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Abstract. We consider the problem afiructured classificatiorwhere the task

is to predict a label from an inputz, andy has meaningful internal structure.

Our framework includes supervised training of both Markov random fields and
weighted context-free grammars as special cases. We describe an algorithm that
solves the large-margin optimization problem defined in [12], using an exponential-
family (Gibbs distribution) representation of structured objects. The algorithm is
efficient — even in cases where the number of lakeis exponential in size —
provided that certain expectations under Gibbs distributions can be calculated ef-
ficiently. The optimization method we use for structured labels relies on a more
general result, specifically the application of exponentiated gradient (EG) updates
[4,5] to quadratic programs (QPs). We describe a new method for solving QPs
based on these techniques, and give bounds on its rate of convergence. In ad-
dition to their application to the structured-labels task, the EG updates lead to
simple algorithms for optimizing “conventional” binary or multiclass SVM prob-
lems. Finally, we give a new generalization bound for structured classification,
using PAC-Bayesian methods for the analysis of large margin classifiers.

1 Introduction

Structured classification is the problem of predictinffom « in the case wherg has
meaningful internal structure. For examplenight be a word string ang a sequence
of part of speech labels, armight be a Markov random field anda labeling ofx, or
x might be a word string ang a parse ofc. In these examples the number of possible
labelsy is exponential in the size af. This paper presents a training algorithm and a
generalization bound for a general definition of structured classification covering both
Markov random fields and parsing.

We restrict our attention to linear discriminative classification. We assume that pairs
(x,y) can be embedded in a linear feature spBge y), and that a predictive rule is de-
termined by a direction (weight vectow) in that feature space. In linear discriminative



prediction we select thgthat has the greatest value for the inner prod#¢t:, v), w).

Linear discrimination has been widely studied in the binary and multiclass setting [3,
2]. However, the case of structured labels has only recently been considered [12, 1]. The
structured-label case takes into account the internal structuyénahe assignment of
feature vectors, the computation of loss, and the definition and use of margins.

We focus on a formulation where each labeas represented as a set of “parts”, or
equivalently, as a bit-vector. Moreover, we assume that the feature vectpafat the
loss fory are both linear in the individual bits gf This formulation has the advantage
that it naturally covers both simple labeling problems, such as part-of-speech tagging,
as well as more complex problems such as parsing.

This paper contains two results. The first concerns the large-margin optimization
problem defined in [12] for selecting the classification directirgiven a training
sample. The starting-point for these methods is a primal problem that has one con-
straint for each possible labeling or equivalently a dual problem where eaglhas
an associated dual variable. A method is given in [12] for dealing with an exponential
number of labelings, in the case where the label set has a Markov random field struc-
ture. We give a new approach to the problem that relies on an exponential-family (Gibbs
distribution) representation of structured objects. Generally speaking, the algorithm is
efficient — even in cases where the number of laleis exponential in size — pro-
vided that certain expectations under Gibbs distributions can be calculated efficiently.
The computation of these expectations appears to be a natural computational problem
for structured problems, and has specific polynomial-time dynamic programming al-
gorithms for some important examples: specifically, the clique-tree belief propagation
algorithm can be used in Markov random fields, and the inside-outside algorithm can
be used in the case of weighted context-free grammars.

The optimization method we use for structured labels relies on a more general result,
specifically the application of exponentiated gradient (EG) updates [4, 5] to quadratic
programs (QPs). We describe a new method for solving QPs based on these techniques,
and give bounds on its rate of convergence. The method leads to an optimization method
which uses multiplicative updates on dual parameters in the problenaddition to
their application to the structured-labels task, the EG updates lead to simple algorithms
for optimizing “conventional” binary or multiclass SVM problems.

Our second result is a PAC-Bayesian margin bound for generalization loss in struc-
tured classification. This PAC-Bayesian bound improves on the bound in [12] in a va-
riety of ways. Like PAC-Bayesian margin bounds for binary linear classification [7, 8],
our bound for the collective case has a simple proof and is particularly tight in the case
of low but nonzero empirical error. More interestingly, the new bound has a different
formal structure. Letd (y, y') be the Hamming distance between a labelingnd a
labelingy’. Consider a training paifr;, y;) and two other possible valugsaandy’. The
new bound improve#l (y, y;) + H(y;, y') to H(y, y'). Itis not yet clear how difficult
it is to establish this triangle inequality improvement with other proof methods.

5 Note that our updates are different from the multiplicative updates for support vector machines
described in [10]. In particular, the updates in [10] do not factor in a way that allows algorithms
for MRFs and WCFGs based on Gibbs-distribution representations, as described in this paper.



An open problem involves the significance of the new generalization bound. The
new generalization bound, although strictly tighter than the bound in [12], is even fur-
ther removed from the max-margin optimization problem formulated here or in [12].
It remains an open problem as to whether a direct optimization of this new bound, or
some simplification of it, is feasible and whether such direct optimization would im-
prove generalization performance.

2 The General Setting

We consider the problem of learning a functipn X — ), whereX’ is some countable
or uncountable set, arydis a countable set. We assume a loss fundliomt x Y x) —
R*. The functionL(z,y,4) measures the loss wheris the true label for:, andy is
another label, typically the label proposed foby some function. In general we will
assume thak (z,y, ) = 0 for y = g. Given some distributio®(z, y) over examples
in X x Y, our aim is to find a function with low expected loss, or risk:

E(z,y)NDL(];7 Y, f(.]?))
We consider functiong which take a linear form. First, we assume a fixed function
which maps an input to a set of candidates («). For allz, we assume th&k () C Y,
and thatG(z) is finite. A second component to the model is a feature-vector represen-
tation® : X x Y — R? of dimensiond. Given these definitions, the functions that we
consider take the following fornf,for somew € R,

fw(x) = arg nax )@(fm Y), w)

Given training example&e;, y;) fori = 1...n, we will formalize a large-margin opti-
mization problem that is a generalization of support vector machine methods for binary
classifiers, and is essentially the same as the formulation in [12]. The optimal parame-
ters are taken to minimize the following regularized empirical risk function:

31403 (e (Ees i) ~mas))

wherem; ,(w) = (w, ¢(z,v:)) — (W, ¢(z4,9)) is the “margin” on example, and
(x)+ = max{x,0}. Note that this optimization problem aims to separate each
G(z;) from the target labey; by a margin that is proportional to the loBéz;, y;, ).

This optimization can be expressed as the primal problem in Figure 1. Following
[12], the dual of this problem is also shown in Figure 1. The dual involves variables
a;y foralli = 1...n, y € G(z;). The dual objective is a quadratic program in
these variables. Note that the dual variables for each example are constrained to form a
probability distribution.

2.1 Models for structured classification

The problems we are interested in concern structured labels, which have a natural de-
composition into “parts”. Examples of methods which lead to structured labels are

% Note that in the case that two membgisandy. have the same tied value B (x, y), w),
we assume that there is some fixed, deterministic way for breaking ties. For example, one
approach would be to assume some default ordering on the memigrs of



Primal problem: Dual problem:

minw e (%HWHQ +CY,6) maxg (C’Zw oy L y—
302, 2 Qi@ (Piy, ¢j,z>)

Subject to the constraints: Subject to the constraints:
Vi,Vy € G(x;), (W, Piy) > Liy — ¢ Vi, Zai,y =1
\V/i, € Z 0 Yy
Vi, y, aiy >0

Relationship between optimal values for primal and dual problesis:= CZL ai  DPiy
wherew™ is thearg min of the primal problem, and™ is thearg max of the dual problem.

Fig. 1. The primal and dual problems. We use the definitibng = L(zi,y:,y), and®; , =
D(x;,y:) — P(xs,y). Note that we also assume that forall; , = 0 for y = y;. The constant
C dictates the relative penalty for values of the slack variablegich are greater than 0.

Markov random fields (MRFs), and weighted context-free grammars (WCFGs) (we
elaborate more on these examples later in this section). Formally, we assume some
countable set of part®. We also assume a functidbwhich maps each obje¢t, y) €

X x Y to a finite subset oR. ThusR(z,y) is the set of parts belonging to a partic-

ular object. In addition we assume a feature-vector representatidrparts: this is a
function¢ : X x R — R?. The feature vector for an objegt, ) is then a sum of the
feature vectors for its parts:

ba,y)= Y o)

reR(z,y)
In addition, we assume that the loss functibfx, y, ) decomposes into a sum over

arts, as follows:
P Layd) = 3 Iy
reR(z,y)
Finally, for convenience we will also define indicator variablés, y, ) which are
Lif r € R(x,y), 0 otherwise. We also define sef{z;) = Uycq (o) R(zs,y) for the
training examples = 1...n. ThusR(z;) is the set of parts that is seen in at least one
of the object{(x;,y) : y € G(z;)}.

Example 1: Markov Random Fields. In this example we assume that the space of
labelsG(z), and their underlying structure, can be represented by a graph. The graph
G = (V, E) is a collection of vertice¥” = {v1,v9,...v;} and edges. Each vertex
v; € V has a set of possible labels,. The seiG(x) is then defined a¥; x Vs ... x ).
Each possible labeling for the entire graph can be written as= {y1, y2, ...y}

We give a definition of the decomposition of eaghnto a set of parts through
the cliques in the graph. Each clique in the graph has a set of possitifigurations
for example, if a particular cliqgue contains verticgs;, vs, vg }, the set of possible
configurations of this clique i¥; x V5 x V5. We defineC to be the set of cliques in



the graph, and for any € C we define)(c¢) to be the set of possible configurations
for that clique. Finally, we defin® = {(c,a) | ¢ € C,a € Y(c)}. Thus the number
of possible parts in this decomposition|#®| = > .. [V(c)|. In this case we define
R(z,y) = {(¢,a) € R : (c,a) is consistent with §. ThusR(z,y) essentially tracks
the assignment of values to each clique in the graphgvdote that for any, we have
|R(z,y)| = |C|, as only one configuration of each cliqueditan be consistent with.

All that remains is to define a feature vector representation and a loss function. The
feature vector representatiariz, ¢, a) for each part can essentially track any charac-
teristics of the assignmentfor clique ¢, together with any features of the entire input
x. Recall that the overall loss for a lakivhen compared to a true labgls defined as
> (e.a)eR(x,g) U@ Y, (¢,a)), wherel(z, y, (¢, a)) is the loss for one clique assignment.

As one example of a loss that can be expressed in this way, consider the Hamming
loss used in [12], defined as follows:jf = {y1,...w}, andg = {¢1,...,4:}, then
L(z,y,9) = >, Iy.9.- TO achieve this: First, assign each vertgxo a single

one of the cliques in which it appears. Second, déefiney, (¢, a)) to be the number of
labels in the assignmef#, a) which are both incorrect, and also correspond to vertices
which have been assigned to the cliqud his definition leads to Hamming loss: note
that assigning each vertex to a single clique avoids “double counting” of label errors.

Example 2: Weighted Context-Free Grammars (WCFGs). Our second example

considers the case wheteis an input string, ang is a “parse tree” for that string.

More formally, we takey to be a left-most derivation for under some context-free
grammar. The sd&(x) is the set of all left-most derivations farunder the grammar.

In general, ambiguity will lead to a givenhaving many different possible derivations;
our task is to learn a strategy for choosing between the memb&$:0f

For convenience, we restrict the grammar to be in Chomsky-normal form, where all
rules in the grammar are of the fod — B C) or (A — a), whereA, B, C are non-
terminal symbols, and is some terminal symbol. We take a part to be a CF-rule-tuple
(A — B C,s,m,e,x). The tuple specifies a particular rule— B C, and its position
within the sentence. Under this representatiod spans words .. . e inclusive inz;

B spans words . .. m inclusive; andC' spans word$m + 1) ... . e inclusive. The seR
is the set of all possible tuples of this form. The functBfx, y) maps a derivationy
to the set of parts which it includes. Note that because all rules are in binary-branching
form, |R(z,y)| is constant across different derivationor the same input sentenge

In WCFGs the functiony(z, ) can be any function mapping a rule production
and its position in the sentenegto some feature vector representation. For example,
¢ could include features which identify the rule used in the production, or features
which track the rule identity together with features of the words at positioms e and
neighboring positions in the string Now consider the loss function. One approach
would be to definé(x,y,r) to be0 if r is in the derivationy and1 otherwise. This
definition would lead td.(x, y, ) being the number of CF-rule-tuples grwhich are
not seen iny. Another, less strict, definition would be to defi{e, y, ) to bel only
if the non-terminald is not seen spanning words. . e in the derivationy. This would
lead toL(x,y, ) tracking the number of “constituent errors”jnwhere a constituent
is a(non-terminal, start-point, end-pojriuple such agA, s, e).



2.2 A new dual in terms of marginals

We now begin to consider how to solve the optimization problem in Figure 1 when
applied to the problem of labels with parts. As shown in [12], the dual in Figure 1 can
be reframed in terms of “marginal” terms. We will also find it useful to consider this
alternative formulation of the dual. We define the marginals(a) for all ¢, r, given

dual variablesy, as follows:

/Li,r(a) = Z O‘i,y-[(xiv Y, T)' (1)
Y
Now consider the dual objective in Figure 1, for convenience repeated here:
_ 1
Q@) =C> aiyLiy— 502 SN iy By, D) 2
%Y Y 7,2

It can be shown tha® (&) is equal to@,, (ii(@)), wherefi(a) is the vector with com-
ponentsu; (&), and@., (i2) is defined as follows:

Qm(,a) :CZ Z ,ui,rli,,r

i reR(z;)

—%CQ > > (i yi,r) = pig] (25,95, 8) = tjs] (i, bjis) , (3)

1, r€R(x;),s€ER(x;)

Wherelm = l(:l?,, yi,T), (,257;77- = qﬁ(xi,r) andgijs = ¢(Ij, S).

To see this, it is sufficient to use the definition in Eq. 1, and also to make use of
the following equalities, which can be substituted into the definition(é#): first,
Diyy = (@i, Y1) = P(Tis Y) = Do reR(asys) Pisr — 2oreR(as ) i @Nd secondl; , =
L(2i,¥i,Y) = X reR(asy) Ui Yis 1)

Now let A,, be the space of marginal vectors which are feasillg; = {i
Ja € A suchthatiz = f(a)}. Our original optimization problem can be reframed as
maxgzea,, Qm(it). Note thatQ),, (i) is again a quadratic loss function. In some cases,
such as MRFs with reasonable tree width, or WCFGs, it turns oufitisadf polynomial
size, and that the domaif,, can be formulated with a polynomial number of linear
constraints. See [12] for discussion of the MRF case, for example.

3 Exponentiated gradient (EG) updates for large margin problems
3.1 General form of the updates

We now turn to a general algorithm for optimizing quadratic programs (QPs), which
relies on Exponentiated Gradient (EG) updates. We assume a positive semi-definite
matrix A of dimensionm, and a vectob € R™, specifying a loss functio®(a) =

b'a+ %d’A@. Herea is anm-dimensional vector of reals. We assume tha formed

by the concatenation ot vectorsa; € R™ fori = 1...n, where) . m; = m.
Moreover, we assume that eaah is within a simplex of dimensiom:;, so that the
feasible set is

A={a:aecR™fori=1...n,% a;;=1foralli,j,a;; >0} (4
j=1
Our aim is to findarg minge A Q(&). Figure 2 gives an algorithm for finding the solu-
tion to this minimization problem.



Inputs:

— An (m x m) positive semi-definite matriA, and anm-dimensional vectob, specifying 4
loss functionQ(a) = b - a + &’ Aa
— Each vector is anm-dimensional vector of reals i, whereA is defined in Eq. 4.

Algorithm:

— Initialize parameter values' to some point in the interior afy
(for exampleq ; = 1/m; for all 4, 5).
— Choose a learning ratg> 0
—Fort=1...T
e Calculates’ = VQ(a') = b + Aa'.
e Calculatea'"* from a* using the following updates:

t+1 _ aj,; exp{—nsi,}
7 dor o pexp{—ns} .}

Vi, j, «

Output: Returna® ™!,

Fig. 2. The Exponentiated Gradient (EG) algorithm for quadratic programs.

3.2 Convergence of the exponentiated gradient QP algorithm

The following theorem shows how the optimization algorithm converges to an optimal
solution. The theorem compares the value of the objective function for the algorithm'’s
vectora! to the value for a comparison vectorc A. (For example, consider as the
solution of the QP.) The convergence result is in terms of several properties of the algo-
rithm and the comparison vectar The distance betweananda; is measured using

the Kullback-Liebler divergence (KL-divergence). Recall that the KL-divergence be-
tween two probability vectors, v is defined ad) (u, v) = ), u; log **. For sequences

of probability vectorsii € A with @ = (y,...,0,) anda; = (i1, ..., Uim,),

we can define a divergence as the sum of KL-divergencesi,forc A, D(u,v) =

>, D(u;, v;). Two other key parameters akethe largest eigenvalue of the positive
semidefinite symmetric matrid, and

B = ma (max (VQ(@), ~ min (VQ(@),) < 2 (minax| Ay |-+ max[o]).
a 7 [ ij 7
Theorem 1. Forall w € A,

1~ _ D(u,a) e"8 —1-nB Q(al) — Qar+h)
T ;Q(O‘t) SO+ —r—t Er A B+ ) T ’

Choosingy = 0.4/(B + X) ensures that
D(a,a') Qa') — Q@™

1.
+1.5 T

T
Q") < 13- Q(a") < QU +25(5+

The first lemma we require is due to Kivinen and Warmuth [5].



Lemma 1. Foranyu € A,

nQ(a') = nQ(a) < D(u,a') — D(u,a'™") + D(a',a"*").

We focus on the third term. Defiré ;) Q(a) as the segment of the gradient vector
corresponding to the componemntof @, and define the random variablg ;, satisfying

Pr(Xiu = — (VQ(@)),) = ai.

Lemma 2.
B n nB _ 1 B n
D(a',a") = ZlogE {e”(x"’*‘_EX"”t)} < (e B2 N ) ZV&I“(Xi,t).
i=1 i=1
Proof. _
a',atth ZZ% log t+1
=1 g

= ZZQZ— <10g <Z aly exp(—nVZ-?k)) + nVZ-J-)
=5 p

= Z <Z aly, exp —nVix +nak - Vz)>
= ilog (E {e"(xi*rEXi*t)D
S — 1 — nB Z VaI‘ i, t

This last inequality is at the heart of the proof of Bernstein's inequality; e.g., see [9].

The second part of the proof of the theorem involves bounding this variance in terms
of the loss. The following lemma relies on the fact that this variance is, to first order, the
decrease in the quadratic loss, and that the second order term in the Taylor series expan-
sion of the loss is small compared to the variance, provided the steps are not too large.
The lemma and its proof require several definitions. For@ngt o : R? — — (0,1)% be
the softmax functiong (9); = exp(@i)/z _,exp(;), for§ € R?. We shall work in
the exponential parameter space:debe the exponential parameters at stego that
the updates a®*+! = 0* — nVQ(at), and the QP variables satisfj = o(6?). Define
the random variables(; , ;, satisfyingPr (Xmg =— (V(Z—)Q(o’ﬁ))j) = (a(éi))j.

This takes the same values &s,, but its distribution is given by a different exponen-
tial parameterd; instead of!). Define [6", 0" = {ab’ + (1 — a)0"*! : a € [0,1]}.

Lemma 3. For somed € [0, 6+,
nZVar(Xi’t) 2(B+)\) Zvar ) < Q(ah) —Q(a'th),
i=1

but for all 6 € [6*, 6"+, var(X, , 5) < e"? var(X; ;). Hence,



- 1 t 4l
Evar(Xi,t) < 7 (= n(B+ NerB) (Qa") —Q(a"™)).

Thus, forn < 0.567/(B + A), Q(a') is non-increasing irt.
The proof is in Appendix A. Theorem 1 follows from an easy calculation.

4 EG updates for structured objects

We now consider applying the algorithm in Figure 2 to flfd= arg maxsea Q(&),
where@(a) is the dual form of the maximum margin problem, as defined in Eq. 2
or Figure 1. In particular, we are interested in the optimal values of the primal form
parameters, which are relatediad by w* = C Zw aj iy Akey problem s thatin
many of our examples, the number of dual variaklgg precludes dealing with these
variables directly. For example, in the MRF case or the WCFG cases, tli&(s¢ts
exponential in size, and the number of dual variablgg is therefore also exponential.
This section shows how the algorithm in Figure 2 can be implemented in a more
efficient form, for certain examples of structured objects such as MRFs or WCFGs.
Instead of representing the , variables explicitly, we will instead manipulate a vector
0 of variablest; . fori = 1...n,r € R(xz;). Thus we have one of these “mini-dual”
variables for each part seen in the training data. Each of the varighlesan take any
value in the reals. We now define the dual variaklgs as a function of the vectd,
which takes the form of a Gibbs distribution:

. (é) o exp(ZT’GR(Ii,y) 97;77“)
" Zy eXp(ZTER(LEi,y) eiaT‘) )

We shall see that the EG algorithm in Figure 2 can be implemented efficiently, inde-
pendently of the dimensionality @f, provided that there is an efficient algorithm for

computing _ _
,U/i,r(e) = Z ai7y(9)1(mi7 Y, ’I") (5)
%Y

foralli = 1...n,r € R(x;), for any value of in RI’!.

Note that the values ai; , as defined in Eq. 5 can be calculated for MRFs and
WCFGs in many cases, using standard algorithms, even in cases where¢bors
are exponential in size. For example, in the WCFG case, the inside-outside algorithm
can be used to calculajg ,, provided that each partis a context-free rule produc-
tion, as described in Example 2 of Section 2.1. In the MRF caseythevalues can
be calculated efficiently providing that the tree-width of the underlying graph remains
manageablé.

Figure 3 gives an algorithm for solving the dual form of the maximum margin prob-
lem, which makes use of the Gibbs fomm(i#). The algorithm defines a sequence of
values for thed values 0', 62, ...,67+1. These values implicitly define a sequence of
dual variable valuesy', a2, ...a”*!, wherea! = a(f*). It can be verified that the
updates to thé variables take the form

" The calculation of marginals as defined in Eq. 5 is also directly related to optimization of Con-
ditional Random Fields (CRFs) [6], in that for these models the gradient of the log-likelihood
of the training data can be calculated providing that expectations of this form can be calculated.



Inputs: A learning raten. A quadratic los€).. (f(@)) with the structure in Eq. 3.

Data structures: A vectord of parts variables; . fori = 1...n,r € R(x;).

Assumptions: We define a; 4(f) for i = 1...n,y € G(z;) to be a;,(@#) =
exXP(X_, e p(a; y) Oiir)/Zi WhereZ; = 7 exp(3, c ga, 4 bir)- We assume we have an gf-
ficient procedure for computing;, = >, aiy(0)I(xi,y,r) for any value off, for all
i=1...n,7 € R(x).

Algorithm:

— Choose initial value§” for the 6, ,. variables, thus implicitly defining an initial set of dyal

variableso; , (61).
—Fort=1...T

e Foreach =1...n,r € R(z;), calculateu;,, = >_, iy (0°) (i, y,7).
e Foreachi =1...n,r € R(x;), calculate new values for tig ,. variables as

ef,tl = 0;?,7‘ + 770 li,r +C Z [[((E]', Yjs S) - Mj,s] <¢i,7‘7 ¢j,3>
J,s€ER(z ;)
Output: Dual variable” ™, or primal parameters* defined as

w = Z iy (07D, =C ( Z Dir — Z Mi,r¢i,r>

1,y i,rER(x;,Yi) i,r€R(z;)

wherep;,» = 3, iy (07 ) (i, y, 7).

Fig. 3. The Exponentiated Gradient (EG) algorithm for structured classification problems.

w1 _ gy 0@ (@)
ai,r - ei,'r + n aﬂi,r
becaUS@Qm(ﬁ)/aﬂi,r =0 (li,r + CZj,seR(mj) [I(xjv Y5> 5) - ,Uj,s] <¢i.,’l“7 ¢j,3>)'

The following theorem justifies this approach. (Note that there is a sign changeéin the
updates, because we wishrt@ximizethe negative semidefinite quadratic for@sa)
and@,,(a), and the algorithm in Figure 2 is a minimization problem. Thus we implic-
itly redefine our problem to be minimization efQ(a) and—Q,,,(&).)

Theorem 2. Take a QPQ(a) wherea € A, for A defined in Eq. 4. Assume that
there is some functiof(i, j, k), and a function,,,(iz), such that if we defing, (@) =
> i i gl(i, j, k), thenQ(a) = Qm(f(a)) for all & € A. Assume we apply the algo-
rithm in Figure 2 with initial valuesx!, generating a sequence of valugs, . .., a”.

Define; ;(0) = exp(}_, 0k1(i,4,k))/Zi, whereZ; = 3 exp(d_ Okl (i, ], k)).
Then the updates oy
g 0Qum (1(a(8")))
%
Kk
fort=1...(T —1)givea(d’) =atfort=1...T.

t+1 _ pt
oLt — gl —

Proof. See Appendix B.



The main storage requirements of the algorithm in Figure 3 concern the Vector
This is a vector which has as many components as there are parts in the training set.
This number can become extremely large. Appendix C gives a “primal form” algorithm
which in some cases can be much more efficient in terms of space requirements. The
new algorithm require®)(d + p) space, wherd is the dimensionality of the primal
form parameter vector, andis the number of parts on a single training example. This
algorithm is more efficient in cases wheté much less than the total number of parts
in the training set, in particular in cases where kernels are not used.

5 Generalization Bound

In this section we use a bit vector formulation of structured classification. More specif-
ically, assume a distributio® over pairs(z,y) with z € X andy € {0,1}*(®). We

also assume a known “feasible sgtlz) C {0,1}*(®) such that with probability 1 we
havey € Y(z). We also assume a given samgg, 1), ..., (yn,Z,) drawn inde-
pendently fromD. We will usey to range over the training labejsandy to range over
elements of sets of the forgi(x) (which includesy;). We write y,. for the kth bit in

y. As in the part formulation we assume a feature vector funediovith &(z, §) € R¢

and a loss functiod.(x, y, §) € [0, 1] satisfying the following linearity conditions.

2(x) ()
@(J;7g) = Z@ké(xa k) L(xvyag) :Z ykl($7yak)
k=1 k=1

It is sometimes useful to distinguish feature bits from loss bits. A bit positiavill

be called a feature bit for if ¢(x, k) is nonzero. A bit positiork will be called a loss

bit for  andy if I(x,y, k) is nonzero. The generalization bound given here depends
only on the number of feature bits — any number of loss bits can be used. Also, the
generalization bound does not require a linear loss function, the bound applies to any
loss functionZ with L(x,y,9) € [0,1]. The generalization bound will involve the
following distance measure between two bit vectpendy’.

E(,9,9)= Y |&(k)]
k: 9k 79y,

This is a weighted Hamming distance on bit strings and satisfies the triangle inequality.
For any weight vectorw € R? we define the classifief, (x) in the obvious way as
the bit vectory € Y (z) maximizingw - ¢(x, §). Rather than bound the loss Bf, we
will bound the loss of a Gibbs classifier. L&tbe a function taking a weight vectar
and a marginy > 0 and returning a distributio®(w, ~) on a second weight vector
w’. We define the loss of)(w, ), denotedL(Q(w, ), D) to be the expectation
of L(z,y, F (z)) whenw' is drawn fromQ(w, ) and(z,y) is drawn fromD. For
q,p € [0,1] we defineK L(g||p) to beq(Ing/Inp) + (1 — ¢)(In(1 — ¢)/In(1 — p). For
q € [0,1] ande > 0 we defineK L~1(q, ¢) to be the supremum of the set of valyes
satisfyingK L(q|p) < e. The functionK L~ satisfies the following.

KL ' (q, €) < q+ \/2qe + 2¢ (6)

Let /...« be maximum ovef from 1 to n of the number of feature bits far;. Note that
lmax IS @ random variable that depends on the sample. Our main generalization result



is that there exists a functiap such that with probability at least— § over the choice
of the sample we have the following simultaneously foraknd~ with ||w|| = 1 and
~v € (0,1].

I (2
< KL <£(w7 v, S) 4 — i1<n(2 . m)+1n(g‘)>> 7)

L(w, 7, S) = lz max L(x,yi, 9)

n- GeC(z4, w, )
i=1

Clz, w, v) = {y eV(x):w- Bz, §) > ax (w-D(x,§') - vE(x,z?,@’))} :

Taskar et al. prove a generalization bound for Markov random fields. The goal in that
setting is to assign labels to the nodes of a Markov random field. Werkaige over
assignments of labels to nodes. A bit vector representations is discussed below. Recall
that H(z, z') is the Hamming distance between two assignments, i.e., the number of
nodes on which they differ. LeV be the number of node¥] the number of values per
node, and; be the maximum over all nodes of the degree of that node (the number of
edges incident on that node). LA, .. be the maximum of the norm of any feature
vector associated with any edge. Under similar conditions to (7), Taskar et al. proved
the following for the Hamming los&(z;, z;, 2) = H(z;, 2)/¢.

ur o)< 20 (| (M) @

n

1
L(w, v, S)=— max L(z, 2z, »
( K ) n ; z€C! (i, w, 7y) ( )

C'(i, w, ) = {z cw - Pwg,z) >

max (1 - @25, 2) — 2qRunax (H (2, 2) + H(Z',2)))
To compare this with the bound in [12] we use a bit vegtor) to represent node

assignment where there is a loss bit to represent each assignment of a value to a node

and a feature bit to represent each possible pair of assignments to the two nodes con-

nected by any edge of the Markov random field. Under this representation wéhave

loss bits and at mosY2V? feature bits. The new bound (7) improves on (8) in a variety

of ways, some more significant than others. First, (7) explicitly states the constants. Sec-

ond, (6) implies thatl L~ (g, €) can be arbitrarily smaller thap-+/e. Third, and prob-

ably most significantly, the sé€Xi, w, v) improves on the s&t’ (¢, w, ). This improve-

ment comes from the fact th&(y(z),y(z)) can be no larger tha®qR . H (z, 2")

andH (z,z') can be no larger thaH (z, z;) + H(z;, 2').



Proof of (7). We give a PAC-Bayesian proof. In applying the PAC-Bayesian theorem we
take the “prior” distribution to be a unit-variance isotropic Gaussian on weight vectors

defined ag(w) = e~ I*II”/2/Z. For a given weight vectow and marginy we define
the “posterior"Q(w, ) with density

q(w/ | w,’y) _ 167(1/2)‘@)'7““2 with o= ( 21n (261118,)( n’ﬂ)) w

Z Y

The PAC-Bayesian theorem now implies that with probability at |@éastd over the
choice of the sample we have that the following holds simultaneously far atid~.

KL(Q(w, )|P) —Hn?) ©)

n—1

L(@(w. ). D) < K17 (L@, ).9)
For @ and P unit variance Gaussians we have the following.

el o (2t
2 2

To derive (7) from (9) it now suffices to show the following.

KL(Q(w, 7) || P)

1
To prove (10) we first note the following for any vectbre R? with ||@|| = 1.

P, v [[(W — ) - W] > €] < 275 (11)
If we replace? by &(z, k)/||®(x, k)|| ande by |||y in (11) we get the following.
’LU/
P —_ . —w - > <
ot || k) = -8t )| > (el < g
By taking a union bound over the feature bits we get the following.

Lemma 4. For any fixed value of we have that with probability at least— 1/(nv?)
over the selection af’ from Q(w, ~) the following holds simultaneously for &llin 1
to 4(z).

!
) 0| < @l 12)
In the case where (12) holds we have the following for any € V().
w' w'’
P LL’,@ - ® JI,:IQ/
a9 g 29
/ !
> (o) = =) (Fip o)
k: g A7), K K
< > Gk (w- B, k) — (1= gx) (w- B, k) +7]|B(, k)|
k: gr A0},

=w-O(z,§) —w- 2(x,9) +vE(x,9,7)
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Fig. 4.Graph of number of iterations over training set vs. dual objective on a named entity tagging
task, for the SMO and EG optimization methods. (a) Comparison of SMO and EG with different
n parameter; (b) Comparison of SMO and EG with= 1 and different initiald parameters.

This implies that ifF’,, (z) = ¢ then we have the following.

g'eY(x

But (13) now yields the following for any fixed.

Lemma 5. With probability at least —1/(n~?) over the selection af’ fromQ(w, )
we haveF, (z) € C(z, w, 7).

Formula (10) now follows by applying Lemma 5 to eachin the sample.

6 Experiments

We compared the Exponentiated Gradient algorithm with the factored Sequential Min-
imal Optimization (SMO) algorithm in [12] on a sequence segmentation task. We se-
lected the first 1000 sentences (12K words) from the CoNLL-2003 hamed entity recog-
nition challenge data set for our experiment. The goal is to extract (multi-word) entity
names of people, organizations, locations and miscellaneous entities. Each word is la-
belled by 9 possible tags (beginning of one of the four entity types, continuation of
one of the types, or not-an-entity). We trained a first-order Markov chain over the tags,
where our cliques are just the nodes for the tag of each word and edges between tags
of consecutive words. The feature vector for each node assignment consists of the word
itself, its capitalization and morphological features, etc., as well as the previous and
consecutive words and their features. Likewise, the feature vector for each edge assign-
ment consists of the two words and their features as well as surrounding words.

Figure 4 shows the growth of the dual objective function for each pass through the
data for SMO and EG, for several settings of the learning rate parameted the
initial setting of thed) parameters. Note that SMO starts up very quickly but converges
to a suboptimal plateau, while EG lags at the start, but overtakes SMO and achieves a
larger than 10% increase in the value of the objective. These preliminary results suggest
that a hybrid algorithm could get the benefits of both, by starting out with several SMO
updates and then switching to EG. The key issue is to switch from the mayginal



representation SMO maintains to the Gilshr&presentation that EG uses. We can find

0 that produces: by first computing conditional “probabilities” that correspond to our
marginals (e.g. dividing edge marginals by node marginals in this case) and then letting
0's be the logs of the conditional probabilities.
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A Proof of Lemma 3

Consider the mapping frothparameters to the valu@(a): 0 — Q(5(0)), whereg is

defined bya = 5 (0) iff a; = o(6;). Now consider the Taylor expansion of the I@gs
aboutd®. Taylor's theorem implies there isfac 6%, §*+!] for which

Q(a(8"1) = Q(a(8))+V5Q(a(8)) (6" —8")+(8" 8" V2Q(&(8)) (6" —4").

Itis easy to verify that forr = 5(0) we haveVa (0) = diag(a)—diag(a1ay, . .., anal,),
which is a block diagonal matrix, and tki block is the variance operator for the prob-
ability distribution&;. Applying the chain rule, we see that the first order term in the
Taylor series is

ViQUe(0) (0 ) = -1 Y (Vo Q") (ding(a) — i) (V1 Q(a))
= —nz var(X; ¢).



We next consider second derivatives. Notice thatifet j, V5, V; @Q = 0. Thus, the
Hessian is block diagonal. We have '

0 5(0 9_9a(8:) _
9)) = |
96,3005 27 = 5o, "agy, 0@
a ~ —
= W (aik(ek - CVZ)/V(Z)Q(Q))
ij
= (@i056(e; — 0s) — ajaanle; + ex — 20)) V) Q(a)
+ai(er — )V Q@)as (e; — @),
wheree; = (d;1,...,9;m,) andd;x is the indicator function forj = k. Defining

a = a(#), we have

VaQ(5(9)) = diag(a) diag (VQ(a) — 1a'VQ(a))
Va(0)VQ(a)d' —avQ(a)'Va () + Va(0)V2Q(a)Va(0),
wherel is the all ones vector. If the random vanaMehasPr( = (V) Q(a )) ) =
a5, we see that
(0"~ 0 V3Q(o(0) (0" — 7
=1°VQ(a")'V3Q(5(9))vQ(a’)
7WQZE[ 2, 0(Yi —BY;) = 2(X, g% - EX, , sEV)EX, , ]

+ nQVQ( 'V (0)V:Q(a)Va(0)VQ(a')

2 2 2 2
=1 Z E[(X,;s—EX;, )*(Y:—EY;)] +1n ’
i

diag(VN)UV&(0)VQ(a')

<n’B? Zvar( )+ 17°A||[VE(0)VeQ(a )H
(B +A) ) var(X, ),

where we represent the positive semidefinite symmetric Hessian maWix@éx) =

A = U’ diag(A\)U for an orthonormal eigenvector mattik and vector of eigenvalues

A. Combining with the first order term gives the first inequality of the lemma. For the
second, define = V;)Q(a") and notice that we can write

war(X, .0) = o' (diog(a) - aia)a

= oy (2 — EX;, 5)° — var(X,, 5)) ,

90,

Thus, forv = (6; — %) for somed € [, 6+1], we have

V'V, var(Xi9) = (v — 1mkin vg)' Vg, var(X; 1.0) < nBvar(X; ).



Viewing this as a differential inequality in one variable, we see that jfvar(X; ;) >

0 thenY", var(X; 1 9) < "3, var(X;). (See, for example, Lemma 6.1 in [11].)
Lemma 2 shows that ¥, var(X;;) = 0 thena = a'™!, and in that case the lemma
is trivially true. So we may assume that, var(X;;) > 0. The lemma follows.

B Proof of theorem 2

We now give a proof of theorem 2, re-stated here:

Theorem 3. Take a QPQ(a) wherea € A and A is as defined in Eq. 4. Assume that
there is some functiof(i, j, k), and a function,,,(iz), such that if we defing, (@) =

>i; i gl(i, j, k), thenQ(a) = Qm(n(a)) for all & € A. Assume we apply the algo-
rithm in Figure 2 with initial valuesy!, generating a sequence of valugs, . .., a’.
Definea; ;(0) = exp(}", 0xI(i,j, k))/Z;, where Z; = Zj exp(>_, Orl(i, 4, k)).
Then the updates . M

Opug

fort=1...(T —1)givea(d’) =atfort=1...T.

Proof. The algorithm in Figure 1 starts with some initial dual values Fort =
1...T,the updated paramete#$t! are defined as

t+1 _ aij exp{_nviJ}
WY e jexp{-nV, i}

whereV; ; = a(‘i("‘) Giventhat)(a) = Q.. (a(a)), and thapuy,(a) = 3=, ; ai 13, j, k),
by the chain rule we have

Vi, j, «

Q) 0Qu(E(E) <~ 0Qu(A(a) O
Vi = daij Oy Z d,uk da” Zékl bk

k

whereé;, = W_

We now prove thati® = a(f") for ¢ = 1...T + 1 by induction overt. The base
case, fort = 1, holds by assumption. To prove the inductive case, assuiffe¢ = @
and note that by the definition of the updaﬁ%ﬁfl = 0% — ndx. Then for alli, j,

‘(ét-&-l): eXP(ZkI(i,jak)altgH) _ eXP(Zk (i,7,k)(0 t*775k)

> exp(o, 10,5, k)0 22, exp(, 1(i, 4, k) (6], — ndx)
_ i () exp(=n 30 10,4 K)Ok) 0 i(0%) exp(=nViy)

> i (08) exp(—n 30, 1(4,5,k)0) 30, i j(01) exp(—nVi;)
_ i ;' exp(=nVi) — gttt

> jtexp(—nVi;)

Thus we have improved the inductive case, thaf(6"™) = o',



Input: See algorithm in Figure 3.

Assumptions: See algorithm in Figure 3.

Data structures: A vectorz € R?, whered is the dimensionality of the feature vectapér)
over parts.

Algorithm:
— Choose initial values®.
—Fort=1...T

o Initialize z' ™' = z'.
e Fori=1...n
* Forr € R(z;), calculateu; » = Y-, ai,y (6°)I(z,y,r) where

0! . = nC(t — Vi +nC*(2", dir)

* Setzi+1 =zt + z’!‘ER((L‘i) [I(l’i, Yi, T) — ,U/Z‘J»] ¢i,7-

Output: Dual variable” ™1, or primal parameters* defined as

w' = Z iy (07D, =C ( Z Dir — Z Mi,r¢i,r>

1,y i,rER(x;,Yq) i,r€R(z;)

wherep;, =37 iy (07T (24, y, 7).

Fig. 5. A “primal form” algorithm which is equivalent to the algorithm in Figure 3

C A primal form algorithm

The main storage requirements of the algorithm in Figure 3 concern the vedtbis
has as many components as there are parts in the training set, which can be extremely
large. For example, in the WCFG case, if we have sentences of I&ngthrammar
with ¢ rules, andn examples, then there arg(ngi®) parts. For example, the Wall
Street Journal treebank has roughly= 40, 000, g = 12,000, andl = 25 (on average),
which leads to approximatel§/5 x 1012 distinct parts.

In Figure 5 we give a modified algorithm with(d + G) space requirements, where
G is the space required to compute fhe. variables of a single exampleandd is the
dimensionality of the feature vector representation. For exaniple; O(gl?) in the
WCFG case, so the overall space requirement®ade+ gl?), a significant saving on
O(ngl?) for the algorithm in Figure 3.

The algorithm maintains a vectarat each iteration whose dimension is the same
as that of the primal space. In cases whére G < |¢] this can lead to a considerable
saving in terms of storage: itis clear than in cases where kernels are not used (i.e., where
d is relatively small), it is likely that this algorithm will be considerably more efficient
in terms of space requirements. Note that the algorithms are equivalent because the
equivalence; , = nC(t — 1)l; » + nC*(z", ¢i,) holds fort = 1... (T +1). This can
again be proved by induction. The base case is to assume that the equivalence holds
for ¢ = 1. The inductive case is then relatively straightforward, following from the
definitions off! ,. in terms ofz’, andz’*" in terms ofz".



