote the sum of conditional vari-
ances,

V =
n∑
i=1

Var (Xi |X1, . . . , Xi−1).

Then, for every a, v > 0,

Prob
(∑

Xi ≥ a and V ≤ v
)
≤ exp

(
−a2

2v + 2ab/3

)
.

Lemma 10 (Bernstein’s inequality for martingales) Let Y1,
. . ., YT be a martingale difference sequence. Suppose that
Yt ∈ [a, b] and

E[Y 2
t |Xt−1, . . . , X1] ≤ v a.s.



for all t ∈ {1, . . . , T}. Then for all δ > 0,

Pr

(
T∑
t=1

Yt >
√

2Tv ln(1/δ) + 2 ln(1/δ)(b− a)/3

)
≤ δ

Lemma 11 (Hoeffding-Azuma inequality) Let Y1, . . . , YT
be a martingale difference sequence. Suppose that |Yt| ≤ c
almost surely for all t ∈ {1, . . . , T}. Then for all δ > 0,

Pr

(
T∑
t=1

Yt >
√

2Tc2 ln(1/δ)

)
≤ δ
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