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Abstract

We propose new bounds on the error of learning algorithms in terms of a data-dependent
notion of complexity. The estimates we establish give optimal rates and are based on a local
and empirical version of Rademacher averages, in the sense that the Rademacher averages are
computed from the data, on a subset of functions with small empirical error. We present some
applications to classification and prediction with convex function classes, and with kernel classes
in particular.

Keywords: Error Bounds, Rademacher Averages, Data-Dependent Complexity, Concentration Inequal-
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1 Introduction

Estimating the performance of statistical procedures is useful for providing a better understanding
of the factors that influence their behavior, as well as for suggesting ways to improve them. Al-
though asymptotic analysis is a crucial first step towards understanding the behavior, finite sample
error bounds are of more value as they allow the design of model selection (or parameter tuning)
procedures. These error bounds typically have the following form: with high probability, the error
of the estimator (typically a function in a certain class) is bounded by an empirical estimate of
error plus a penalty term depending on the complexity of the class of functions that can be chosen
by the algorithm. The differences between the true and empirical errors of functions in that class
can then be viewed as an empirical process. Many tools have been developed for understanding
the behavior of such objects, and especially for evaluating their suprema – which can be thought
of as a measure of how hard it is to estimate functions in the class at hand. The goal is thus
to obtain the sharpest possible estimates on the complexity of function classes. A problem arises
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since the notion of complexity might depend on the (unknown) underlying probability measure
according to which the data is produced. Distribution-free notions of the complexity, such as the
Vapnik-Chervonenkis dimension [35] or the metric entropy [28], typically give conservative esti-
mates. Distribution-dependent estimates, based for example on entropy numbers in the L2(P )
distance where P is the underlying distribution, are not useful when P is unknown. Thus, it is
desirable to obtain data-dependent estimates which can readily be computed from the sample.

One of the most interesting data-dependent complexity estimates is the so-called Rademacher
average associated with the class. Although known for a long time to be related to the expected
supremum of the empirical process (thanks to symmetrization inequalities), it was first proposed
as an effective complexity measure by Koltchinskii [15], Bartlett, Boucheron and Lugosi [1] and
Mendelson [25] and then further studied in [3]. Unfortunately, one of the shortcomings of the
Rademacher averages is that they provide global estimates on the complexity of the function class,
that is, they do not reflect the fact that the algorithm will likely pick functions that have a small
error, and in particular, only a small subset of the function class will be used. As a result, the best
error rate that can be obtained via the global Rademacher averages is at least of the order of 1/

√
n

(where n is the sample size), which is suboptimal in some situations. Indeed, the type of algorithms
we consider here are known in the statistical literature as M-estimators. They minimize an empirical
loss criterion in a fixed class of functions. They have been extensively studied and their rate of
convergence is known to be related to the modulus of continuity of the empirical process associated
with the class of functions (rather than to the expected supremum of that empirical process). This
modulus of continuity is well understood from the empirical processes theory viewpoint (see e.g.
[34] and [33]). Also, from the point of view of M-estimators, the quantity which determines the rate
of convergence is actually a fixed point of this modulus of continuity. Results of this type have been
obtained by van de Geer [31, 32] (among others), who also provides non-asymptotic exponential
inequalities. Unfortunately, these are in terms of entropy (or random entropy) and hence are not
useful when the probability distribution is unknown.

The key property that allows one to prove fast rates of convergence is the fact that around the
best function in the class, the variance of the increments of the empirical process (or the L2(P )
distance to the best function) is upper bounded by a linear function of the expectation of these
increments. In the context of regression with squared loss, this happens as soon as the functions
are bounded and the class of functions is convex. In the context of classification, Mammen and
Tsybakov have shown [20] that this also happens under conditions on the conditional distribution
(especially about its behavior around 1/2). They actually do not require the relationship between
variance and expectation (of the increments) to be linear but allow for more general, power type
inequalities. Their results, like those of van de Geer, are asymptotic.

In order to exploit this key property and have finite sample bounds, rather than considering
the Rademacher averages of the entire class as the complexity measure, it is possible to consider
the Rademacher averages of a small subset of the class, usually, the intersection of the class with a
ball centered at a function of interest. These local Rademacher averages can serve as a complexity
measure; clearly, they are always smaller than the corresponding global averages. Several authors
have considered the use of local estimates of the complexity of the function class, in order to
obtain better bounds. Before presenting their results, we introduce some notation which is used
throughout the paper.

Let (X , P ) be a probability space. Denote by F a class of measurable functions from X to R,
and set X1, . . . , Xn to be independent random variables distributed according to P . Let σ1, . . . , σn
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be n independent Rademacher random variables, that is, independent random variables for which
Pr(σi = 1) = Pr(σi = −1) = 1/2.

For a function f : X → R, define the following

Pnf =
1
n

n∑
i=1

f(Xi) , Pf = Ef(X) and Rnf =
1
n

n∑
i=1

σif(Xi) .

For a class F , set
RnF = sup

f∈F
Rnf .

Define Eσ to be the expectation with respect to the random variables σ1, . . . , σn, conditioned on
all of the other random variables. The Rademacher average of F is ERnF , and the empirical (or
conditional) Rademacher averages of F are

EσRnF =
1
n

E

(
sup
f∈F

n∑
i=1

σif(Xi)

∣∣∣∣∣X1, . . . , Xn

)
.

Some classical properties of Rademacher averages and some simple lemmas (which we use often)
are listed in Appendix A.

The simplest way to obtain the property allowing for fast rates of convergence is to consider
nonnegative uniformly bounded functions (or increments with respect to a fixed null function). In
that case, one trivially has for all f ∈ F Var [f ] ≤ cPf . This is exploited by Koltchinskii and
Panchenko [16], who consider the case of prediction with absolute loss when functions in F have
values in [0, 1] and there is a perfect function f∗ in the class, i.e. Pf∗ = 0. They introduce an
iterative method involving local empirical Rademacher averages. They first construct a function
φn(r) = c1Rn{f : Pnf ≤ 2r} + c2

√
rx/n + c3/n, which can be computed from the data. For r̂N

defined by r̂0 = 1, r̂k+1 = φn(r̂k), they show that with probability at least 1− 2Ne−x,

P f̂ ≤ r̂N +
2x
n
,

where f̂ is a minimizer of the empirical error, that is, a function in F satisfying Pnf̂ = inff∈F Pnf .
Hence, this nonincreasing sequence of local Rademacher averages can be used as upper bounds
on the error of the empirical minimizer f̂ . Furthermore, if ψn is a concave function such that
ψ(

√
r) ≥ EσRn{f ∈ F : Pnf ≤ r}, and if the number of iterations N is at least 1 + dlog2 log2 n/xe,

then with probability at least 1−Ne−x,

r̂N ≤ c
(
r̂∗ +

x

n

)
,

where r∗ is a solution of the fixed-point equation ψ(
√
r) = r. Combining the above results, one has

a procedure to obtain data-dependent error bounds that are of the order of the fixed-point of the
modulus of continuity at 0 of the empirical Rademacher averages. One limitation of this result is
that it assumes that there is a function f∗ in the class with Pf∗ = 0. In contrast, we are interested
in prediction problems where Pf is the error of an estimator, and in the presence of noise there
may not be any perfect estimator (even the best in the class can have non-zero error).
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More recently, Bousquet, Koltchinskii and Panchenko [9] obtained a more general result avoiding
the iterative procedure. Their result is that for functions with values in [0, 1], with probability at
least 1− e−x,

∀f ∈ F , Pf ≤ c

(
Pnf + r̂∗ +

t+ log log n
n

)
. (1.1)

where r̂∗ is the fixed point of a concave function ψn satisfying ψn(0) = 0 and

ψn(
√
r) ≥ EσRn{f ∈ F : Pnf ≤ r} .

The main difference between this and the results of [16] is that there is no requirement that the
class contains a perfect function. However, the local Rademacher averages are centered around the
zero function instead of the one that minimizes Pf . As a consequence, the fixed point r̂∗ cannot
be expected to converge to zero when inff∈F Pf > 0.

In order to remove this limitation, Lugosi and Wegkamp [19] use localized Rademacher averages
of a small ball around the minimizer f̂ of Pn. However, their result is restricted to nonnegative
functions, and in particular functions with values in {0, 1}. Moreover, their bounds also involve
some global information, in the form of the shatter coefficients SF (Xn

1 ) of the function class (that
is, the cardinality of the coordinate projections of the class F on the data Xn

1 ). They show that
there are constants c1, c2 such that, with probability at least 1 − 8/n, the empirical minimizer f̂
satisfies

P f̂ ≤ inf
f∈F

Pf + 2ψ̂n(r̂n) ,

where

ψ̂n(r) = c1

(
EσRn{f ∈ F : Pnf ≤ 16Pnf̂ + 15r}+

log n
n

+

√
log n
n

√
Pnf̂ + r

)
and r̂n = c2(logSF (Xn

1 ) + log n)/n. The limitation of this result is that r̂n has to be chosen
according to the (empirically measured) complexity of the whole class, which may not be as sharp
as the Rademacher averages, and in general, is not a fixed point of ψ̂n. Moreover, the balls over
which the Rademacher averages are computed in ψ̂n contain a factor of 16 in front of Pnf̂ . As we
explain later, this induces a lower bound on ψ̂n when there is no function with Pf = 0 in the class.

It seems that the only way to capture the right behavior in the general, noisy case, is to analyze
the increments of the empirical process, in other words, to directly consider the functions f − f∗.
This approach was first proposed by Massart [22]; see also [26]. Massart introduces the following
assumption

Var [`f (X)− `f∗(X)] ≤ d2(f, f∗) ≤ B(P`f − P`f∗) ,

where `f is the loss associated with the function f (in other words, `f (X,Y ) = `(f(X), Y ), which
measures the discrepancy in the prediction made by f),1 d is a psuedometric, and f∗ minimizes
the expected loss. This is a more refined version of the assumption we mentioned earlier on the
relationship between the variance and expectation of the increments of the empirical process. It
is only satisfied for some loss functions ` and function classes F . Under this assumption, Massart
considers a nondecreasing function ψ satisfying

ψ(r) ≥ E sup
f∈F , d2(f,f∗)2≤r

|Pf − Pf∗ − Pnf + Pnf
∗|+ c

x

n
,

1The previous results could also be stated in terms of loss functions, but we omitted this in order to simplify
exposition. However, the extra notation is necessary to properly state Massart’s result.
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such that ψ(r)/
√
r is nonincreasing (we refer to this property as the sub-root property later in the

paper). Then, with probability at least 1− e−x,

∀f ∈ F , P `f − P`f∗ ≤ c
(
r∗ +

x

n

)
, (1.2)

where r∗ is the fixed point of ψ and c depends only on B and on the uniform bound on the
range of functions in F . It can be proved that in many situations of interest, this bound suffices
to prove minimax rates of convergence for penalized M-estimators. (Massart considers examples
where the complexity term can be bounded using a priori global information about the function
class.) However, the main limitation of this result is that it does not involve quantities that can be
computed from the data.

Finally, as we mentioned earlier, Mendelson [26] gives an analysis similar to that of Massart,
in a slightly less general case (with no noise in the target values, i.e. the conditional distribution
of Y given X is concentrated at one point). Mendelson introduces the notion of the star-hull of a
class of functions (see the next section for a definition) and considers Rademacher averages of this
star-hull as a localized measure of complexity. His results also involve a priori knowledge of the
class, such as the rate of growth of covering numbers.

We can now spell out our goal in more detail: in this paper we combine the increment-based
approach of Massart and Mendelson (dealing with differences of functions, or more generally with
bounded real-valued functions) with the empirical local Rademacher approach of Koltchinskii and
Panchenko and of Lugosi and Wegkamp, in order to obtain data-dependent bounds which depend on
a fixed point of the modulus of continuity of Rademacher averages computed around the empirically
best function.

Our first main result (Theorem 3.3) is a distribution-dependent result involving the fixed point
r∗ of a local Rademacher average of the star-hull of the class F . This shows that functions with
the sub-root property can readily be obtained from Rademacher averages, while in previous work
the appropriate functions were obtained only via global information about the class.

The second main result (Theorems 4.1 and 4.2) is an empirical counterpart of the first one,
where the complexity is the fixed point of an empirical local Rademacher average. We also show
that this fixed point is within a constant factor of the non-empirical one.

Equipped with this result, we can then prove (Theorem 5.4) a fully data-dependent analogue
of Massart’s result, where the Rademacher averages are localized around the minimizer of the
empirical loss.

We also show (Theorem 6.3) that in the context of classification, the local Rademacher averages
of star-hulls can be approximated by solving a weighted empirical error minimization problem.

Our final result (Corollary 6.7) concerns regression with kernel classes, that is, classes of func-
tions that are generated by a positive definite kernel. These classes are widely used in interpolation
and estimation problems as they yield computationally efficient algorithms. Our result gives a
data-dependent complexity term that can be computed directly from the eigenvalues of the Gram
matrix (the matrix whose entries are values of the kernel on the data).

The sharpness of our results is demonstrated from the fact that we recover, in the distribution
dependent case (treated in Section 4), similar results to those of Massart [22] which, in the situations
where they apply, give the minimax optimal rates or the best known results. Moreover, the data-
dependent bounds that we obtain as counterparts of these results have the same rate of convergence
(see Theorem 4.2).
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The paper is organized as follows. In Section 2, we present some preliminary results obtained
from concentration inequalities, which we use throughout. Section 3 establishes error bounds
using local Rademacher averages and explains how to compute their fixed points from “global
information” (e.g. estimates of the metric entropy or of the combinatorial dimensions of the indexing
class), in which case the optimal estimates can be recovered. In Section 4, we give a data-dependent
error bound using empirical and local Rademacher averages, and show the connection between the
fixed points of the empirical and non-empirical Rademacher averages. In Section 5, we apply our
results to loss classes. We give estimates that generalize the results of Koltchinskii and Panchenko
by eliminating the requirement that some function in the class has zero loss, and are more general
than those of Lugosi and Wegkamp, since there is no need, in our case, to estimate global shatter
coefficients of the class. We also give a data-dependent extension of Massart’s result where the local
averages are computed around the minimizer of the empirical loss. Finally, Section 6 shows that
the problem of estimating these local Rademacher averages in classification reduces to weighted
empirical risk minimization. It also shows that the local averages for kernel classes can be sharply
bounded in terms of the eigenvalues of the Gram matrix.

2 Preliminary Results

Recall that the star-hull of F around f0 is defined by

star(F , f0) = {f0 + α(f − f0) : f ∈ F , α ∈ [0, 1]} .

Throughout this paper, we will manipulate suprema of empirical processes, that is, quantities of the
form supf∈F (Pf−Pnf). We will always assume they are measurable without explicitly mentioning
it. In other words, we assume that the class F and the distribution P satisfy appropriate (mild)
conditions for measurability of this supremum (we refer to [11, 28] for a detailed account of such
issues).

The following theorem is the main result of this section and is at the core of all the proofs
presented later. It shows that if the functions in a class have small variance, the maximal deviation
between empirical means and true means is controlled by the Rademacher averages of F . In
particular, the bound improves as the largest variance of a class member decreases.

Theorem 2.1 Let F be a class of functions that map X into [a, b]. Assume that there is some
r > 0 such that for every f ∈ F , Var [f(Xi)] ≤ r. Then, for every x > 0, with probability at least
1− e−x,

sup
f∈F

(Pf − Pnf) ≤ inf
α>0

(
2(1 + α)ERnF +

√
2rx
n

+ (b− a)
(

1
3

+
1
α

)
x

n

)
,

and with probability at least 1− 2e−x,

sup
f∈F

(Pf − Pnf) ≤ inf
α∈(0,1)

(
2
1 + α

1− α
EσRnF +

√
2rx
n

+ (b− a)
(

1
3

+
1
α

+
1 + α

2α(1− α)

)
x

n

)
.

Moreover, the same results hold for the quantity supf∈F (Pnf − Pf).
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This theorem, which is proved in Appendix B, is a more or less direct consequence of Ta-
lagrand’s inequality for empirical processes [30]. However, the actual statement presented here is
new in the sense that it displays the best known constants. Indeed, compared to the previous result
of Koltchinskii and Panchenko [16] which was based on Massart’s version of Talagrand’s inequal-
ity [21], we have used the most refined concentration inequalities available: that of Bousquet [7]
for the supremum of the empirical process and that of Boucheron, Lugosi and Massart [5] for the
Rademacher averages. This last inequality is a powerful tool to obtain data-dependent bounds,
since it allows one to replace the Rademacher average (which measures the complexity of the class
of functions) by its empirical version, which can be efficiently computed in some cases. Details
about these inequalities are given in Appendix A.

When applied to the full function class F , the above theorem is not useful. Indeed, with only
a trivial bound on the maximal variance, better results can be obtained via simpler concentration
inequalities, such as the bounded difference inequality [23], which would allow

√
rx/n to be replaced

by
√
x/n. However, by applying Theorem 2.1 to subsets of F or to modified classes obtained from

F , much better results can be obtained. Hence, the presence of an upper bound on the variance in
the square root term is the key ingredient of this result.

A last preliminary result that we will require is the following consequence of Theorem 2.1, which
shows that if the local Rademacher averages are small, then balls in L2(P ) are probably contained
in the corresponding empirical balls (that is, in L2(Pn)) with a slightly larger radius.

Corollary 2.2 Let F be a class of functions that map X into [−b, b] with b > 0. For every x > 0
and r that satisfy

r ≥ 10bERn

{
f : f ∈ F , Pf2 ≤ r

}
+

11b2x
n

,

then with probability at least 1− e−x,{
f ∈ F : Pf2 ≤ r

}
⊆
{
f ∈ F : Pnf

2 ≤ 2r
}
.

Proof: Since the range of any function in the set Fr =
{
f2 : f ∈ F , Pf2 ≤ r

}
is contained in

[0, b2], it follows that Var
[
f2(Xi)

]
≤ Pf4 ≤ b2Pf2 ≤ b2r. Thus, by the first part of Theorem 2.1

(with α = 1/4), with probability at least 1− e−x, every f ∈ Fr satisfies

Pnf
2 ≤ r +

5
2

ERn

{
f2 : f ∈ F , Pf2 ≤ r

}
+

√
2b2rx
n

+
13b2x

3n

≤ r +
5
2

ERn

{
f2 : f ∈ F , Pf2 ≤ r

}
+
r

2
+

16b2x
3n

≤ r + 5bERn

{
f : f ∈ F , Pf2 ≤ r

}
+
r

2
+

16b2x
3n

≤ 2r,

where the second inequality follows from Lemma A.3 and we have used, in the second last inequality,
Theorem A.6 applied to φ(x) = x2 (with Lipschitz constant 2b on [−b, b]).

3 Error Bounds with Local Complexity

In this section, we show that the Rademacher averages associated with a small subset of the class
may be considered as a complexity term in an error bound. Since these local Rademacher averages
are always smaller than the corresponding global averages, they lead to sharper bounds.

7



We present a general error bound involving local complexities that is applicable to classes of
bounded functions for which the variance is bounded by a fixed linear function of the expectation.
In this case, the local Rademacher averages are defined as ERn{f ∈ F : T (f) ≤ r} where T (f) is
an upper bound on the variance (typically chosen as T (f) = Pf2).

There is a trade-off between the size of the subset we consider in these local averages and its
complexity; we shall see that the optimal choice is given by a fixed point of an upper bound on the
local Rademacher averages. The functions we use as upper bounds are sub-root functions; among
other useful properties, sub-root functions have a unique fixed point.

Definition 3.1 A function ψ : [0,∞) → [0,∞) is sub-root if it is nonnegative, nondecreasing, and
if r 7→ ψ(r)/

√
r is nonincreasing for r > 0.

We only consider nontrivial sub-root functions, that is sub-root functions that are not the constant
function ψ ≡ 0.

Lemma 3.2 If ψ : [0,∞) → [0,∞) is a nontrivial sub-root function, then it is continuous on [0,∞)
and the equation ψ(r) = r has a unique positive solution. Moreover, if we denote the solution by
r∗, then for all r > 0, r ≥ ψ(r) if and only if r∗ ≤ r.

The proof of this lemma is in Appendix B. In view of the lemma, we will simply refer to the
quantity r∗ as the unique positive solution of ψ(r) = r, or as the fixed-point of ψ.

3.1 Error Bounds

We can now state and discuss the main result of this section. It is composed of two parts: in
the first part, one requires a sub-root upper bound on the local Rademacher averages, and in the
second part, it is shown that better results can be obtained when the class over which the averages
are computed is slightly enlarged.

Theorem 3.3 Let F be a class of functions with ranges in [a, b] and assume that there is some
functional T : F → R+ and some constant B such that for every f ∈ F , Var [f ] ≤ T (f) ≤ BPf .
Let ψ be a sub-root function and let r∗ be the fixed point of ψ.

(1) Assume that ψ satisfies, for any r ≥ r∗,

ψ(r) ≥ BERn{f ∈ F : T (f) ≤ r} .

Then, with c1 = 704 and c2 = 26, for any K > 1 and every x > 0, with probability at least
1− e−x,

∀f ∈ F , Pf ≤ K

K − 1
Pnf +

c1K

B
r∗ +

x(11(b− a)) + c2BK)
n

.

Also, with probability at least 1− e−x,

∀f ∈ F , Pnf ≤
K + 1
K

Pf +
c1K

B
r∗ +

x(11(b− a) + c2BK)
n

.

(2) If, in addition, for f ∈ F and α ∈ [0, 1], T (αf) ≤ α2T (f), and if ψ satisfies, for any r ≥ r∗,

ψ(r) ≥ BERn{f ∈ star(F , 0) : T (f) ≤ r} ,

then the same results hold true with c1 = 6 and c2 = 5.
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The proof of this theorem is given in Section 3.2.
We can compare the results to our starting point (Theorem 2.1). The improvement comes from

the fact that the complexity term, which was essentially supr ψ(r) in Theorem 2.1 (if we had applied
it to the class F directly) is now reduced to r∗, the fixed point of ψ. So the complexity term is
always smaller (later, we show how to estimate r∗). On the other hand, there is some loss since the
constant in front of Pnf is strictly larger than one. Section 5.2 will show that this is not an issue
in the applications we have in mind.

In Sections 5.1 and 5.2, we investigate conditions that ensure the assumptions of this theorem
are satisfied, and we provide applications of this result to prediction problems. The condition that
the variance is upper bounded by the expectation turns out to be crucial to obtain these results.

The idea behind Theorem 3.3 originates in the work of Massart [22], who proves a slightly
different version of the first part. The difference is that we use local Rademacher averages instead
of the expectation of the supremum of the empirical process on a ball. Moreover, we give smaller
constants. As far as we know, the second part of Theorem 3.3 is new.

3.1.1 Choosing the Function ψ

Notice that the function ψ cannot be chosen arbitrarily and has to satisfy the sub-root property. One
possible approach is to use classical upper bounds on the Rademacher averages, such as Dudley’s
entropy integral. This can give a sub-root upper bound and was used, for example, in [16] and
in [22].

However, the second part of Theorem 3.3 indicates a possible choice for ψ, namely, one can take
ψ as the local Rademacher averages of the star-hull of F around 0. The reason for this comes from
the following lemma, which shows that if the class is star-shaped and T (f) behaves as a quadratic
function, the Rademacher averages are sub-root.

Lemma 3.4 If the class F is star-shaped around f̂ (which may depend on the data), and T : F →
R+ is a (possibly random) function that satisfies T (αf) ≤ α2T (f) for any f ∈ F and any α ∈ [0, 1],
then the (random) function ψ defined for r ≥ 0 by

ψ(r) = EσRn{f ∈ F : T (f − f̂) ≤ r}

is sub-root and r 7→ Eψ(r) is also sub-root.

This lemma is proved in Appendix B.
Notice that making a class star-shaped only increases it, so that

ERn{f ∈ star(F , f0) : T (f) ≤ r} ≥ ERn{f ∈ F : T (f) ≤ r} .

However, this increase in size is moderate as can be seen for example if one compares covering
numbers of a class and its star-hull (see, for example, [26], Lemma 4.5).

3.1.2 Some Consequences

As a consequence of Theorem 3.3, we obtain an error bound when F consists of uniformly bounded
nonnegative functions. Notice that in this case, the variance is trivially bounded by a constant
times the expectation and one can directly use T (f) = Pf .
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Corollary 3.5 Let F be a class of functions with ranges in [0, 1]. Let ψ be a sub-root function,
such that for all r ≥ 0,

ERn{f ∈ F : Pf ≤ r} ≤ ψ(r) ,

and let r∗ be the fixed point of ψ. Then, for any K > 1 and every x > 0, with probability at least
1− e−x, every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + 704Kr∗ +

x(11 + 26K)
n

.

Also, with probability at least 1− e−x, every f ∈ F satisfies

Pnf ≤
K + 1
K

Pf + 704Kr∗ +
x(11 + 26K)

n
.

Proof: When f ∈ [0, 1], we have Var [f ] ≤ Pf so that the result follows from applying Theorem 3.3
with T (f) = Pf .

We also note that the same idea as in the proof of Theorem 3.3 gives a converse of Corollary 2.2,
namely, that with high probability, the intersection of F with an empirical ball of a fixed radius is
contained in the intersection of F with an L2(P ) ball with a slightly larger radius.

Lemma 3.6 Let F be a class of functions that map X into [−1, 1]. Fix x > 0. If

r ≥ 20ERn

{
f : f ∈ star(F , 0), Pf2 ≤ r

}
+

26x
n
,

then with probability at least 1− e−x,{
f ∈ star(F , 0) : Pnf

2 ≤ r
}
⊆
{
f ∈ star(F , 0) : Pf2 ≤ 2r

}
.

This result, proved in Section 3.2, will be useful in Section 4.

3.1.3 Estimating r∗ from Global Information

The error bounds involve fixed points of functions that define upper bounds on the local Rademacher
averages. In some cases, these fixed points can be estimated from global information on the function
class. We present a complete analysis only in a simple case, where F is a class of binary-valued
functions with a finite VC dimension.

Corollary 3.7 Let F be a class of {0, 1}-valued functions with VC dimension d < ∞. Then for
all K > 1 and every x > 0, with probability at least 1− e−x, every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + cK

(
d log(n/d)

n
+
x

n

)
.

The proof is in Appendix B.
The above result is similar to results obtained by Vapnik and Chervonenkis [35] and by Lu-

gosi and Wegkamp (Theorem 3.1 of [19]). However they used inequalities for weighted empirical
processes indexed by nonnegative functions. Our results have more flexibility since they can ac-
commodate general functions, although this is not needed in this simple corollary.

The proof uses a similar line of reasoning to proofs in [26, 27]. Clearly, it extends to any class
of real-valued functions for which one has estimates for the entropy integral, such as classes with
finite pseudo-dimension or a combinatorial dimension that grows more slowly than quadratically.
See [26, 27] for more details.

Notice also that the rate of d log n/n is the best known.
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3.1.4 Proof Techniques

Before giving the proofs of the results mentioned above, let us sketch the techniques we use. The
approach has its roots in classical empirical processes theory, where it was understood that the
modulus of continuity of the empirical process is an important quantity (here, ψ plays this role). In
order to obtain non-asymptotic results, two approaches have been developed: the first one consists
of cutting the class F into smaller pieces, where one has control of the variance of the elements.
This is the so-called peeling technique (see, for example, [31, 33, 34, 32] and references therein).
The second approach consists of weighting the functions in F by dividing them by their variance.
Many results have been obtained on such weighted empirical processes (see, for example, [28]). The
results of Vapnik and Chervonenkis based on weighting [35] are restricted to classes of nonnegative
functions. Also, most previous results, such as those of Pollard [28], Van de Geer [32] or Haussler [13]
give complexity terms that involve ‘global’ measures of complexity of the class, such as covering
numbers. None of these results use the recently introduced Rademacher averages as measures
of complexity. It turns out that it is possible to combine the peeling and weighting ideas with
concentration inequalities to obtain such results, as proposed by Massart in [22], and also used (for
nonnegative functions) by Koltchinskii and Panchenko [16].

The idea is the following:

• Apply Theorem 2.1 to the class of functions {f/w(f) : f ∈ F} where w is some nonnegative
weight of the order of the variance of f . Hence, the functions in this class have a small variance.

• Upper bound the Rademacher averages of this weighted class, by ‘peeling off’ subclasses of F
according to the variance of their elements, and bounding the Rademacher averages of these
subclasses using ψ.

• Use the sub-root property of ψ, so that its fixed point gives a common upper bound on the
complexity of all the subclasses (up to some scaling).

• Finally, convert the upper bound for functions in the weighted class into a bound for functions
in the initial class.

The idea of peeling—that is, of partitioning the class F into slices where functions have variance
within a certain range—is at the core of the proof of the first part of Theorem 3.3 (see, for example,
Equation (3.1)). However, it does not appear explicitly in the proof of the second part. One
explanation is that when one considers the star hull of the class, it is enough to consider two
subclasses: the functions with T (f) ≤ r and the ones with T (f) > r and this is done by introducing
the weighting factor T (f) ∨ r. This idea was exploited in the work of Mendelson [26] and, more
recently, in [4]. Moreover, when one considers the set Fr = star(F , 0) ∩ T (f) ≤ r, any function
f ′ ∈ F with T (f ′) > r, will have a scaled down representative in that set. So even though it seems
that we look at the class star(F , 0) only locally, we still take into account all of the functions in F
(with appropriate scaling).

3.2 Proofs

Before presenting the proof, let us first introduce some additional notation. Given a class F , λ > 1,
and r > 0, let w(f) = min{rλk : k ∈ N, rλk ≥ T (f)} and set

Gr =
{

r

w(f)
f : f ∈ F

}
.

11



Notice that w(f) ≥ r, so that Gr ⊆ {αf : f ∈ F , α ∈ [0, 1]} = star(F , 0). Define

V +
r = sup

g∈Gr

Pg − Png and V −r = sup
g∈Gr

Png − Pg .

For the second part of the theorem, we need to introduce another class of functions

G̃r :=
{

rf

T (f) ∨ r
: f ∈ F

}
,

and define
Ṽ +

r = sup
g∈G̃r

Pg − Png and Ṽ −r = sup
g∈G̃r

Png − Pg .

Lemma 3.8 With the above notation, assume that there is a constant B > 0 such that for every
f ∈ F , T (f) ≤ BPf . Fix K > 1, λ > 0 and r > 0. If V +

r ≤ r/(λBK), then

∀f ∈ F , Pf ≤ K

K − 1
Pnf +

r

λBK
.

Also, if V −r ≤ r/(λBK), then

∀f ∈ F , Pnf ≤
K + 1
K

Pf +
r

λBK
.

Similarly, if K > 1 and r > 0 are such that Ṽ +
r ≤ r/(BK) then

∀f ∈ F , Pf ≤ K

K − 1
Pnf +

r

BK
.

Also, if Ṽ −r ≤ r/(BK), then

∀f ∈ F , Pnf ≤
K + 1
K

Pf +
r

BK
.

Proof: Notice that for all g ∈ Gr, Pg ≤ Png + V +
r . Fix f ∈ F and define g = rf/w(f).

When T (f) ≤ r, w(f) = r, so that g = f . Thus, the fact that Pg ≤ Png + V +
r implies that

Pf ≤ Pnf + V +
r ≤ Pnf + r/(λBK).

On the other hand, if T (f) > r, then w(f) = rλk with k > 0 and T (f) ∈ (rλk−1, rλk]. Moreover,
g = f/λk, Pg ≤ Png + V +

r , and thus

Pf

λk
≤ Pnf

λk
+ V +

r .

Using the fact that T (f) > rλk−1, it follows that

Pf ≤ Pnf + λkV +
r < Pnf + λT (f)V +

r /r ≤ Pnf + Pf/K.

Rearranging,

Pf ≤ K

K − 1
Pnf <

K

K − 1
Pnf +

r

λBK
.

The proof of the second result is similar. For the third and fourth results, the reasoning is the
same.
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Proof of Theorem 3.3, first part: Let Gr be defined as above, where r is chosen such that
r ≥ r∗, and note that functions in Gr satisfy ‖g − Pg‖∞ ≤ b − a since 0 ≤ r/w(f) ≤ 1. Also, we
have Var [g] ≤ r. Indeed, if T (f) ≤ r, then g = f , and thus Var [g] = Var [f ] ≤ r. Otherwise, when
T (f) > r, g = f/λk (where k is such that T (f) ∈ (rλk−1, rλk]), so that Var [g] = Var [f ] /λ2k ≤ r.

Applying Theorem 2.1, for all x > 0, with probability 1− e−x,

V +
r ≤ 2(1 + α)ERnGr +

√
2rx
n

+ (b− a)
(

1
3

+
1
α

)
x

n
.

Let F(x, y) := {f ∈ F : x ≤ T (f) ≤ y} and define k to be the smallest integer such that
rλk+1 ≥ Bb. Then,

ERnGr ≤ ERnF(0, r) + E sup
f∈F(r,Bb)

r

w(f)
Rnf

≤ ERnF(0, r) +
k∑

j=0

E sup
f∈F(rλj ,rλj+1)

r

w(f)
Rnf (3.1)

= ERnF(0, r) +
k∑

j=0

λ−jE sup
f∈F(rλj ,rλj+1)

Rnf

≤ ψ(r)
B

+
1
B

k∑
j=0

λ−jψ(rλj+1) .

By our assumption it follows that for β ≥ 1, ψ(βr) ≤
√
βψ(r) . Hence,

ERnGr ≤ 1
B
ψ(r)

1 +
√
λ

k∑
j=0

λ−j/2

 ,

and taking λ = 4, the right-hand side is upper bounded by 5ψ(r)/B. Moreover, for r ≥ r∗,
ψ(r) ≤

√
r/r∗ψ(r∗) =

√
rr∗, and thus

V +
r ≤ 10(1 + α)

B

√
rr∗ +

√
2rx
n

+ (b− a)
(

1
3

+
1
α

)
x

n
.

Set A = 10(1 +α)
√
r∗/B+

√
2x/n and C = (b− a)(1/3+1/α)x/n, and note that V +

r ≤ A
√
r+C.

We now show that r can be chosen such that V +
r ≤ r/λBK. Indeed, consider the largest solution

r0 of A
√
r + C = r/λBK. It satisfies r0 ≥ λ2A2B2K2/2 ≥ r∗ and r0 ≤ (λBK)2A2 + 2λBKC, so

that applying Lemma 3.8, it follows that every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf + λBKA2 + 2C

=
K

K − 1
Pnf + λBK

(
100(1 + α)2r∗/B2 +

20(1 + α)
B

√
2xr∗

n
+

2x
n

)

+ (b− a)
(

1
3

+
1
α

)
x

n
.

Setting α = 1/10 and using Lemma A.3 to show that
√

2xr∗/n ≤ Bx/(5n) + 5r∗/(2B) completes
the proof of the first statement. The second statement is proved in the same way, by considering
V −r instead of V +

r .
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Proof of Theorem 3.3, second part: The proof of this result uses the same argument as
for the first part. However, we consider the class G̃r defined above. One can easily check that
G̃r ⊂ {f ∈ star(F , 0) : T (f) ≤ r}, and thus ERnG̃r ≤ ψ(r)/B. Applying Theorem 2.1 to G̃r, it
follows that, for all x > 0, with probability 1− e−x,

Ṽ +
r ≤ 2(1 + α)

B
ψ(r) +

√
2rx
n

+ (b− a)
(

1
3

+
1
α

)
x

n
.

The reasoning is then the same as for the first part, and we use in the very last step that
√

2xr∗/n ≤
Bx/n+ r∗/(2B), which gives the displayed constants.

Proof of Lemma 3.6: The map α 7→ α2 is Lipschitz with constant 2 when α is restricted to
[−1, 1]. Applying Theorem A.6,

r ≥ 10ERn

{
f2 : f ∈ star(F , 0), Pf2 ≤ r

}
+

26x
n
. (3.2)

Clearly, if f ∈ F , then f2 maps to [0, 1] and Var
[
f2
]
≤ Pf2. Thus, Theorem 2.1 can be applied to

the class Gr = {rf2/(Pf2 ∨ r) : f ∈ F}, whose functions have range in [0, 1] and variance bounded
by r. Therefore, with probability at least 1− e−x, every f ∈ F satisfies

r
Pf2 − Pnf

2

Pf2 ∨ r
≤ 2(1 + α)ERnGr +

√
2rx
n

+
(

1
3

+
1
α

)
x

n
.

Select α = 1/4 and notice that
√

2rx/n ≤ r/4 + 2x/n to get

r
Pf2 − Pnf

2

Pf2 ∨ r
≤ 5

2
ERnGr +

r

2
+

19x
3n

.

Hence, one either has Pf2 ≤ r, or when Pf2 ≥ r, since it was assumed that Pnf
2 ≤ r,

Pf2 ≤ r +
Pf2

r

(
5
2

ERnGr +
r

4
+

19x
3n

)
.

Now, if g ∈ Gr, there exists f0 ∈ F such that g = rf2
0 /(Pf

2
0 ∨ r). If Pf2

0 ≤ r, then g = f2
0 . On the

other hand, if Pf2
0 > r, then g = rf2

0 /Pf
2
0 = f2

1 with f1 ∈ star(F , 0) and Pf2
1 ≤ r, which shows

that
ERnGr ≤ ERn

{
f2 : f ∈ star(F , 0), Pf2 ≤ r

}
.

Thus, by Inequality (3.2), Pf2 ≤ 2r, which concludes the proof.

4 Data-Dependent Error Bounds

The results presented thus far use distribution dependent measures of complexity of the class
at hand. Indeed, the sub-root function ψ of Theorem 3.3 is bounded in terms of the Rademacher
averages of the star-hull of F , but these averages can only be computed if one knows the distribution
P . Otherwise, we have seen that it is possible to compute an upper bound on the Rademacher
averages using a priori global or distribution-free knowledge about the complexity of the class at
hand (such as the VC dimension). In this section, we present error bounds that can be computed
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directly from the data, without a priori information. Instead of computing ψ, we compute an
estimate, ψ̂n, of it. The function ψ̂n is defined using the data and is an upper bound on ψ with
high probability.

To simplify the exposition we restrict ourselves to the case where the functions have a range
which is symmetric around zero, say [−1, 1]. Moreover, we can only treat the special case where
T (f) = Pf2, but this is a minor restriction as in most applications this is the function of interest
(i.e., for which one can show T (f) ≤ BPf).

4.1 Results

We now present the main result of this section, which gives an analogue of the second part of
Theorem 3.3, with a completely empirical bound (that is, the bound can be computed from the
data only).

Theorem 4.1 Let F be a class of functions with ranges in [−1, 1] and assume that there is some
constant B such that for every f ∈ F , Pf2 ≤ BPf . Let ψ̂n be a sub-root function and let r̂∗ be the
fixed point of ψ̂n. Fix x > 0 and assume that ψ̂n satisfies, for any r ≥ r̂∗,

ψ̂n(r) ≥ c1EσRn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}

+
c2x

n
,

where c1 = 2(10 ∨B) and c2 = c1 + 11. Then, for any K > 1 with probability at least 1− 3e−x,

∀f ∈ F , Pf ≤ K

K − 1
Pnf +

6K
B
r̂∗ +

x(11 + 5BK)
n

.

Also, with probability at least 1− 3e−x,

∀f ∈ F , Pnf ≤
K + 1
K

Pf +
6K
B
r̂∗ +

x(11 + 5BK)
n

.

Although these are data dependent bounds, they are not necessarily easy to compute. There
are, however, favorable interesting situations where they can be computed efficiently, as Section 6
shows.

It is natural to wonder how close the quantity r̂∗ appearing in the above theorem is to the
quantity r∗ of Theorem 3.3. The next theorem shows that they are close with high probability.

Theorem 4.2 Let F be a class of functions with ranges in [−1, 1]. Fix x > 0 and consider the
sub-root functions

ψ(r) = ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
,

and
ψ̂n(r) = c1EσRn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}

+
c2x

n
,

with fixed points r∗ and r̂∗ respectively and with c1 = 2(10∨B) and c2 = 13. Assume that r∗ ≥ c3x/n
where c3 = 26 ∨ (c2 + 2c1)/3. Then, with probability at least 1− 4e−x,

r∗ ≤ r̂∗ ≤ 9(1 + c1)2r∗ .

Thus, with high probability, r̂∗ is an upper bound on r∗ and has the same asymptotic behavior.
Notice that there was no attempt to optimize the constants in the above theorem. In addition, the
constant 9(1 + c1)2 (equal to 3969 if B ≤ 10) in Theorem 4.2 does not appear in the upper bound
of Theorem 4.1.
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4.2 Proofs

The idea of the proofs is to show that one can upper bound ψ by an empirical estimate (with
high probability). This requires two steps: the first one uses the concentration of the Rademacher
averages to upper bound the expected Rademacher averages by their empirical versions. The second
step uses Corollary 2.2 to prove that the ball over which the averages are computed (which is an
L2(P ) ball) can be replaced by an empirical one. Thus, ψ̂n is an upper bound on ψ, and one can
apply Theorem 3.3, together with the following lemma, which shows how fixed points of sub-root
functions relate when the functions are ordered.

Lemma 4.3 Suppose that ψ, ψ̂n are sub-root. Let r∗ (resp. r̂∗) be the fixed point of ψ (resp. ψ̂n).
If for 0 ≤ α ≤ 1, we have αψ̂n(r∗) ≤ ψ(r∗) ≤ ψ̂n(r∗), then

α2r̂∗ ≤ r∗ ≤ r̂∗ .

Proof: Denoting by r̂∗α the fixed point of the sub-root function αψ̂n then, by Lemma 3.2, r̂∗α ≤
r∗ ≤ r̂∗. Also, since ψ̂n is sub-root, ψ̂n(α2r̂∗) ≥ αψ̂n(r̂∗) = αr̂∗ which means αψ̂n(α2r̂∗) ≥ α2r̂∗.
Hence, Lemma 3.2 yields r̂∗α ≥ α2r̂∗.

Proof of Theorem 4.1: Consider the sub-root function

ψ1(r) =
c1
2

ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+

(c2 − c1)x
n

,

with fixed point r∗1. Applying Corollary 2.2 when r ≥ ψ1(r), it follows that with probability at
least 1− e−x, {

f ∈ star(F , 0) : Pf2 ≤ r
}
⊆
{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}
.

Using this, together with the first inequality of Lemma A.4 (with α = 1/2) shows that if r ≥ ψ1(r),
with probability at least 1− 2e−x,

ψ1(r) =
c1
2

ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+

(c2 − c1)x
n

≤ c1EσRn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+
c2x

n

≤ c1EσRn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}

+
c2x

n

≤ ψ̂n(r).

Choosing r = r∗1, Lemma 4.3 shows that with probability at least 1− 2e−x,

r∗1 ≤ r̂∗ . (4.1)

Also, for all r ≥ 0,
ψ1(r) ≥ BERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
,

and so from Theorem 3.3, with probability at least 1− e−x, every f ∈ F satisfies

Pf ≤ K

K − 1
Pnf +

6Kr∗1
B

+
(11 + 5BK)x

n
.

Combining this with (4.1) gives the first result. The second result is proved in a similar manner.
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Proof of Theorem 4.2: Consider the functions

ψ1(r) =
c1
2

ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+

(c2 − c1)x
n

,

and
ψ2(r) = c1ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+
c3x

n
,

and denote by r∗1 and r∗2 the fixed points of ψ1 and ψ2 respectively. The proof of Theorem 4.1
shows that with probability at least 1− 2e−x, r∗1 ≤ r̂∗.

Now apply Lemma 3.6 to show that if r ≥ ψ2(r) then with probability at least 1− e−x,{
f ∈ star(F , 0) : Pnf

2 ≤ r
}
⊆
{
f ∈ star(F , 0) : Pf2 ≤ 2r

}
.

Using this, together with the second inequality of Lemma A.4 (with α = 1/2) shows that if r ≥
ψ2(r), with probability at least 1− 2e−x,

ψ̂n(r) = c1EσRn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}

+
c2x

n

≤ c1
√

2EσRn

{
f ∈ star(F , 0) : Pnf

2 ≤ r
}

+
c2x

n

≤ c1
√

2EσRn

{
f ∈ star(F , 0) : Pf2 ≤ 2r

}
+
c2x

n

≤ 3
√

2
2
c1ERn

{
f ∈ star(F , 0) : Pf2 ≤ 2r

}
+

(c2 + 2c1)x
n

≤ 3c1ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+

(c2 + 2c1)x
n

≤ 3ψ2(r),

where the sub-root property was used twice (in the first and second last inequalities). Lemma 4.3
thus gives r̂∗ ≤ 9r∗2.

Also notice that for all r, ψ(r) ≤ ψ1(r), and hence r∗ ≤ r∗1. Moreover, for all r ≥ ψ(r) (hence
r ≥ r∗ ≥ c3x/n), ψ2(r) ≤ c1ψ(r) + r so that ψ2(r∗) ≤ (c1 + 1)r∗ = (c1 + 1)ψ(r∗). Lemma 4.3
implies that r∗2 ≤ (1 + c1)2r∗.

5 Prediction with Bounded Loss

In this section, we discuss the application of our results to prediction problems, such as classification
and regression. For such problems, there is an input space X and an output space Y and the product
X ×Y is endowed with an unknown probability measure P . For example, classification corresponds
to the case where Y is discrete, typically Y = {−1, 1} and regression corresponds to the continuous
case, typically Y = [−1, 1]. Note that assuming the boundedness of the target values is a typical
assumption in theoretical analysis of regression procedures. To analyze the case of unbounded
targets, one usually truncates the values at a certain threshold and bounds the probability of
exceeding that threshold (see, for example, the techniques developed in [12]).

The training sample is a sequence (X1, Y1), . . . , (Xn, Yn) of n independent and identically dis-
tributed (i.i.d.) pairs sampled according to P . A loss function ` : Y ×Y → [0, 1] is defined and the
goal is to find a function f : X → Y from a class F that minimizes the expected loss

E`f = E`(f(X), Y ) .
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Since the probability distribution P is unknown, one cannot directly minimize the expected loss
over F .

The key property that is needed to apply our results is the fact that Var [f ] ≤ BPf (or Pf2 ≤
BPf to obtain data-dependent bounds). This will trivially be the case for the class {`f : f ∈ F}
as all its functions are uniformly bounded and nonnegative. This case, studied in Section 5.1 is,
however, not the most interesting. Indeed, it is when one studies the excess risk `f − `f∗ that our
approach shows its superiority over previous ones; when the class {`f − `f∗} satisfies the variance
condition (and Section 5.2 gives examples of this), we obtain distribution-dependent bounds that
are optimal in certain cases, and data-dependent bounds of the same order.

5.1 General Results without Assumptions

Define the following class of functions, called the loss class associated with F :

`F = {`f : f ∈ F} = {(x, y) 7→ `(f(x), y) : f ∈ F} .

Notice that `F is a class of nonnegative functions. Applying Theorem 4.1 to this class of functions
gives the following corollary.

Corollary 5.1 For a loss function ` : Y × Y → [0, 1], define

ψ̂n(r) = 20EσRn

{
f ∈ star(`F , 0) : Pnf

2 ≤ 2r
}

+
13x
n
,

with fixed point r̂∗. Then, for any K > 1 with probability at least 1− 3e−x,

∀f ∈ F , P `f ≤
K

K − 1
Pn`f + 6Kr̂∗ +

x(11 + 5K)
n

.

A natural approach is to minimize the empirical loss Pn`f over the class F . The following
result shows that this approach leads to an estimate with expected loss near minimal. How close
it is to the minimal expected loss depends on the value of the minimum, as well as on the local
Rademacher averages of the class.

Theorem 5.2 For a loss function ` : Y × Y → [0, 1], define ψ(r), ψ̂n(r), r∗, and r̂∗ as in The-
orem 5.1. Let L∗ = inff∈F P`f . Then there is a constant c such that with probability at least
1− 2e−x, the minimizer f̂ ∈ F of Pn`f satisfies

P`f̂ ≤ L∗ + c
(√

L∗r∗ + r∗
)
.

Also, with probability at least 1− 4e−x,

P`f̂ ≤ L∗ + c
(√

L∗r̂∗ + r̂∗
)
.

The proof of this theorem is given in Appendix B.
This theorem has the same flavor as Theorem 4.2 of [19]. We have not used any property besides

the positivity of the functions in the class. This indicates that there might not be a significant
gain compared to earlier results (as without further assumptions the optimal rates are known).
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Indeed, a careful examination of this result shows that when L∗ > 0, the difference between P`f̂
and L∗ is essentially of order

√
r∗. For a class of {0, 1}-valued functions with VC-dimension d, for

example, this would be
√
d log n/n. On the other hand, the result of [19] is more refined since the

Rademacher averages are not localized around 0 (as they are here), but rather around the minimizer
of the empirical error itself. Unfortunately, the small ball in [19] is not defined as Pn`f ≤ Pn`f̂ + r
but as Pn`f ≤ 16Pn`f̂ + r. This means that in the general situation where L∗ > 0, since Pn`f̂
does not converge to 0 with increasing n (as it is expected to be close to P`f̂ which itself converges
to L∗), the radius of the ball around `f̂ (which is 15Pn`f̂ + r) will not converge to 0. Thus, the

localized Rademacher average over this ball will converge at speed
√
d/n. In other words, our

Theorem 5.2 and Theorem 4.2 of [19] essentially have the same behavior. But this is not surprising,
as it is known that this is the optimal rate of convergence in this case. To get an improvement in
the rates of convergence, one needs to make further assumptions on the distribution P or on the
class F .

5.2 Improved Results for the Excess Risk

Consider a loss function ` and function class F that satisfy the following conditions.

1. For every probability distribution P there is an f∗ ∈ F satisfying P`f∗ = inff∈F P`f .

2. There is a constant L such that ` is L-Lipschitz in its first argument: for all y, ŷ1, ŷ2,

|`(ŷ1, y)− `(ŷ2, y)| ≤ L |ŷ1 − ŷ2| .

3. There is a constant B ≥ 1 such that for every probability distribution and every f ∈ F ,

P (f − f∗)2 ≤ BP (`f − `f∗).

These conditions are not too restrictive as they are met by several commonly used regularized
algorithms with convex losses.

Note that Condition 1 could be weakened, and one could consider a function which is only
close to achieving the infimum, with an appropriate change to Condition 3. This generalization is
straightforward, but it would make the results less readable, so we omit it.

Condition 2 implies that, for all f ∈ F ,

P (`f − `f∗)2 ≤ L2P (f − f∗)2.

Condition 3 usually follows from a uniform convexity condition on `. An important example is the
quadratic loss, `(y, y′) = (y− y′)2, when the function class F is convex and uniformly bounded. In
particular, if |f(x) − y| ∈ [0, 1] for all f ∈ F , x ∈ X and y ∈ Y, then the conditions are satisfied
with L = 2 and B = 1 (see [18]). Other examples are described in [26] and in [2].

The first result we present is a direct but instructive corollary of Theorem 3.3.

Corollary 5.3 Let F be a class of functions with range in [−1, 1] and let ` be a loss function
satisfying Conditions 1–3 above. Let f̂ be any element of F satisfying Pn`f̂ = inff∈F Pn`f . Assume
ψ is a sub-root function for which

ψ(r) ≥ BLERn

{
f ∈ F : L2P (f − f∗)2 ≤ r

}
.
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Then for any x > 0 and any r ≥ ψ(r), with probability at least 1− e−x,

P (`f̂ − `f∗) ≤ 705
r

B
+

(11L+ 27B)x
n

.

Proof: One applies Theorem 3.3 (first part) to the class `f − `f∗ with T (f) = L2P (f − f∗)2 and
uses the fact that by Theorem A.6, and by the symmetry of the Rademacher variables, LERn{f :
L2P (f − f∗)2 ≤ r} ≥ ERn{`f − `f∗ : L2P (f − f∗)2 ≤ r}. The result follows from noticing that
Pn(`f̂ − `f∗) ≤ 0.

Instead of comparing the loss of f to that of f∗, one could compare it to the loss of the
best measurable function (the regression function for regression function estimation, or the Bayes
classifier for classification). The techniques proposed here can be adapted to this case.

Using Corollary 5.3, one can (with minor modification) recover the results of [22] for model
selection. These have been shown to match the minimax results in various situations. In that
sense, Corollary 5.3 can be considered as sharp.

Next, we turn to the main result of this section. It is a version of Corollary 5.3 with a fully
data-dependent bound. This is obtained by modifying ψ in three ways: the Rademacher averages
are replaced by empirical ones, the radius of the ball is in L2(Pn) norm instead of L2(P ), and
finally, the center of the ball is f̂ instead of f∗.

Theorem 5.4 Let F be a convex class of functions with range in [−1, 1] and let ` be a loss function
satisfying Conditions 1–3 above. Let f̂ be any element of F satisfying Pn`f̂ = inff∈F Pn`f . Define

ψ̂n(r) = c1EσRn

{
f ∈ F : Pn(f − f̂)2 ≤ c3r

}
+
c2x

n
, (5.1)

where c1 = 2L(B∨10L), c2 = 11L2 + c1, and c3 = 2824+4B(11L+27B)/c2. Then with probability
at least 1− 4e−x,

P (`f̂ − `f∗) ≤
705
B
r̂∗ +

(11L+ 27B)x
n

,

where r̂∗ is the fixed point of ψ̂n.

Remark 5.5 Unlike Corollary 5.3, the class F in Theorem 5.4 has to be convex. This ensures
that it is star-shaped around any of its elements (which implies that ψ̂n is sub-root even though f̂
is random). However, convexity of the loss class is not necessary, so that this theorem still applies
to many situations of interest, in particular to regularized regression, where the functions are taken
in a vector space or a ball of a vector space.

Remark 5.6 Although the theorem is stated with explicit constants, there is no reason to think that
these are optimal. The fact that the constant 705 appears actually is due to our failure to use the
second part of Theorem 3.3 to the initial loss class, which is not star-shaped (this would have given
a 7 instead). However, with some additional effort, one can probably obtain much better constants.

As we explained earlier, although the statement of Theorem 5.4 is similar to Theorem 4.2 in [19],
there is an important difference in the way the localized averages are defined: in our case the radius
is a constant times r, while in [19] there is an additional term, involving the loss of the empirical
risk minimizer, which may not converge to zero. Hence, the complexity decreases faster in our
bound.

20



The additional property required in the proof of this result compared to the proof of Theorem 4.1
is that under the assumptions of the theorem, the minimizer of the empirical loss and of the true
loss are close with respect to the L2(P ) and the L2(Pn) distances (this has also been used in [20]
and [31, 32]).

5.3 Proof of Theorem 5.4

Define the function ψ as

ψ(r) =
c1
2

ERn

{
f ∈ F : L2P (f − f∗)2 ≤ r

}
+

(c2 − c1)x
n

. (5.2)

Notice that since F is convex and thus star-shaped around each of its points, Lemma 3.4 implies
that ψ is sub-root. Now, for r ≥ ψ(r), Corollary 5.3 and Condition 3 on the loss function imply
that, with probability at least 1− e−x,

L2P (f̂ − f∗)2 ≤ BL2P
(
`f̂ − `f∗

)
≤ 705L2r +

(11L+ 27B)BL2x

n
. (5.3)

Denote the right-hand side by s. Since s ≥ r ≥ r∗, then s ≥ ψ(s) (by Lemma 3.2), and thus

s ≥ 10L2ERn

{
f ∈ F : L2P (f − f∗)2 ≤ s

}
+

11L2x

n
.

Therefore, Corollary 2.2 applied to the class LF yields that with probability at least 1− e−x,

{f ∈ F , L2P (f − f∗)2 ≤ s} ⊂ {f ∈ F , L2Pn(f − f∗)2 ≤ 2s} .

This, combined with (5.3), implies that with probability at least 1− 2e−x,

Pn(f̂ − f∗)2 ≤ 2
(

705r +
(11L+ 27B)Bx

n

)
≤ 2

(
705 +

(11L+ 27B)B
c2

)
r , (5.4)

where the second inequality follows from r ≥ ψ(r) ≥ c2x/n. Define c = 2(705 + (11L+ 27B)B/c2).
By the triangle inequality in L2(Pn), if (5.4) occurs, then any f ∈ F satisfies

Pn(f − f̂)2 ≤
(√

Pn(f − f∗)2 +
√
Pn(f∗ − f̂)2

)2

≤
(√

Pn(f − f∗)2 +
√
cr
)2
.

Appealing again to Corollary 2.2 applied to LF as before, but now for r ≥ ψ(r), it follows that
with probability at least 1− 3e−x,{

f ∈ F : L2P (f − f∗)2 ≤ r
}

⊆
{
f ∈ F : L2Pn(f − f̂)2 ≤

(√
2 +

√
c
)2
L2r

}
.
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Combining this with Lemma A.4 shows that, with probability at least 1− 4e−x,

ψ(r) ≤ c1EσRn

{
f ∈ F : L2P (f − f∗)2 ≤ r

}
+
c2x

n

≤ c1EσRn

{
f : Pn(f − f∗)2 ≤ (

√
2 +

√
c)2r

}
+
c2x

n

≤ c1EσRn

{
f : Pn(f − f∗)2 ≤ (4 + 2c)r

}
+
c2x

n

≤ ψ̂n(r).

Setting r = r∗ in the above argument and applying Lemma 4.3 shows that r∗ ≤ r̂∗ which, together
with (5.3), concludes the proof.

6 Computing Local Rademacher Complexities

In this section, we deal with the computation of local Rademacher complexities and their fixed
points. We first propose a simple iterative procedure for estimating the fixed point of an arbitrary
sub-root function and then give two examples of situations where it is possible to compute an upper
bound on the local Rademacher complexities. In the case of classification with the discrete loss,
this can be done by solving a weighted error minimization problem. In the case of kernel classes,
it is obtained by computing the eigenvalues of the empirical Gram matrix.

6.1 The Iterative Procedure

Recall that Theorem 4.1 indicates that one can obtain an upper bound in terms of empirical
quantities only. However, it remains to be explained how to compute these quantities effectively.
We propose to use a procedure similar to that of Koltchinskii and Panchenko [16], by applying the
sub-root function iteratively. The next lemma shows that applying the sub-root function iteratively
gives a sequence that converges monotonically and quickly to the fixed point.

Lemma 6.1 Let ψ : [0,∞) → [0,∞) be a (nontrivial) sub-root function. Fix r0 ≥ r∗, and for all
k > 0 define rk+1 = ψ(rk). Then for all N > 0, rN+1 ≤ rN , and

r∗ ≤ rN ≤
(r0
r∗

)2−N

r∗.

In particular, for any ε > 0, if N satisfies

N ≥ log2

(
ln(r0/r∗)
ln(1 + ε)

)
,

then rN ≤ (1 + ε)r∗.
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Proof: Notice that if rk ≥ r∗ then rk+1 = ψ(rk) ≥ ψ(r∗) = r∗. Also,

ψ(rk)√
rk

≤ ψ(r∗)√
r∗

=
√
r∗ ≤

√
rk,

and so rk+1 ≤ rk and rk+1/r
∗ ≤ (rk/r∗)1/2. An easy induction shows that rN/r∗ ≤ (r0/r∗)2

−N
.

Notice that in the results of [16], the analysis of the iterative procedure was tied to the proba-
bilistic upper bounds. However, here we make the issues separate: the bounds of previous sections
are valid no matter how the fixed point is estimated. In the above lemma, one can use a random
sub-root function.

6.2 Local Rademacher Complexities for Classification Loss Classes

Consider the case where Y = {−1, 1} and the loss is the discrete loss, `(y, y′) = 1 [y 6= y′]. Since
`2 = `, one can write

EσRn

{
f ∈ star(`F , 0) : Pnf

2 ≤ 2r
}

= EσRn

{
α`f : α ∈ (0, 1], f ∈ F , Pn`

2
f ≤ 2r/α2

}
= EσRn

{
α`f : α ∈ (0, 1], f ∈ F , Pn`f ≤ 2r/α2

}
= sup

α∈(0,1]
αEσRn

{
`f : f ∈ F , Pn`f ≤ 2r/α2

}
= sup

α∈[
√

2r,1]

αEσRn

{
`f : f ∈ F , Pn`f ≤ 2r/α2

}
,

where the last equality follows from the fact that Pn`f ≤ 1 for all f . Substituting into Corollary 5.1
gives the following result.

Corollary 6.2 Let Y = {±1}, let ` be the discrete loss defined on Y, and let F be a class of
functions with ranges in Y. Fix x > 0 and define

ψ̂n(r) = 20 sup
α∈[

√
2r,1]

αEσRn{`f : f ∈ F , Pn`f ≤ 2r/α2}+
26x
n

.

Then for all K > 1, with probability at least 1− 3e−x, for all f ∈ F ,

P`f ≤
K

K − 1
Pn`f + cK

(
r̂∗ +

x

n

)
,

where r̂∗ is the fixed point of ψ̂n.

The following theorem shows that upper bounds on ψ̂n(r) can by computed whenever one can
perform weighted empirical risk minimization. In other words, if there is an efficient algorithm for
minimizing a weighted sum of classification errors, there is an efficient algorithm for computing an
upper bound on the localized Rademacher averages. The empirical minimization algorithm needs
to be run repeatedly on different realizations of the σi, but with fast convergence towards the
expectation as the number of iterations grows. A similar result was known for global Rademacher
averages and this shows that the localization and the use of star-hulls does not greatly affect the
computational complexity.
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Theorem 6.3 The empirical local Rademacher complexity of the classification loss class, defined
in Corollary 6.2, satisfies

ψ̂n(r) = c sup
α∈[

√
2r,1]

αEσRn{`f : f ∈ F , Pn`f ≤ 2r/α2}+
26x
n

≤ c sup
α∈[

√
2r,1]

αEσ min
µ≥0

((
2r
α2

− 1
2

)
µ+

1
2n

n∑
i=1

|σi + µYi| − J(µ)

)
+

26x
n

,

where

J(µ) = min
f∈F

1
n

n∑
i=1

|σi + µYi| ` (f(Xi), sign (σi + µYi)) .

The quantity J(µ) can be viewed as the minimum of a certain weighted empirical risk when
the labels are corrupted by noise and the noise level is determined by the parameter (Lagrange
multiplier) µ. Using the fact that J(µ) is Lipschitz in µ, a finite grid of values of J(µ) can be used
to obtain a function φ that is an upper bound on ψ̂n. Then the function r 7→

√
r supr′ φ(r′)/

√
r′ is

a sub-root upper bound on ψ̂n.
In order to prove Theorem 6.3 we need the following lemma (adapted from [1]) which relates

the localized Rademacher averages to a weighted error minimization problem.

Lemma 6.4 For every b ∈ [0, 1],

EσRn {`f : f ∈ F , Pn`f ≤ b} =
1
2
− Eσmin {Pn`(f(X), σ) : f ∈ F , Pn`(f(X), Y ) ≤ b}.

Proof: Notice that for y, y′ ∈ {±1}, `(y, y′) = 1 [y 6= y′] = |y − y′|/2. Thus,

2
n∑

i=1

σi`(f(Xi), Yi) =
∑

i:Yi=1

σi|f(Xi)− 1|+
∑

i:Yi=−1

σi|f(Xi) + 1|

=
∑

i:Yi=1

σi(2− |f(Xi) + 1|) +
∑

i:Yi=−1

σi|f(Xi) + 1|

=
n∑

i=1

−Yiσi|f(Xi) + 1|+ 2
∑

i:Yi=1

σi .

Because of the symmetry of σi, for fixed Xi the vector (−Yiσi)n
i=1 has the same distribution as

(σi)n
i=1. Thus when we take the expectation, we can replace −Yiσi by σi. Moreover, we have

n∑
i=1

σi|f(Xi) + 1| =
∑

i:σi=1

|f(Xi) + 1|+
∑

i:σi=−1

−|f(Xi) + 1|

=
∑

i:σi=1

(2− |f(Xi)− 1|) +
∑

i:σi=−1

−|f(Xi) + 1|

=
n∑

i=1

−|f(Xi)− σi|+ 2
∑

i:σi=−1

1 ,
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implying that

EσRn {`f : f ∈ F , Pn`f ≤ b}

=
1
n

Eσ

∑
i:Yi=1

σi + Eσ

∑
i:σi=−1

1 + Eσsup {−Pn`(f(X), σ) : f ∈ F , Pn`(f(X), Y ) ≤ b}

 ,

which proves the claim.

Proof of Theorem 6.3: From Lemma 6.4,

ψ̂n(r) = c sup
α∈[

√
2r,1]

α

(
1
2
− Eσmin

{
Pn`(f(X), σ) : f ∈ F , Pn`(f(X), Y ) ≤ 2r/α2

})
+

26x
n
.

Fix a realization of the σi. It is easy to see that when µ ≥ 0, each f for which Pn`(f(X), Y ) ≤ 2r/α2

satisfies

Pn`(f(X), σ) ≥ Pn`(f(X), σ) + µ

(
Pn`(f(X), Y )− 2r

α2

)
.

Let L(f, µ) denote the right-hand side and let g(µ) = minf∈F L(f, µ). Then

min
{
Pn`(f(X), σ) : f ∈ F , Pn`(f(X), Y ) ≤ 2r/α2

}
≥ g(µ).

But, using the fact that `(y, ŷ) = (1− yŷ)/2,

g(µ) = min
f∈F

1
n

n∑
i=1

(`(f(Xi), σi) + µ`(f(Xi), Yi))−
2r
α2

= min
f∈F

1
n

n∑
i=1

(
1− f(Xi)σi

2
+ µ

1− f(Xi)Yi

2

)
− 2r
α2

= min
f∈F

1
n

n∑
i=1

(
|σi + µYi|

1− f(Xi) sign(σi + µYi)
2

− |σi + µYi|
2

)
+

1 + µ

2
− 2r
α2

= min
f∈F

1
n

n∑
i=1

|σi + µYi|`(f(Xi), sign(σi + µYi))−
1
2n

n∑
i=1

|σi + µYi|+
1 + µ

2
− 2r
α2

.

Substituting gives the result.

6.3 Local Rademacher Complexities for Kernel Classes

One case in which the functions ψ and ψ̂n can be computed explicitly is when F is a kernel class,
that is, the unit ball in the reproducing kernel Hilbert space associated with a positive definite
kernel k. Observe that in this case F is a convex and symmetric set.

Let k a positive definite function on X , that is, a symmetric function such that for all n ≥ 1,

∀x1, . . . , xn ∈ X , ∀α1, . . . , αn ∈ R,
n∑

i,j=1

αiαjk(xi, xj) ≥ 0 .

Recall the main properties of reproducing kernel Hilbert spaces that we require:

25



• The reproducing kernel Hilbert space associated with k is the unique Hilbert space H of
functions on X such that for all f ∈ F and all x ∈ X , k(x, ·) ∈ H and

f(x) = 〈f, k(x, ·)〉 . (6.1)

• H can be constructed as the completion of the linear span of the functions k(x, ·) for x ∈ X ,
endowed with the inner product〈

n∑
i=1

αik(xi, ·),
m∑

j=1

βjk(yj , ·)

〉
=

n,m∑
i,j=1

αiβjk(xi, yj) .

We use ‖ · ‖ to denote the norm in H.
One method for regression consists of solving the following least squares problem in the unit

ball of H:

min
f∈H:‖f‖≤1

1
n

n∑
i=1

(f(Xi)− Yi)2 .

Notice that considering a ball of some other radius is equivalent to rescaling the class. We are thus
interested in computing the localized Rademacher averages of the class of functions

F = {f ∈ H : ‖f‖ ≤ 1} .

Assume that Ek(X,X) <∞ and define T : L2(P ) → L2(P ) as the integral operator associated
with k and P , that is, Tf(·) =

∫
k(·, y)f(y)dP (y). It is possible to show that T is a positive

semi-definite trace-class operator. Let (λi)∞i=1 be its eigenvalues, arranged in a nonincreasing order.
Also, given an i.i.d. sample X1, . . . , Xn from P , consider the normalized Gram matrix (or kernel
matrix) T̂n defined as T̂n = 1

n(k(Xi, Xj))i,j=1,...,n. Let (λ̂i)n
i=1 be its eigenvalues, arranged in a

nonincreasing order.
The following result was proved in [24].

Theorem 6.5 For every r > 0,

ERn

{
f ∈ F : Pf2 ≤ r

}
≤

(
2
n

∞∑
i=1

min{r, λi}

)1/2

.

Moreover, there exists an absolute constant c such that if λ1 ≥ 1/n, then for every r ≥ 1/n,

ERn

{
f ∈ F : Pf2 ≤ r

}
≥ c

(
1
n

∞∑
i=1

min{r, λi}

)1/2

.

The following lemma is a data-dependent version.

Lemma 6.6 For every r > 0,

EσRn

{
f ∈ F : Pnf

2 ≤ r
}
≤

(
2
n

n∑
i=1

min{r, λ̂i}

)1/2

.
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The proof of this result can be found in Appendix B. The fact that we have replaced Pf2 by Pnf
2

and conditioned on the data yields a result that involves only the eigenvalues of the empirical Gram
matrix.

We can now state a consequence of Theorem 5.4 for the proposed regression algorithm on the
unit ball of H.

Corollary 6.7 Assume that supx∈X k(x, x) ≤ 1. Let F = {f ∈ H : ‖f‖ ≤ 1} and let ` be a loss
function satisfying Conditions 1–3. Let f̂ be any element of F satisfying Pn`f̂ = inff∈F Pn`f .

There exists a constant c depending only on L and B such that with probability at least 1−6e−x,

P (`f̂ − `f∗) ≤ c
(
r̂∗ +

x

n

)
,

where

r̂∗ ≤ min
0≤h≤n

h
n

+

√
1
n

∑
i>h

λ̂i

 .

We observe that r̂∗ is at most of order 1/
√
n (if we take h = 0) but can be of order log n/n if the

eigenvalues of T̂n decay exponentially quickly.
In addition, the eigenvalues of the Gram matrix are not hard to compute, so that the above

result can suggest an implementable heuristic for choosing the kernel k from the data. The issue
of the choice of the kernel is being intensively studied in the machine learning community.
Proof: Because of the symmetry of the σi and because F is convex and symmetric,

EσRn

{
f ∈ F : Pn(f − f̂)2 ≤ c3r

}
= EσRn

{
f − f̂ : f ∈ F , Pn(f − f̂)2 ≤ c3r

}
≤ EσRn

{
f − g : f, g ∈ F , Pn(f − g)2 ≤ c3r

}
= 2EσRn

{
f : f ∈ F , Pnf

2 ≤ c3r/4
}
.

Combining with Lemma 6.6 gives

2c1EσRn

{
f ∈ F : Pn(f − f̂)2 ≤ c3r

}
+

(c2 + 2)x
n

≤ 4c1

(
2
n

n∑
i=1

min
{c3r

4
, λ̂i

})1/2

+
(c2 + 2)x

n
.

Let ψ̂n(r) denote the right-hand side. Notice that ψ̂n is a sub-root function, so the estimate of
Theorem 5.4 can be applied. To compute the fixed point of Bψ̂n, first notice that adding a constant
a to a sub-root function can increase its fixed point by at most 2a. Thus, it suffices to show that

r ≤ 4c1

(
2
n

n∑
i=1

min
{c3r

4
, λ̂i

})1/2

implies

r ≤ c min
0≤h≤n

h
n

+

√
1
n

∑
i>h

λ̂i

 , (6.2)
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for some universal constant c. Under this hypothesis,(
r

4c1

)2

≤ 2
n

n∑
i=1

min
{c3r

4
, λ̂i

}

=
2
n

min
S⊆{1,...,n}

∑
i∈S

c3r

4
+
∑
i6∈S

λ̂i


=

2
n

min
0≤h≤n

(
c3hr

4
+
∑
i>h

λ̂i

)
.

Solving the quadratic inequality for each value of h gives (6.2).

A Additional Material

This section contains a collection of results that are needed in the proofs. Most of them are classical
or easy to derive from classical results. We present proofs for the sake of completeness.

Recall the following improvement of Rio’s [29] version of Talagrand’s concentration inequality,
which is due to Bousquet [7, 8].

Theorem A.1 Let c > 0, let Xi be independent random variables distributed according to P , and
let F be a set of functions from X to R. Assume that all functions f in F satisfy Ef = 0 and
‖f‖∞ ≤ c.

Let σ be a positive real number such that σ2 ≥ supf∈F Var [f(Xi)]. Then, for any x ≥ 0,

Pr (Z ≥ EZ + x) ≤ exp
(
−vh

( x
cv

))
,

where Z = supf∈F
∑n

i=1 f(Xi), h(x) = (1 + x) log(1 + x) − x and v = nσ2 + 2cEZ. Also, with
probability at least 1− e−x,

Z ≤ EZ +
√

2xv +
cx

3
.

In a similar way, one can obtain a concentration result for the Rademacher averages of a class
(using the result of [5], see also [6])2.

Theorem A.2 Let F be a class of functions that map X into [a, b]. Let

Z = Eσ sup
f∈F

n∑
i=1

σif(Xi) = nEσRnF .

Then for all x ≥ 0,

Pr
(
Z ≥ EZ +

√
(b− a)xEZ +

(b− a)x
6

)
≤ e−x

2In order to obtain the appropriate constants, notice that

Eσ sup
f∈F

nX
i=1

σif(Xi) = Eσ sup
f∈F

nX
i=1

σi(f(Xi)− (b− a)/2),

and |f − (b− a)/2| ≤ (b− a)/2.
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and
Pr
(
Z ≤ EZ −

√
(b− a)xEZ

)
≤ e−x .

Lemma A.3 For u, v ≥ 0, √
u+ v ≤

√
u+

√
v,

and for any α > 0,
2
√
uv ≤ αu+

v

α
.

Lemma A.4 Fix x > 0, and let F be a class of functions with ranges in [a, b]. Then, with
probability at least 1− e−x,

ERnF ≤ inf
α∈(0,1)

(
1

1− α
EσRnF +

(b− a)x
4nα(1− α)

)
.

Also, with probability at least 1− e−x,

EσRnF ≤ inf
α>0

(
(1 + α)ERnF +

(b− a)x
2n

(
1
2α

+
1
3

))
.

Proof: The second inequality of Theorem A.2 and Lemma A.3 imply that with probability at
least 1− e−x,

ERnF ≤ EσRnF +

√
(b− a)x

n
ERnF

≤ EσRnF + αERnF +
(b− a)x

4nα
,

and the first claim of the theorem follows. The proof of the second claim is similar, but using the
first inequality of Theorem A.2.

A standard fact is that the expected deviation of the empirical means from the actual ones can
be controlled by the Rademacher averages of the class.

Lemma A.5 For any class of functions F ,

max

(
Esup

f∈F
(Pf − Pnf),Esup

f∈F
(Pnf − Pf)

)
≤ 2ERnF .

Proof: Let X ′
1, . . . , X

′
n be an independent copy of X1, . . . , Xn, and set P ′n to be the empirical

measure supported on X ′
1, . . . , X

′
n. By the convexity of the supremum and by symmetry,

Esup
f∈F

(Pf − Pnf) = Esup
f∈F

(EP ′nf − Pnf)

≤ Esup
f∈F

(P ′nf − Pnf)

=
1
n

Esup
f∈F

[
n∑

i=1

σif(X ′
i)− σif(Xi)

]

≤ 1
n

Esup
f∈F

n∑
i=1

σif(X ′
i) +

1
n

Esup
f∈F

n∑
i=1

−σif(Xi)

= 2Esup
f∈F

Rnf.
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Using an identical argument, the same holds for Pnf − Pf .

In addition, recall the following contraction property, which is due to Ledoux and Talagrand [17].

Theorem A.6 Let φ be a contraction, that is, |φ(x)− φ(y)| ≤ |x− y|. Then, for every class F ,

EσRnφ ◦ F ≤ EσRnF ,

where φ ◦ F := {φ ◦ f : f ∈ F}.

The interested reader may find some additional useful properties of the Rademacher averages
in [3, 27].

B Proofs

Proof of Theorem 2.1: Define V + = supf∈F (Pf − Pnf). Since supf∈F Var [f(Xi)] ≤ r, and
‖f − Pf‖∞ ≤ b− a, Theorem A.1 implies that, with probability at least 1− e−x,

V + ≤ EV + +

√
2xr
n

+
4x(b− a)EV +

n
+

(b− a)x
3n

.

Thus, by Lemma A.3, with probability at least 1− e−x,

V + ≤ inf
α>0

(
(1 + α)EV + +

√
2rx
n

+ (b− a)
(

1
3

+
1
α

)
x

n

)
.

Applying Lemma A.5 gives the first assertion of Theorem 2.1. The second part of the theorem
follows by combining the first one and Lemma A.4, and noticing that infα f(α) + infα g(α) ≤
infα (f(α) + g(α)). Finally, the fact that the same results hold for supf∈F (Pnf −Pf) can be easily
obtained by applying the above reasoning to the class −F = {−f : f ∈ F} and noticing that the
Rademacher averages of −F and F are identical.

Proof of Lemma 3.2: To prove the continuity of ψ, let x > y > 0, and note that since ψ is
nondecreasing, |ψ(x)−ψ(y)| = ψ(x)−ψ(y). From the fact that ψ(r)/

√
r is nonincreasing it follows

that ψ(x)/
√
y ≤

√
xψ(y)/y, and thus,

ψ(x)− ψ(y) =
√
y
ψ(x)
√
y
− ψ(y) ≤ ψ(y)

√
x−√

y
√
y

.

Letting x tend to y, |ψ(x) − ψ(y)| tends to 0, and ψ is left-continuous at y. A similar argument
shows the right-sided continuity of ψ.

As for the second part of the claim, note that ψ(x)/x is nonnegative and continuous on (0,∞),
and since 1/

√
x is strictly decreasing on (0,∞), then ψ(x)/x is also strictly decreasing.

Observe that if ψ(x)/x is always larger than 1 on (0,∞), then limx→∞ ψ(x)/
√
x = ∞, which

is impossible. On the other hand, if ψ(x)/x < 1 on (0,∞), then limx→0 ψ(x)/
√
x = 0, contrary to

the assumption that ψ is nontrivial. Thus, the equation ψ(r)/r = 1 has a positive solution and this
solution is unique by monotonicity.

Finally, if for some r > 0, r ≥ ψ(r), then ψ(t)/t ≤ 1 for all t ≥ r (since ψ(x)/x is nonincreasing)
and thus r∗ ≤ r. The other direction follows in a similar manner.
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Proof of Lemma 3.4: Observe that, by symmetry of the Rademacher random variables, one has
ψ(r) = EσRn{f − f̂ : f ∈ F , T (f − f̂) ≤ r} so that, by translating the class, it suffices to consider
the case where f̂ = 0.

Note that ψ is nonnegative, since, by Jensen’s inequality,

Eσ sup
f∈F

Rnf ≥ sup
f∈F

EσRnf = 0.

Moreover, ψ is nondecreasing since {f ∈ F : T (f) ≤ r} ⊂ {f ∈ F : T (f) ≤ r′} for r ≤ r′. It
remains to show that for any 0 < r1 ≤ r2, ψ(r1) ≥

√
r1/r2 ·ψ(r2). To that end, fix any sample and

any realization of the Rademacher random variables, and set f0 to be a function for which

sup
f∈F , T (f)≤r2

n∑
i=1

σif(xi)

is attained (if the supremum is not attained only a slight modification is required). Since T (f0) ≤
r2, then T (

√
r1/r2 · f0) ≤ r1 by assumption. Furthermore, since F is star-shaped, the function√

r1/r2f0 belongs to F and satisfies that T (
√
r1/r2f0) ≤ r1. Hence,

sup
f∈F :T (f)≤r1

n∑
i=1

σif(xi) ≥
n∑

i=1

σi

√
r1
r2
· f0(xi)

=
√
r1
r2

sup
f∈F :T (f)≤r2

n∑
i=1

σif(xi),

and the result follows by taking expectations with respect to the Rademacher random variables.

Proof of Corollary 3.7: The proof uses the following result of Dudley [11], which relates the
empirical Rademacher averages to the empirical L2 entropy of the class. The covering number
N (ε,F , L2(Pn)) is the cardinality of the smallest subset F̂ of L2(Pn) for which every element of F
is within ε of some element of F̂ .

Theorem B.1 [11] There exists an absolute constant C such that for every class F and every
X1, . . . , Xn ∈ X ,

EσRnF ≤ C√
n

∫ ∞

0

√
logN (ε,F , L2(Pn))dε.

Define the sub-root function

ψ(r) = 10ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
+

11 log n
n

.

If r ≥ ψ(r), then Corollary 2.2 implies that, with probability at least 1− 1/n,{
f ∈ star(F , 0) : Pf2 ≤ r

}
⊆
{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}
,

and thus

ERn

{
f ∈ star(F , 0) : Pf2 ≤ r

}
≤ ERn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r
}

+
1
n
.
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It follows that r∗ = ψ(r∗) satisfies

r∗ ≤ 10ERn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r∗
}

+
1 + 11 log n

n
. (B.1)

But Theorem B.1 shows that

ERn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r∗
}
≤ C√

n
E
∫ √

2r∗

0

√
logN (ε, star(F , 0), L2(Pn))dε.

It is easy to see that we can construct an ε-cover for star(F , 0) using an ε/2-cover for F and an
ε/2-cover for the interval [0, 1], which implies

logN (ε, star(F , 0), L2(Pn)) ≤ logN
(ε

2
,F , L2(Pn)

)(⌈2
ε

⌉
+ 1
)
.

Now, recall that [14] for any probability distribution P and any class F with VC dimension d <∞,

logN
(ε

2
,F , L2(P )

)
≤ cd log

(
1
ε

)
.

Therefore,

ERn

{
f ∈ star(F , 0) : Pnf

2 ≤ 2r∗
}
≤
√
cd

n

∫ √
2r∗

0

√
log
(

1
ε

)
dε

≤
√
cdr∗ log(1/r∗)

n

≤

√
c

(
d2

n2
+
dr∗ log(n/ed)

n

)
,

where c represents an absolute constant whose value may change from line to line. Substituting
into (B.1) and solving for r∗ shows that,

r∗ ≤ cd log(n/d)
n

,

provided n ≥ d. The result follows from Theorem 3.3.

Proof of Theorem 5.2: Let f∗ = arg minf∈F P`f . (For simplicity, assume that the minimum
exists; if it does not, the proof is easily extended by considering the limit of a sequence of functions
with expected loss approaching the infimum.) Then, by definition of f̂ , Pn`f̂ ≤ Pn`f∗ . Since the
variance of `f∗(Xi, Yi) is no more than some constant times L∗, we can apply Bernstein’s inequality
(see, for example, [10, Theorem 8.2]) to show that with probability at least 1− e−x,

Pn`f̂ ≤ Pn`f∗ ≤ P`f∗ + c

(√
P`f∗x

n
+
x

n

)
= L∗ + c

(√
L∗x

n
+
x

n

)
.

Thus, by Theorem 3.3, with probability at least 1− 2e−x,

P`f̂ ≤
K

K − 1

(
L∗ + c

(√
L∗x

n
+
x

n

))
+ cK

(
r∗ +

x

n

)
.

32



Setting

K − 1 =

√
max (L∗, x/n)

r∗
,

noting that r∗ ≥ x/n, and simplifying gives the first inequality. A similar argument using Theo-
rem 4.1 implies the second inequality.

Proof of Lemma 6.6: Introduce the operator Ĉn on H defined by(
Ĉnf

)
(x) =

1
n

n∑
i=1

f(Xi)k(Xi, x),

so that, using (6.1), 〈
g, Ĉnf

〉
=

1
n

n∑
i=1

f(Xi)g(Xi) .

and
〈
f, Ĉnf

〉
= Pnf

2, implying that Ĉn is positive semidefinite.

Suppose that f is an eigenfunction of Ĉn with eigenvalue λ. Then for all i,

λf(Xi) = (Ĉnf)(Xi) =
1
n

n∑
j=1

f(Xj)k(Xj , Xi) .

Thus, the vector (f(X1), . . . , f(Xn)) is either zero (which implies Ĉnf = 0 and hence λ = 0) or is
an eigenvector of T̂n with eigenvalue λ. Conversely, if T̂nv = λv for some vector v, then

Ĉn

(
n∑

i=1

vik(Xi, ·)

)
=

1
n

n∑
i,j=1

vik(Xi, Xj)k(Xj , ·) =
λ

n

n∑
j=1

vjk(Xj , ·) .

Thus, the eigenvalues of T̂n are the same as the n largest eigenvalues of Ĉn, and the remaining
eigenvalues of Ĉn are zero. Let (λ̂i) denote these eigenvalues, arranged in a nonincreasing order.

Let (Φi)i≥1 be an orthonormal basis of H of eigenfunctions of Ĉn (such that Φi is associated
with λ̂i). Fix 0 ≤ h ≤ n and note that for any f ∈ H

n∑
i=1

σif(Xi) =

〈
f,

n∑
i=1

σik(Xi, ·)

〉

=

〈
h∑

j=1

√
λ̂j 〈f,Φj〉Φj ,

h∑
j=1

1√
λ̂j

〈
n∑

i=1

σik(Xi, ·),Φj

〉
Φj

〉

+

〈
f,
∑
j>h

〈
n∑

i=1

σik(Xi, ·),Φj

〉
Φj

〉
.

If ‖f‖ ≤ 1 and
r ≥ Pnf

2 =
〈
f, Ĉnf

〉
=
∑
i≥1

λ̂i 〈f,Φi〉2 ,
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then by the Cauchy-Schwarz inequality,

n∑
i=1

σif(Xi) ≤

√√√√r
h∑

j=1

1

λ̂j

〈
n∑

i=1

σik(Xi, ·),Φj

〉2

+

√√√√∑
j>h

〈
n∑

i=1

σik(Xi, ·),Φj

〉2

. (B.2)

Moreover,

1
n

Eσ

〈
n∑

i=1

σik(Xi, ·),Φj

〉2

=
1
n

Eσ

n∑
i,`=1

σiσ` 〈k(Xi, ·),Φj〉 〈k(Xl, ·),Φj〉

=
1
n

n∑
i=1

〈k(Xi, ·),Φj〉2

=
〈
Φj , ĈnΦj

〉
= λ̂j .

Using (B.2) and Jensen’s inequality, it follows that

EσRn

{
f ∈ F : Pnf

2 ≤ r
}
≤ 1√

n
min

0≤h≤n

√hr +

√√√√ n∑
j=h+1

λ̂j

 ,

which implies the result.
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In E. Giné, C. Houdré, and D. Nualart, editors, Stochastic Inequalities and Applications,
number 56 in Progress in Probability. Birkhauser, 2003.

[9] O. Bousquet, V. Koltchinskii, and D. Panchenko. Some local measures of complexity of convex
hulls and generalization bounds. In J. Kivinen and R. H. Sloan, editors, Proceedings of the
15th Annual Conference on Computational Learning Theory, pages 59–73, 2002.

[10] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition. Applications
of Mathematics: Stochastic Modelling and Applied Probability (31). Springer, 1996.

[11] R. M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, 1999.
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