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Abstract

We review game-theoretic models of prediction, in which the process generating the data is modelled as
an adversary with whom the prediction method competes. We present a formulation that encompasses a
wide variety of decision problems, and focus on the relationship between prediction in this game-theoretic
setting and prediction in the more standard probabilistic setting. In particular, we present a view of
standard prediction strategies as Bayesian decision methods, and we show how the regret of optimal
strategies depends on complexity measures that are closely related to those that appear in probabilistic
settings.

1 Prediction as a Repeated Game

Consider a repeated game between a decision strategy (which we call the learner) and its environment
(the world): at round t of the game, the learner plays an action at from some set A of actions, and the
world subsequently reveals a loss `t : A → R from some set L. The learner’s choices over n rounds of the
game determine L̂n, its cumulative loss,

L̂n =

n∑
t=1

`t(at).

This is a zero-sum game: the learner’s aim is to minimize its regret, that is, to perform well compared to
L∗n, the cumulative loss of the best single choice (in retrospect) from the action set A:

regret =

n∑
t=1

`t(at)︸ ︷︷ ︸
L̂n

−min
a∈A

n∑
t=1

`t(a)︸ ︷︷ ︸
L∗n

.

On the other hand, the world is acting adversarially: it chooses each loss `t with full knowledge of the
learner, so as to maximize the learner’s regret. We would like to develop decision strategies for which,
for all sequences of losses, the regret is small. We can think of the learner as choosing the action at as
some function of the sequence of losses `1, . . . , `t−1 that it has seen so far. We define the minimax regret
as the value of the game,

Vn(A,L) = min
a1

max
`1
· · ·min

an
max
`n

(
n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a)

)
.

There are several strong motivations for studying these adversarial formulations of prediction prob-
lems. First, in many cases, an adversarial model of the process generating the data in a prediction problem
is appropriate. For example, many prediction problems that arise in computer security or computational
finance should be viewed as adversarial.

Consider, for instance, the problem of detecting spam email. A decision method has access to features
of email messages (such as information about the header, words in the message, attachments), and its
action at is a mapping from the space of these features to [0, 1] (think of the value as an estimated
probability that the message is spam). The sender of a spam email can determine if it is delivered
(or detected as spam), and it could use that information to modify subsequent spam messages. In the
adversarial model, at each round the adversary chooses a feature vector xt ∈ X and a label yt ∈ {0, 1},
and the loss is defined as

`t(at) = (yt − at(xt))2 .
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The regret is then the excess squared error, over the best achievable on the data sequence:

n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a) =

n∑
t=1

(yt − at(xt))2 −min
a∈A

n∑
t=1

(yt − a(xt))
2.

Minimizing regret ensures that the spam detection accuracy is close to the best performance in retrospect
on the particular email sequence.

Consider the problem of choosing a portfolio, that is, a distribution of capital over a set of financial
instruments, so as to maximize utility. Other market players can profit from making our decisions bad
ones. For example, if trades have a market impact, making similar trades ahead of us can be profitable
at our expense. Here, the action at is a distribution on m instruments

at ∈ ∆m = {a ∈ [0, 1]m :
∑
i

ai = 1}.

At each round, the adversary chooses a vector of returns rt ∈ Rm+ ; the ith component is the ratio of the
price of instrument i at time t to its price at the previous time, and the loss is defined as

`t(at) = − log (at · rt) .

The regret is then the log of the ratio of the maximum value the portfolio would have at the end (for the
best mixture choice) to the final portfolio value:

n∑
t=1

`t(at)−min
a∈A

n∑
t=1

`t(a) = max
a∈A

n∑
t=1

log(a · rt)−
n∑
t=1

log(at · rt).

Adversarial formulations of prediction problems are also appealing because they make only weak
assumptions about the process generating the data. It is often straightforward to convert a strategy for
an adversarial environment to a method for a probabilistic environment, and to convert a regret bound
to a bound on performance in an i.i.d. setting.

Finally, studying adversarial models can reveal the deterministic heart of a statistical problem, and
can give insight into the behavior of statistical methods designed for probabilistic settings. Indeed, as
we shall see, there are strong similarities between the performance guarantees in the two cases, and
there are significant overlaps in the design of methods for the two problems (for instance, regularization
plays a central role, and many online prediction strategies have a natural interpretation as a Bayesian
method). In fact, many statistical methods, based on probabilistic assumptions, turn out to be effective
in adversarial settings, and analyzing their performance in these settings provides perspective on their
robustness to the probabilistic assumptions.

These lecture notes provide an introduction to the analysis of strategies for adversarial prediction
problems. Section 2 gives an easy introduction to the case of a finite comparison class A. Section 3
compares the adversarial and the probabilistic formulation of prediction problems. Section 4 considers
the value of the online prediction game, revealing in particular the close relationship between performance
bounds for adversarial and probabilistic problems. We save most bibliographic notes to Section 5.

2 A Finite Comparison Class

2.1 Prediction with expert advice

In this section, we consider the case of a finite comparison class A = {1, 2, . . . ,m}.
Consider the problem of predicting whether it will rain tomorrow. Given access to a set of m experts,

who each make a forecast of 0 or 1, is it possible to predict almost as well as the best of these experts?
Suppose that the ith expert makes a sequence of predictions f i1, f

i
2, . . . from {0, 1}. At round t, the

adversary chooses an outcome yt ∈ {0, 1}, and sets

`t(i) = 1[f it 6= yt] =

{
1 if f it 6= yt,
0 otherwise.
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2.2 With a perfect expert

Consider an easier version of this game: suppose that the adversary is constrained to choose the sequence
yt so that some expert incurs no loss that is, there is an i∗ ∈ {1, . . . ,m} such that for all t, yt = f i

∗
t , and

hence L∗n = 0.
How should we predict?
Define Ct as the set of experts who have been correct so far:

Ct = {i : `1(i) = · · · = `t−1(i) = 0} .

Define the halving strategy as one that chooses at as an element of the set of experts i for which f it agrees
with the majority of elements of the set {f jt : j ∈ Ct} (whenever there is a clear majority).

Proposition 1. The halving strategy has regret no more than log2 m.

Proof. If the strategy makes a mistake (that is, `t(at) = 1), then the minority of {f jt : j ∈ Ct} is correct,
so at least half of the experts are eliminated:

|Ct+1| ≤
|Ct|

2
.

And otherwise |Ct+1| ≤ |Ct| (because |Ct| never increases). Thus,

L̂n =

n∑
t=1

`t(at) ≤ log2

|C1|
|Cn+1|

= log2 m− log2 |Cn+1| ≤ log2 m.

It is a straightforward proof, but it follows a common pattern: it exploits a measure of progress (here,
|Ct|) that both changes monotonically when an excess loss is incurred (here, it halves), and is somehow
constrained (here, it cannot fall below 1, because there is an expert who predicts perfectly).

What if there is no perfect expert?

2.3 Without a perfect expert: mixed actions

Without constraints on the loss of the best expert, it turns out that the game of prediction with expert
advice is too difficult. To see this, consider a specific strategy for the adversary: choose the losses so
that `t(at) = 1 but `t(a) = 0 for a 6= at. In that case, the learner incurs a total loss of n, whereas the
best expert in hindsight has a total loss of only

min
i

n∑
t=1

1[at = i] ≤ 1

m

m∑
i=1

n∑
t=1

1[at = i] =
n

m
.

That is, the regret can be as bad as n(1− 1/m); this game is too difficult.
Rather than requiring the learner to choose a single action, we allow the learner to play a mixed

action: the action at is chosen from the simplex ∆m—the set of distributions on {1, . . . ,m},

∆m =

{
a ∈ [0, 1]m :

m∑
i=1

ai = 1

}
.

We can think of this as choosing an element of {1, . . . ,m} randomly, according to a distribution at.
Alternatively, we can think of it as playing an element at of ∆m, and incurring the expected loss,

`t(at) =

m∑
i=1

ait`t(ei),

where `t(ei) ∈ [0, 1] is the loss incurred by expert i (here, ei ∈ Rm denotes the vector with a single 1 in
the ith coordinate, and the rest zeros.)
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2.4 Exponential weights

The exponential weights strategy is a simple and effective approach to this problem. It proceeds as
follows:

• Maintain a set of (unnormalized) weights over experts:

wi1 = 1,

wit+1 = wit exp (−η`t(ei)) ,

where η > 0 is a parameter of the strategy.

• Choose at as the normalized vector,

at =
1∑m
i=1 w

i
t

wt.

Theorem 2. The exponential weights strategy with parameter

η =

√
8 logm

n

has regret satisfying

L̂n − L∗n ≤
√
n logm

2
.

(Here and throughout, log denotes the natural logarithm.)

Proof. We use a measure of progress:

Wt =

m∑
i=1

wit,

and show that Wn shrinks no faster than exp(−ηL∗n), but shrinks at least as fast as exp(−ηL̂n). Com-
paring these bounds gives the result.

To see that Wt does not shrink too quickly when some expert has small loss, notice that

log
Wn+1

W1
= log

(
m∑
i=1

win+1

)
− logm

= log

(
m∑
i=1

exp

(
−η

n∑
t=1

`t(ei)

))
− logm

≥ log

(
max
i

exp

(
−η

n∑
t=1

`t(ei)

))
− logm

= −ηmin
i

(
n∑
t=1

`t(ei)

)
− logm

= −ηL∗n − logm.

On the other hand,

log
Wt+1

Wt
= log

(∑m
i=1 exp(−η`t(ei))wit∑m

i=1 w
i
t

)
≤ −η

∑m
i=1 `t(ei)w

i
t∑m

i=1 w
i
t

+
η2

8

= −η`t(at) +
η2

8
,

where we have used Hoeffding’s inequality:

Lemma 3. For a random variable X ∈ [a, b] and λ ∈ R,

log
(
E eλX

)
≤ λEX +

λ2(b− a)2

8
.
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Proof. Define

A(λ) = log
(
E eλX

)
= log

(∫
eλx dP (x)

)
,

where X ∼ P . Then for any λ ∈ R, we can define a new random variable Xλ ∼ Pλ where

dPλ
dP

(x) = exp (λx−A(λ)) .

(This is known as an exponential family: A is called the log normalization, λ the natural parameter,
and we say that the family has reference measure P and sufficient statistic x.) Since P has bounded
support, A(λ) <∞ for all λ, and it is easy to check that

A′(λ) = EXλ,
A′′(λ) = VarXλ.

Thus, we can write a Taylor expansion of A about λ = 0 (notice that X0 ∼ P ):

A(λ) = λEX +
λ2

2
VarXξ

for some ξ ∈ [0, λ]. Since P has support in [a, b], so does Xξ, and hence VarXξ ≤ (b−a)2/4. This
implies the result.

Now, comparing the bounds on Wn, we have

−ηL∗n − logm ≤ log
Wn+1

W1
≤ −ηL̂n +

nη2

8
.

Thus,

L̂n − L∗n ≤
logm

η
+
ηn

8
.

Choosing the optimal η gives the result.

With a perfect expert

We have seen that when there is an expert who incurs zero cumulative loss, there is a strategy (the
halving algorithm) with per round regret of order 1/n, whereas the exponential weights strategy gives a
per round regret of order 1/

√
n. It is natural to ask whether the exponential weights strategy gives the

faster rate when L∗ = 0.
In the proof, we can replace Hoeffding’s inequality:

logE eλX ≤ λEX +
λ2

8
,

with:
logE eλX ≤ (eλ − 1)EX.

(for X ∈ [0, 1], this is a linear upper bound on eλX). This gives

log
Wt+1

Wt
= log

(∑m
i=1 exp(−η`t(ei))wit∑

i w
i
t

)
≤
(
e−η − 1

)
`t(at).

Thus

L̂n ≤
η

1− e−η L
∗
n +

logm

1− e−η . (1)

For example, if L∗n = 0 and η is large, we again obtain a regret bound that is a constant times logm.
Notice that η large is rather similar to the halving algorithm (it puts equal weight on all experts that
have zero loss so far, and roughly zero weight on the others).

5



With an unknown time horizon

One undesirable property of the exponential weights strategy is the fact that it uses n, the length of the
game, to set an appropriate value for the gain constant η (in the proof above, we used the optimal setting
η =

√
8 logm/n). It is natural to ask if it is necessary to know n in advance. It turns out that using

a time-varying value, such as ηt =
√

8 logm/t gives the same regret rate, but with worse constants. In
fact, it is also possible to set η as a function of L∗t , the best cumulative loss so far, to give the improved
bound for small losses uniformly across time, again with worse constants. (See [3].)

With convex loss functions

We defined the loss for a point in the interior of the simplex by linearly extending its value at the vertices:

`t(a) =
∑
i

ai`t(e
i).

It’s easy to see that we could replace this definition with any bounded convex function on ∆m and retain
the same regret bound; an equality becomes an inequality:

−η
∑
i `t(ei)w

i
t∑

i w
i
t

≤ −η`t(at).

But note that the exponential weights strategy only competes with the corners of the simplex:

Theorem 4. For convex functions `t : ∆m → [0, 1], the exponential weights strategy with η =
√

8 logm/n
satisfies

n∑
t=1

`t(at) ≤ min
i

n∑
t=1

`t(e
i) +

√
n logm

2
.

2.5 Exponential weights as Bayesian prediction

It turns out that we can interpret the exponential weights strategy as Bayesian prediction, and then the
regret bound arises as a consequence of a straightforward regret bound for Bayesian prediction.

Recall that Bayesian prediction assumes a joint distribution over parameters θ ∈ Θ and outcomes
y ∈ Y. We can factor that distribution into a prior distribution π on Θ and a model, or conditional
distribution of y given θ. (We use notation that suggests Θ and Y are subsets of Euclidean space and the
prior and likelihood are densities with respect to Lebesgue measure, but they can be defined as densities
with respect to some other measure.) Given some data y1, . . . , yt ∈ Y, a Bayesian strategy computes the
predictive distribution

p̂t+1(y) = p(y|y1, . . . , yt)

=

∫
p(y|θ) p(θ|y1, . . . , yt)︸ ︷︷ ︸

pt+1(θ)

dθ,

The posterior distribution pt+1(θ) = p(θ|y1, . . . , yt) can be sequentially updated:

p1(θ) = π(θ)

pt+1(θ) =
pt(θ)p(yt|θ)∫
pt(θ′)p(yt|θ′)dθ′

.

To see the relationship between exponential weights and a Bayesian strategy, set Θ = {1, . . . ,m} and
define the prior as π(j) = 1/m. Set Y = [0, 1]m and define the model as

p(y|j) =
1− e−η

η
exp(−ηyj) (2)

for j = 1, . . . ,m and y = (y1, . . . , ym) ∈ [0, 1]m. (In fact, we can replace the constant hη := (1− e−η)/η
with h(y) where h : [0, 1]m → R is any function that ensures that p(y|j) is a conditional probability
density.) Then the Bayesian update to the distribution over Θ is

pt+1(j) =
1

Z
pt(j) exp(−ηyjt ),
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where Z is a normalization factor. If yjt is `t(ej), the loss of expert j, this posterior distribution calculation
is precisely the exponential weights update for the distribution over the set {1, . . . ,m}.

The regret bound for the exponential weights algorithm is a consequence of the following regret
bound for a Bayesian strategy. Here, we consider another loss function: we define the loss incurred by a
predictive distribution p̂t with outcome yt as the negative log of the predicted probability density,

`log(p̂t, yt) = − log p̂t(yt).

The theorem shows that the regret for a parameter θ is small as long as the prior probability of the set
of parameters that predict better (that is, parameters that incur a smaller cumulative loss) is large.

Theorem 5. Fix a prior π on Θ and a model p(y|θ). Write

Llog
n (θ) = −

n∑
t=1

log p(yt|θ), L̂log
n = −

n∑
t=1

log p̂t(yt)

= −
n∑
t=1

log p(yt|y1, . . . , yt−1).

For any sequence y1, . . . , yn, and any θ ∈ Θ,

L̂log
n ≤ Llog

n (θ)− log π
(
{θ′ : Llog

n (θ′) ≤ Llog
n (θ)}

)
.

Proof. Fix a sequence y1, . . . , yn and a θ0, and define the set of θ that have smaller cumulative loss than
θ0,

S = {θ ∈ Θ : Llog
n (θ) ≤ Llog

n (θ0)}.
Then

exp
(
−L̂log

n

)
= p̂1(y1) · · · p̂n(yn)

= p(y1)p(y2|y1) · · · p(yn|y1, . . . , yn−1)

= p(y1, . . . , yn)

=

∫
Θ

p(y1|θ) · · · p(yn|θ) dπ(θ)

=

∫
Θ

exp(−Llog
n (θ)) dπ(θ)

≥
∫
S

exp(−Llog
n (θ))dπ(θ)

≥ exp(−Llog
n (θ0))π(S).

We can use Theorem 5 to rederive the regret bound of Theorem 2 for the exponential weights strategy,
by relating the log loss for the predicted distribution of y to the linear loss that we considered earlier:
for a mixed action at ∈ ∆m with outcome yt ∈ [0, 1]m, we defined the loss as the linear function

`dot(at, yt) := at · yt = EJ∼at y
J
t .

Corollary 6. The Bayesian strategy for the model (2) and a uniform prior on {1, . . . ,m} achieves

L̂dot
n = min

j
Ldot
n (ej) +

logm

η
+
ηn

8
.

Proof. For the Bayesian strategy, the loss incurred by the predictive distribution p̂t of y can be expressed
in terms of a loss defined for the posterior distribution pt on {1, . . . ,m}: Since

p̂t(y) = EJ∼pt p(y|J) = hη EJ∼pt exp(−ηyJ),

we can write

`log(p̂t, yt) = − log p̂t(yt) = − log hη − log
(
EJ∼pt exp(−ηyJ)

)
= − log hη + η`Bayes(pt, yt),

7



where we have defined the Bayes loss,

`Bayes(pt, yt) = −1

η
log
(
EJ∼pt exp(−ηyJt )

)
.

Because constant terms in the loss do not affect the regret, Theorem 5 shows that, for any prior on
{1, . . . ,m},

L̂Bayes
n ≤ min

j

(
LBayes
n (ej)− log π(j)

η

)
, (3)

where L̂Bayes
n and LBayes

n are the cumulative Bayes losses of the Bayes strategy and the comparator,
respectively.

Comparing the Bayes loss to the linear loss, we see that they coincide at the vertices of the simplex,

`dot(ej , y) = `Bayes(ej , y) = yjt .

The Bayes loss is convex, and Hoeffding’s inequality shows how far it can be from the linear loss, that
is, how much of a gap there is in Jensen’s inequality: for X ∈ [a, b]:

− log (E exp(−ηX)) ≥ η EX − η2

8
(b− a)2.

For X = yJt ∈ [0, 1] with J ∼ pt, this is equivalent to the inequality

`dot(pt, yt) ≤ `Bayes(pt, yt) +
η

8
.

Summing, applying the Bayes loss regret bound (3), and choosing the uniform prior π(j) = 1/m gives

L̂dot
n ≤ L̂Bayes

n +
ηn

8

≤ min
j

(
LBayes
n (ej)− log π(j)

η

)
+
ηn

8

= min
j

(
Ldot
n (ej)− log π(j)

η

)
+
ηn

8

= min
j
Ldot
n (ej) +

logm

η
+
ηn

8
.

3 Online and adversarial versus batch and probabilistic

In this section, we consider a batch, probabilistic formulation of a prediction problem. We are interested
in how it compares to the online, game-theoretic formulation. We shall see that a successful method for
the online formulation can be used to construct a successful method for the batch formulation. Later,
we consider the relationship between regret bounds in the two formulations.

In the probabilistic formulation, a learning algorithm has access to a sample of size n,

(X1, Y1), . . . , (Xn, Yn),

drawn i.i.d. from an unknown probability distribution P on X × Y. The algorithm chooses a prediction
rule f̂ : X → Y. It aims to minimize risk, or expected loss,

E `(f̂(X), Y ),

and suffers excess risk of
E `(f̂(X), Y )−min

f∈F
E `(f(X), Y ),

where ` : Y × Y → [0, 1] is a loss function and F is a class of functions from X to Y (the comparison
class). This is how much additional risk the prediction rule incurs compared to the best prediction rule
in the comparison class F . Think of F as a finite class of experts, and we’d like to predict almost as well
as the best in this class. To highlight the similarities between the online adversarial problem and the
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batch probabilistic problem, we shall write the instantaneous loss in terms of an i.i.d. random function
`t,

`t(f) := `(f(Xt), Yt),

so that the excess risk is
E `t(f̂)−min

f∈F
E `t(f).

The halving strategy predicts according to the majority of experts that have incurred no loss. The
following theorem shows that in the probabilistic setting, it suffices to follow any prediction rule that
has incurred no loss so far. We use P to denote the distribution of `t and Pn to denote the empirical
distribution that assigns mass 1/n at each `t, and write

Pf = E`t∼P `t(f), Pnf =
1

n

n∑
t=1

`t(f)

for the risk and empirical risk, respectively.

Theorem 7. If some f∗ ∈ F has Pf∗ = 0, then choosing

f̂ ∈ Cn = {f ∈ F : Pnf = 0}

leads to excess risk

E `t(f̂)−min
f∈F

E `t(f) = O

(
log |F |
n

)
.

Proof.

Pr(P f̂ ≥ ε) ≤ Pr(∃f ∈ F : Pnf = 0, Pf ≥ ε)
≤ |F |(1− ε)n

≤ |F |e−nε.

Integrating the tail bound Pr(nP f̂ ≥ log |F |+ x) ≤ e−x gives P f̂ ≤ c log |F |/n.

Notice the similarity to the regret rate for the halving strategy: there, if one of the m experts has
zero cumulative loss, the per-trial regret decreases as logm/n. Here, if some f in the comparison class
F almost surely incurs zero loss, the excess risk decreases as log |F |/n.

In the same way, the following theorem is analogous to the regret bound for the exponential weights
strategy (Theorem 2). In the probabilistic setting, it suffices to choose a prediction rule that minimizes
the empirical risk. In the online setting, an adversarial choice of data can easily make this simple approach
fail; the argument in Section 2.3 shows that a learner that makes deterministic choices in the experts
game will suffer linear regret.

Theorem 8. Choosing f̂ to minimize the empirical risk, Pnf , leads to excess risk

E `t(f̂)−min
f∈F

E `t(f) = O

(√
log |F |
n

)
.

The key step in proving the theorem is to bound the excess risk in terms of the supremum of an
empirical process, the deviations between expectations and sample averages. Defining f∗ as a minimizer
in F of E `t(f), we can write E `t(f̂)−minf∈F E `t(f) = EP f̂ − Pf∗ as the expectation of

P f̂ − Pf∗ = P f̂ − Pnf̂ + Pnf̂ − Pf∗

≤ P f̂ − Pnf̂ + Pnf
∗ − Pf∗ (since Pnf̂ is minimal)

≤ 2 sup
f∈F
|Pf − Pnf | .

That is, the excess risk can be bounded in terms of worst case deviations between sample averages and
expectations. To prove the theorem, we shall take a short detour to investigate the behavior of the
empirical process f 7→ Pf − Pnf and its largest values.
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3.1 Analysis of probabilistic prediction: Rademacher averages

This section reviews the use of Rademacher averages to give excess risk bounds in probabilistic settings.
We shall see in Section 4 that similar quantities and techniques give regret bounds in adversarial settings.

We have just seen that an empirical risk minimizer f̂ ∈ arg minf∈F Pnf has excess risk bounded by
the supremum of an empirical process,

‖P − Pn‖F := sup
f∈F
|Pf − Pnf | .

The following theorem shows that this quantity is concentrated about its expectation, and that its
expectation is closely related to that of the Rademacher process indexed by F :

Rnf :=

n∑
t=1

εt`t(f),

where the `t are i.i.d. and the εt are i.i.d. uniform on {−1, 1}.
Theorem 9. Suppose the `t map to the interval [0, 1]. Then

1

2n
E ‖Rn‖F −

√
log 2

2n
≤ E ‖P − Pn‖F ≤

2

n
E ‖Rn‖F ,

and with probability at least 1− 2 exp(−2ε2n),

E ‖P − Pn‖F − ε ≤ ‖P − Pn‖F ≤ E ‖P − Pn‖F + ε.

Thus, ‖P − Pn‖F
as→ 0 iff E ‖Rn‖F /n→ 0.

Notice that ‖Rn‖F captures how well the losses `t(f) of functions in F can be aligned with a random
vector (ε1, . . . , εn). It is intuitive that if there is always a good alignment, then we should not expect
expectations and sample averages to be close. The theorem shows that the two phenomena are very
closely related.

Proof. To prove the upper bound on the expected supremum of P − Pn, define independent random
variables `′t, with the same distribution as `t.

E ‖P − Pn‖F = E sup
f∈F

∣∣∣∣∣ 1n
n∑
t=1

(E `t(f)− `t(f))

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣ 1n
n∑
t=1

(
E `′t(f)− `t(f)

)∣∣∣∣∣ (because `t
d
= `′t)

≤ E sup
f∈F

∣∣∣∣∣ 1n
n∑
t=1

(
`′t(f)− `t(f)

)∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣ 1n
n∑
t=1

εt
(
`′t(f)− `t(f)

)∣∣∣∣∣ (because `t
d
= `′t)

≤ 2E sup
f∈F

∣∣∣∣∣ 1n
n∑
t=1

εt`t(f)

∣∣∣∣∣ (by the triangle inequality)

=
2

n
E ‖Rn‖F .

10



The lower bound uses the assumption that the `t map to a bounded interval.

1

n
E ‖Rn‖F ≤ E

∥∥∥∥∥ 1

n

n∑
t=1

εt (`t(f)− E `t(f))

∥∥∥∥∥
F

+ E

∥∥∥∥∥ 1

n

n∑
t=1

εt E `t(f)

∥∥∥∥∥
F

(by the triangle inequality)

≤ E

∥∥∥∥∥ 1

n

n∑
t=1

εt
(
`t(f)− `′t(f)

)∥∥∥∥∥
F

+ E

∥∥∥∥∥ 1

n

n∑
t=1

εt E `t(f)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥ 1

n

n∑
i=1

εi
(
f(Xi)− f(X ′i)

)∥∥∥∥∥
F

+ ‖P‖F E

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
≤ E

∥∥∥∥∥ 1

n

n∑
t=1

εt
(
`t(f)− `′t(f)

)∥∥∥∥∥
F

+ E

∣∣∣∣∣ 1n
n∑
t=1

εt

∣∣∣∣∣ (because |`t| ≤ 1)

≤ E

∥∥∥∥∥ 1

n

n∑
t=1

εt
(
`t(f)− `′t(f)

)∥∥∥∥∥
F

+

√
2 log 2

n
(by Lemma 11 below)

= E

∥∥∥∥∥ 1

n

n∑
t=1

(
`t(f)− E `t(f) + E `′t(f)− `′t(f)

)∥∥∥∥∥
F

+

√
2 log 2

n

≤ 2E ‖Pn − P‖F +

√
2 log 2

n
.

To prove the concentration of the maximal deviations, we use the fact that the `t are independent and
uniformly bounded, and apply the bounded differences inequality (Lemma 10 below).

Finally, almost-sure convergence follows from the Borel-Cantelli lemma.

The proof used two lemmas. The first is a consequence of Hoeffding’s inequality. See, for example, [22].

Lemma 10 (Bounded differences inequality). Suppose φ : Xn → R has the following bounded differences
property: for all i and x1, . . . , xn, x

′
i ∈ X ,∣∣φ(x1, . . . , xn)− φ(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∣∣ ≤ Bi.
Then for independent X1, . . . , Xn,

Pr (|φ(X1, . . . , Xn)− Eφ(X1, . . . , Xn)| ≥ t) ≤ 2 exp

(
− 2t2∑

iB
2
i

)
.

To bound the supremum of the Rademacher process for a finite class, we can appeal to the following
lemma.

Lemma 11. For V ⊆ Rn,

Emax
v∈V

n∑
t=1

εtvt ≤
√

2 log |V |max
v∈V
‖v‖.

Hence, if the loss functions `t map to the interval [0, 1] and F is finite,

E ‖Rn‖F ≤
√

2n log(2|F |).

Proof.

exp

(
λEmax

v

∑
t

εtvt

)
≤ E exp

(
λmax

v

∑
t

εtvt

)
(Jensen’s inequality)

≤ E
∑
v

exp

(
λ
∑
t

εtvt

)
=
∑
v

∏
t

E exp(λεtvt)

≤
∑
v

∏
t

exp(λ2v2
t /2) (Hoeffding’s inequality, Lemma 3)

=
∑
v

exp(λ2‖v‖2/2)

≤ |V | exp
(
λ2 max

v
‖v‖2/2

)
.

11



The second part of the lemma follows: apply the inequality with vt = ±`t(f), so that ‖v‖ ≤
√
n.

Now the proof of Theorem 8 is a straightforward combination of these ingredients: the argument after
that theorem that excess risk is bounded by the supremum of |P − Pn|, Theorem 9, showing that this is
bounded by the supremum of |Rn|, and Lemma 11:

E `t(f̂)−min
f∈F

E `t(f) ≤ 2E ‖P − Pn‖F

≤ 4

n
E ‖Rn‖F

≤
√

32 log(2|F |)
n

.

Rademacher averages are an elegant approach to the analysis of many prediction methods. For ex-
ample, they can be bounded using covering numbers, or combinatorial dimensions, such as the Vapnik-
Chervonenkis dimension, Pollard’s pseudodimension, or the fat-shattering dimension (see, for exam-
ple, [23]). Notice that we can write

E ‖Rn‖F = E sup
f∈F

∣∣∣∣∣
n∑
t=1

εt`t(f)

∣∣∣∣∣ ≤ sup
`1,...,`t

E sup
f∈F

∣∣∣∣∣
n∑
t=1

εt`t(f)

∣∣∣∣∣ = sup
`1,...,`t

E ‖Rn‖F .

We call sup`1,...,`t E ‖Rn‖F the maximal Rademacher averages. In the case of finite F ,

ΠF (n) := sup
`1,...,`t

|{(`1(f), . . . , `n(f)) : f ∈ F}| ≤ |F |,

so Lemma 11 also gives a bound on the maximal Rademacher averages. If {{`(f) : ` ∈ L} : f ∈ F} is
a Vapnik-Chervonenkis class, then ΠF (n) grows only polynomially with n, and this appears inside the
logarithm in Lemma 11, giving a bound on the maximal Rademacher averages that is only a log factor
worse than the finite case.

In Section 4, we shall see quantities closely related to the maximal Rademacher averages arising in
the adversarial setting.

3.2 Online to Batch Conversion

We have seen similar regret bounds for probabilistic and adversarial prediction problems. In this section,
we see that we can use a strategy that performs well in the online, adversarial setting to obtain a strategy
that performs well in the batch, probabilistic setting. The regret per trial in the probabilistic setting is
bounded by the regret per trial in the adversarial setting.

Suppose that an online strategy, given observations `1, . . . , `t−1, produces at = S(`1, . . . , `t−1). To
convert this to a method that is suitable for a probabilistic setting, we wish to exploit S in a method
that uses i.i.d. observations `1, . . . , `n to choose an â ∈ A so that

E `1(â)−min
a∈A

E `1 (a)

is small whenever S has a good regret bound. One issue is that having a good regret bound implies that
the predictions that S makes are accurate on average, but might not be uniformly accurate. We consider
the following simple randomized method, which we call the random tail method:

1. Pick T uniformly from {0, . . . , n}.
2. Let â = S(`T+1, . . . , `n).

It turns out that this approach gives small expected loss under a slightly milder assumption than i.i.d. ob-
servations: we only need that the process generating the loss sequence is stationary, that is, the joint
distribution of any contiguous subsequence is independent of the time index.

Theorem 12. If an online strategy S has a regret bound of Cn+1 for sequences of length n + 1, then
for any stationary process generating the `1, . . . , `n+1, the random tail method returns a prediction â that
satisfies

E `n+1(â)−min
a∈A

E `n (a) ≤ Cn+1

n+ 1
.

12



Proof.

E `n+1(â) = E `n+1(A(`T+1, . . . , `n))

= E 1

n+ 1

n∑
t=0

`n+1(A(`t+1, . . . , `n))

= E 1

n+ 1

n∑
t=0

`n−t+1(A(`1, . . . , `n−t))

= E 1

n+ 1

n+1∑
t=1

`t(A(`1, . . . , `t−1))

≤ E 1

n+ 1

(
min
a

n+1∑
t=1

`t(a) + Cn+1

)

≤ min
a

E `t(a) +
Cn+1

n+ 1
.

Notice that the random tail method is a randomized algorithm, and the expectation in the theorem
averages also over its randomness. Thus, the theorem only shows how the method performs on average.
If we wanted a method to have small excess risk with high probability (for instance, with independent,
identically distributed data), this method is not suitable, but there are several alternatives. For instance,
we could

1. Choose â = 1
n

∑n
t=1 at (provided A is convex and the `t are all convex).

2. Choose â to minimize a high probability upper bound on expected loss,

â = arg min
at

(
1

n− t

n∑
s=t+1

`s(at) + c

√
log(n/δ)

n− t

)
.

In both cases, the analysis involves concentration of martingales. See, for example, [9].

4 Optimal Regret

In this section, we consider the minimax regret, that is the regret incurred by a strategy that plays
optimally against an optimal adversary:

Vn(A,L) := inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑
t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a)

)
. (4)

Here, the player chooses an action at at each step from the set A and the adversary chooses a loss
`t : A → R at each step from the set L.

We saw in the previous section (in proving Theorem 8) that we can relate the performance of an
empirical risk minimization algorithm on a probabilistic prediction problem to uniform bounds on the
deviation between sample averages and expectations. The following theorem shows that the minimax
regret in the adversarial setting is equal to a similar quantity: a deviation between expectations and
averages.

Theorem 13. If A is compact and all ` ∈ L are convex, lower semi-continuous functions, then

Vn(A,L) = sup
P

E

(
n∑
t=1

inf
at∈A

E [`t(at)|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t(a)

)
,

where the supremum is over joint distributions P over sequences `1, . . . , `n in Ln.

We can view the expression for the minimax regret as the value of a dual game, in which the adversary
plays first by choosing the joint distribution P . The value of the game is the difference between the
minimal conditional expected loss and the minimal empirical loss. If P were i.i.d., this would again be
the difference between an expectation and a sample average.
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Instead of constraining the `t uniformly, so that they are all chosen from a fixed set L, we could
replace the set Ln by a set of length n sequences of loss functions, and obtain a similar result.

The assumption of convexity of the `t is easily satisfied by allowing mixed strategies: if we replace
A by the set P(A) of probability distributions on A and replace a 7→ `(a) by the linear, hence convex,
P 7→ Ea∼P `(a), then we can replace convexity with a milder condition on the loss, as the following
theorem shows.

Theorem 14. Suppose A is a compact, separable metric space. Let P(A) denote the set of Borel
probability measures on A. Suppose all ` ∈ L are lower semi-continuous and bounded from below. Then
the value of the game with mixed strategies at ∼ Pt ∈ P(A) is

Vn(P(A),L) := inf
P1

sup
`1

· · · inf
Pn

sup
`n

E

(
n∑
t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a)

)

= sup
P

E

(
n∑
t=1

inf
at∈A

E [`t(at)|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t(a)

)
,

where the supremum is over joint distributions P on sequences `1, . . . , `n in Ln.

4.1 Dual Game: Proof Idea

The central ingredient in the proof is Sion’s generalization [27] of von Neumann’s minimax theorem.

Lemma 15. If X is compact and for every y ∈ Y, f(·, y) is a convex, lower semi-continuous function,
and for every x ∈ X , f(x, ·) is concave, then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

To apply the lemma to prove Theorem 13, we define X as A, Y as the set of probability distributions
on L, and f(a,Q) = c+ E`∼Q[`(a) + φ(`)] for some c and φ.

Then, because allowing mixed strategies does not help the adversary, we have

Vn(A,L) = inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑
t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a)

)

= inf
a1

sup
`1

· · · inf
an

sup
Pn

E`n

(
n∑
t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a)

)

= inf
a1

sup
`1

· · · inf
an−1

sup
`n−1

sup
Pn

inf
an

E`n

(
n∑
t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a)

)
(by Lemma 15)

= inf
a1

sup
`1

· · · inf
an−1

sup
`n−1

(
n−1∑
t=1

`t(at) + sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t(a)

))

= inf
a1

sup
`1

· · · inf
an−1

sup
Pn−1

E`n−1

(
n−1∑
t=1

`t(at) + sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t(a)

))

= inf
a1

sup
`1

· · · sup
Pn−1

inf
an−1

E`n−1

(
n−1∑
t=1

`t(at) + sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t(a)

))

= inf
a1

sup
`1

· · · inf
an−2

sup
`n−2

(
n−2∑
t=1

`t(at) + sup
Pn
n−1

E

(
n∑

t=n−1

inf
at

E [`t(at)|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t(a)

))
...

= sup
P

E

(
n∑
t=1

inf
at

E [`t(at)|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t(a)

)
.

To prove Theorem 14, we apply Lemma 15, defining X as P(A), Y as the set of probability distribu-
tions on L, and f(P,Q) = c+E`∼Q[Ea∼P `(a) +φ(`)] for some c and φ. Then the following lemma shows
that the conditions of the theorem ensure that A is compact and P 7→ Ea∼P `(a) is lower semi-continuous,
as required. (The result follows from properties of Borel measures and the portmanteau theorem. See,
for example, [13].)
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Lemma 16. Suppose A is a compact, separable metric space. Let P(A) denote the set of Borel probability
measures on A. Then

1. P(A) is metrizable (by the Lévy-Prokhorov metric), separable, and compact, and

2. For any ` : A → R that is lower semi-continuous and bounded from below, the function E` : P(A)→
R defined by E`(P ) = Ea∼P `(a) is lower semi-continuous.

The rest of the proof proceeds as before.

4.2 Optimal Regret and Sequential Rademacher Averages

We can obtain an upper bound on the optimal regret in terms of a quantity that is closely related to
the maximal Rademacher averages that we encountered in Section 3.1. Recall that deviations between
sample averages and expectations in the probabilistic setting was bounded above and below by the
expected supremum of the Rademacher process Rn =

∑n
t=1 εt`t, where the `t are i.i.d. and the εt are

independent, uniform, {−1, 1}-valued. In the adversarial setting, the upper bound depends on a similar
stochastic process, but with dependent `t and εt.

Definition 17. Define the sequential Rademacher averages of action set A and loss set L as

Sn(A,L) = sup
`1∈L

Eε1 · · · sup
`n∈L

Eεn sup
a∈A

n∑
t=1

εt`t(a),

where the εt are i.i.d. uniform {−1, 1}-valued random variables.

In what follows, when we write Vn(A,L), we assume either

1. that A and L satisfy the conditions of Theorem 13 (that is, A is compact, all ` ∈ L are convex and
l.s.c.), in which case Vn(A,L) is the value of the game, defined in (4):

Vn(A,L) := inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑
t=1

`t(at)− inf
a∈A

n∑
t=1

`t(a)

)
,

or

2. that A and L satisfy the conditions of Theorem 14 (that is, A is a compact, separable metric
space, all ` ∈ L are l.s.c. and bounded from below), in which case we can replace Vn(A,L) with
Vn(P(A),L), where P(A) is the set of Borel probability measures on A.

Theorem 18. Vn(A,L) ≤ 2Sn(A,L).

Compare this result to the Rademacher bounds on excess risk in the probabilistic setting:

n

(
E `t(f̂)−min

f∈F
E `t(f)

)
≤ 4E ‖Rn‖F = 4E sup

f∈F

∣∣∣∣∣
n∑
t=1

εt`t(f)

∣∣∣∣∣ ≤ 4 sup
`1,...,`n∈L

E

∥∥∥∥∥
n∑
t=1

εt`t

∥∥∥∥∥
F

.

In the probabilistic setting, the `t that appear in the definition of the Rademacher processRn are i.i.d., but
we can obtain an upper bound by a deterministic choice of values that maximize the expected supremum
over F . In the adversarial setting, the choice of the `t that appear in the definition of the Rademacher
process is deterministic, but crucially it can depend on the preceding ε1, . . . , εt−1. We can also think of
the alternating supremum-expectation operation as a supremum over mappings L :

⋃n−1
t=0 {−1, 1}t → L:

Sn(A,L) = sup
L

E sup
a∈A

n∑
t=1

εtL(ε1, . . . , εt−1)(a).

Of course, requiring that L only depend on the length of its input (so that the `t form a fixed sequence,
independent of the εt) gives a smaller quantity:

sup
`1,...,`n∈L

E sup
a∈A

n∑
t=1

εt`t(a) ≤ Sn(A,L).
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Proof. We start with the dual form of the optimal regret.

Vn(A,L) = sup
P

E

(
n∑
t=1

inf
at∈A

E [`t(at)|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t(a)

)

= sup
P

E sup
a∈A

n∑
t=1

(
inf
at∈A

E [`t(at)|`1, . . . , `t−1]− `t(a)

)

≤ sup
P

E sup
a∈A

n∑
t=1

(E [`t(a)|`1, . . . , `t−1]− `t(a)) . (5)

Now define a tangent sequence, `′t, that is conditionally independent of `t, . . . , `n given `1, . . . , `t−1, and
has the same conditional distribution as `t.

Vn(A,L) ≤ sup
P

E sup
a∈A

n∑
t=1

(E [`t(a)|`1, . . . , `t−1]− `t(a))

= sup
P

E sup
a∈A

n∑
t=1

(
E
[
`′t(a)|`1, . . . , `n

]
− `t(a)

)
(`′t has the same conditional)

≤ sup
P

E sup
a∈A

n∑
t=1

(
`′t(a)− `t(a)

)
(moving the sup inside the E)

= sup
P

E sup
a∈A

(
n−1∑
t=1

(
`′t(a)− `t(a)

)
+ εn

(
`′n(a)− `n(a)

))
. (same conditional)

At this point, we cannot use the same argument to split off a term of the form εn−1(`′n−1(a)− `n−1(a)).
The reason is that the supremum does not have the same distribution if we interchange `′n−1 and `n−1.
For instance, given `1, . . . , `n−2, `n is conditionally independent of `′n−1 but not of `n−1. For this reason,
we replace the expectation over `n and `′n with a supremum:

Vn(A,L) ≤ sup
P

E`1,...,`n−1 E`n,`′n Eεn sup
a∈A

(
n−1∑
t=1

(
`′t(a)− `t(a)

)
+ εn

(
`′n(a)− `n(a)

))

≤ sup
P

E`1,...,`n−1 sup
`n,`′n

Eεn sup
a∈A

(
n−1∑
t=1

(
`′t(a)− `t(a)

)
+ εn

(
`′n(a)− `n(a)

))

= sup
P

E`1,...,`n−1 Eεn−1 sup
`n,`′n

Eεn sup
a∈A

(
n−2∑
t=1

(
`′t(a)− `t(a)

)
+

n∑
t=n−1

εt
(
`′t(a)− `t(a)

))

≤ sup
P

E`1,...,`n−2 sup
`n−1,`

′
n−1

Eεn−1 sup
`n,`′n

Eεn sup
a∈A

(
n−2∑
t=1

(
`′t(a)− `t(a)

)
+

n∑
t=n−1

εt
(
`′t(a)− `t(a)

))
...

≤ sup
`1,`
′
1

Eε1 · · · sup
`n,`′n

Eεn sup
a∈A

(
n∑
t=1

εt
(
`′t(a)− `t(a)

))

≤ 2 sup
`1

Eε1 · · · sup
`n

Eεn sup
a∈A

(
n∑
t=1

εt`t(a)

)
≤ 2Sn(A,L).

4.2.1 Sequential versus maximal Rademacher averages: an example

Consider step functions defined on the real line:

fa : x 7→ 1[x ≥ a],

define A = R, and define losses `x,y ∈ L ⊂ {0, 1}A in terms of x ∈ R and y ∈ {0, 1} via

`x,y(a) = 1[fa(x) 6= y].
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The following proposition shows that, for this example, the maximal and sequential Rademacher averages
are very different: rescaled so that they are comparable, the maximal Rademacher averages are a factor
of roughly

√
n smaller than the sequential Rademacher averages.

Proposition 19. For the step functions, the Rademacher averages and the sequential Rademacher av-
erages satisfy

1

n
E ‖Rn‖A = E sup

a

∣∣∣∣∣ 1n
n∑
t=1

εt`t(a)

∣∣∣∣∣ ≤
√

2 log(n+ 1)

n
,

1

n
sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t(a) =
1

2
.

Proof. First, we calculate an upper bound on the maximal Rademacher averages.

E ‖Rn‖A ≤ sup
(x1,y1),...,(xn,yn)

E ‖Rn‖A

= sup
(x1,y1),...,(xn,yn)

E sup
a∈R

∣∣∣∣∣
n∑
t=1

εt`xt,yt(a)

∣∣∣∣∣ .
Consider the set of loss vectors

V := {(`x1,y1(a), . . . , `xn,yn(a)) : a ∈ R} .

The cardinality of this set is not affected if we set y1 = · · · = yn = 0 and reorder the xts so that
x1 ≤ · · · ≤ xn. But then V is a set of monotone sequences of binary vectors, so |V | ≤ n+ 1. Lemma 11
shows that

E ‖Rn‖A ≤
√

2n log(n+ 1).

(It turns out that the log factor is unnecessary in this bound, but this needs a more refined argument.)
Second, for the sequential Rademacher averages, we have

sup
x1,y1

Eε1 · · · sup
xn,yn

Eεn sup
a

n∑
t=1

εt`xt,yt(a)

≥ sup
x1

Eε1 · · · sup
xn

Eεn sup
a

n∑
t=1

εt1[xt < a].

To maximize this quantity, we should aim to choose a so that xt < a when εt = 1 and xt ≥ a when
εt = −1. To ensure that this is possible, we can choose

x1 = 0,

x2 = ε1/2,

x3 = ε1/2 + ε2/4,

...

xt =

t−1∑
i=1

2−iεi.

Then if we set a = xn + 2−nεn, it is easy to see that, for all t,

εt1[xt < a] =

{
1 if εt = 1,

0 otherwise,

which is maximal. So the sequential Rademacher averages are

sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t(a) = E
n∑
t=1

1[εt = 1] =
n

2
.
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4.3 Martingales and Sequential Rademacher Averages

In this section, we see that there is a close relationship between sequential Rademacher averages of L
and the size of martingales with differences in L. In particular, if ` ∈ L implies −` ∈ L, this result shows
that the value of the game is within a factor of 2 of the sequential Rademacher averages.

An RA-valued martingale is a sequence Z1, Z2, . . . of stochastic processes, each indexed by A, for
which

E sup
a∈A
|Zt(a)| <∞ and E [Zt|Z1, . . . , Zt−1] = Zt−1.

The sequence Z1, Z2 − Z1, . . . , Zn − Zn−1 of increments is called the difference sequence.

Theorem 20. Let ML be the set of RA-valued martingales with difference sequences in L ∪ −L, where

−L = {−` : ` ∈ L} .

Then

sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t(a) ≤ sup
{Zt}∈ML

E sup
a∈A

Zt(a).

If L is symmetric, that is, −L = L, then

sup
{Zt}∈ML

E sup
a∈A

Zt(a) ≤ Vn(A,L) ≤ 2 sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t(a) ≤ 2 sup
{Zt}∈ML

E sup
a∈A

Zt(a).

Proof. Fix a strategy L :
⋃n−1
t=0 {−1, 1}t → L. Define `t = L(ε1, . . . , εt−1) and Zt =

∑t
i=1 εi`i. Then the

sequential Rademacher averages can be written

sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t(a) = sup
L

E sup
a∈A

Zt(a) ≤ sup
{Zt}∈ML

E sup
a∈A

Zt(a),

because {Zt} is an RA-valued martingale with difference sequence in L ∪ −L.
For the lower bound, consider the duality result:

Vn(A,L) = sup
P

E

(
n∑
t=1

inf
at∈A

E [`t(at)|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t(a)

)
,

where the supremum is over joint distributions of sequences `1, . . . , `n. When L is symmetric, a martingale
{Zt} in ML has a difference sequence {`t} in Ln. If we restrict P to the subset of joint distributions on
Ln corresponding to difference sequences of martingales {Zt} in ML, then

E [`t|`1, . . . , `t−1] = 0

and
n∑
t=1

`t = Zt,

and so we have

Vn(A,L) ≥ sup
{Zt}∈ML

E− inf
a∈A

Zn(a) = sup
{Zt}∈ML

E sup
a∈A

Zn(a).

Although the symmetry condition in this theorem seems to require that we allow losses to be negative,
it is clear that an offset does not change the value of the game or the sequential Rademacher averages.

Theorem 21. For an action set A, loss class L ⊆ RA, and constants b, c ∈ R, define

bL = {a 7→ b`(a) : ` ∈ L} ,
L+ c = {a 7→ `(a) + c : ` ∈ L} .

Then

Vn (A, |b|L+ c) = |b|Vn (A,L) , Sn (A, bL+ c) = |b|Sn (A,L) .

Furthermore, if A1 ⊆ A, and L1,L2 ⊆ L,

Sn (A1,L) ≤ Sn (A,L) , Sn (A,L1) ≤ Sn (A,L) .
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Proof. The equality for Vn (A, |b|L+ c) is immediate from the definition of Vn. For the sequential
Rademacher averages, we have

Sn (A, bL+ c) = sup
`1∈L

Eε1 · · · sup
`n∈L

Eεn sup
a

n∑
t=1

εt (b`t(a) + c)

= |b| sup
`1∈L

Eε1 · · · sup
`n∈L

Eεn sup
a

n∑
t=1

sign(b)εt`t(a) + cE
n∑
t=1

εt

= |b|Sn (A,L) .

The other two inequalities are immediate from the definition.

4.4 Linear Games

As an application of the martingale characterization of the previous section, consider prediction games
with linear losses,

`c(a) = 〈c, a〉.
Define the loss class

L = {`c : c ∈ C} ,
where C ⊂ Rd. Let A be a compact subset of Rd.
Example 22 (Prediction with expert advice). Define C = [−1, 1]m and

A = ∆m :=

{
(w1, . . . , wm) : wi ≥ 0,

m∑
i=1

wi = 1

}
.

This is the game of prediction with expert advice: at each round, the strategy must choose a probability
distribution a ∈ A over the m experts, and it subsequently sees the vector c ∈ C of experts’ losses and
itself incurs a loss 〈c, a〉.
Example 23 (Online shortest path). Let G = (V,E) be a graph. Define A ⊆ {0, 1}E so that for each
path p between a source s and a sink t in G, there is an a in A with ae = 1[p contains e] for all e ∈ E.
Each element of the set C ⊆ RE corresponds to a vector of delays on the edges. The aim of the prediction
strategy is to choose a path, that is, a vector a ∈ A, at each time t, so that the total delay incurred over
n rounds is not much worse than the best single path.

Theorem 24. For the linear loss class L = {`c(a) = 〈c, a〉 : c ∈ C}, with C a symmetric subset of Rd
and A a compact subset of Rd, the regret satisfies

sup
{Zt}∈MC

E sup
a∈A
〈Zn, a〉 ≤ Vn(A,L) ≤ 2 sup

{Zt}∈MC
E sup
a∈A
〈Zn, a〉 ,

where MC is the set of martingales with differences in C.

It is natural that the supremum of these linear functions should depend on the sizes of elements of C
and A. Suppose that we have a norm ‖ · ‖ defined on C, and we measure the size of elements of C using
this norm. Then we can view A as a subset of the dual space of linear functions on C, equipped with the
dual norm

‖a‖∗ = sup {〈c, a〉 : c ∈ C, ‖c‖ ≤ 1} .
To allow a little more flexibility, rather than measuring the size of elements of A using this dual norm,
we will use a strongly convex function defined on A. Think of this as a generalization of the squared
dual norm.

Definition 25. We say that Φ : A → R is σ-strongly convex wrt ‖ · ‖∗ if for all a, b ∈ A and α ∈ [0, 1],

Φ(αa+ (1− α)b) ≤ αΦ(a) + (1− α)Φ(b)− σ

2
α(1− α)‖a− b‖2∗.

Example 26. Consider the p-norm

‖c‖p :=

(∑
i

|ci|p
)1/p

,
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for 1 < p <∞, with dual

‖a‖q :=

(∑
i

|ci|q
)1/q

,

where 1/p+ 1/q = 1. Then Φ(a) := ‖a‖2q is 2(q − 1)-strongly convex wrt ‖ · ‖q.
Theorem 27. Consider the class of linear losses {`(a) = 〈c, a〉 : c ∈ C} defined on A. Fix a norm ‖ · ‖
on C and its dual norm ‖ · ‖∗ on A. Suppose Φ : A → R is σ-strongly convex wrt ‖ · ‖∗. Define

C := sup
c∈C
‖c‖, A2 := sup

a∈A
Φ(a)− inf

a∈A
Φ(a).

Then the optimal regret satisfies

Vn(A,L) ≤ 2 sup
{Zt}∈MC∪−C

E sup
a∈A
〈Zn, a〉 ≤ 2AC

√
2n

σ
.

Example 28. If C is the p-norm ball and A is the q-norm ball,

C = Bp := {a : ‖a‖p ≤ 1},
A = Bq := {a : ‖a‖q ≤ 1}

for 1 < p <∞ and 1/p+ 1/q = 1, then

Vn(A,L) ≤ 2

√
n

q − 1
= 2
√
n(p− 1).

Notice that we cannot apply this result to bound the optimal regret for the game of prediction with
expert advice, where C is an∞-ball and A is contained in a 1-ball. Instead, we will use a suitable strongly
convex function Φ.

Example 29. Suppose C is the ∞-norm ball and A is the simplex,

C = B∞ := [−1, 1]d,

A = ∆d :=

{
a ∈ [0, 1]d :

d∑
i=1

ai = 1

}
.

The infinity-norm ‖ · ‖∞,
‖c‖∞ := max

i
|ci|,

has the 1-norm,

‖a‖1 :=

d∑
i=1

|ci|,

as its dual. If we define

Φ(a) := log d+

d∑
i=1

ai log ai

(where we set 0 log 0 = 0), then it is easy to see that 0 ≤ Φ(a) ≤ log d for a ∈ A, and straightforward to
show that Φ is 1-strongly convex wrt ‖ · ‖1. Thus,

Vn(A,L) ≤
√

2n log d.

4.4.1 Proof of Theorem 27

The proof uses ideas from convex analysis. The convex conjugate of Φ is

Φ∗(c) = sup
a∈A

(〈c, a〉 − Φ(a)) .

Without loss of generality, assume that infa∈A Φ(a) = 0, so that supa∈A Φ(a) = A2. Then Φ∗(0) = 0.
The Fenchel-Young inequality follows from the definition of the convex conjugate: for any a ∈ A,

Φ∗(c) + Φ(a) ≥ 〈c, a〉.
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Thus, for any λ > 0,

E sup
a∈A
〈a, Zn〉 ≤ E sup

a∈A

1

λ
(Φ(a) + Φ∗(λZn)) ≤ A2

λ
+

EΦ∗(λZn)

λ
. (6)

Consider the evolution of Φ∗(λZt). It is straightforward to show that when Φ is σ-strongly convex
wrt ‖ · ‖∗, then Φ∗ is differentiable and σ-smooth wrt ‖ · ‖, that is, for all c, d ∈ C,

Φ∗(c+ d) ≤ Φ∗(c) + 〈∇Φ∗(c), d〉+
1

2σ
‖d‖2.

Because of this,

E [Φ∗(λZt)|Z1, . . . , Zt−1] ≤ Φ∗(λZt−1) + E [〈∇Φ∗(λZt−1), Zt − Zt−1〉 |Z1, . . . , Zt−1]

+
1

2σ
E
[
λ2‖Zt − Zt−1‖2|Z1, . . . , , Zt−1

]
≤ Φ∗(λZt−1) +

λ2C2

2σ
.

Since Φ∗(0) = 0, we have Φ∗(λZn) ≤ nλ2C2/(2σ).
Substituting into Equation (6),

E sup
a∈A
〈a, Zn〉 ≤

A2

λ
+
nλC2

2σ

= 2AC

√
n

2σ
,

for λ =
√

2A2σ/(nC2).

5 Bibliographic notes

Prediction in adversarial settings has a long history across many communities, including game theory [15],
information theory [11, 29], computer science [21, 28], and statistics [14]. The classic text of Cesa-Bianchi
and Lugosi [10] gives an excellent coverage of much of the material in Section 2, as well as many other
aspects of prediction in game-theoretic settings. Lemma 3 is due to Hoeffding [16]; the elegant proof in
terms of properties of exponential families was communicated by David Pollard. Inequality (1), which
improves on Theorem 2 when L∗n is small, is from [21].

The analysis techniques for probabilistic settings are classical. For text-book treatments in terms of
combinatorial dimensions and covering numbers, see, for example, [12, 2]. The treatment given here,
working with Rademacher averages and bounds in terms of other complexity parameters, follows the
approach in [4]. Rademacher averages were introduced as complexity parameters in [18] and [5] indepen-
dently; see also [8]. Theorem 12 uses the same ideas as a corresponding result (for the case of L∗n = 0)
from [6]. For more refined conversions from online to batch problems, see, for example, [9].

The ideas and results of Section 4 are from [1], including the application (Theorems 13 and 14) of
the minmax theorem to express the value of the game in terms of the difference between conditional
risk minimizers and empirical risk minimizers. The proof of Theorem 18 was also in [1] (although
the conference version contained a mistake: Rademacher averages in place of sequential Rademacher
averages). The name “sequential Rademacher averages” was introduced in [25]. The example of linear
games in Section 4.4 uses ideas due to Kakade et. al. [17], together with the observation that their
elegant analysis of Rademacher averages of linear classes extends immediately to the case of sequential
Rademacher averages. Since these lectures were given, there have been several advances. The supremum
of the martingale process 5 that is central to the proof of Theorem 18 has been further studied in [26],
and its uniform convergence related to sequential versions of combinatorial dimensions and covering
numbers. All of these results give information about the value of the game, but do not immediately
lead to algorithms. However, by decomposing this value into the current contribution and the value-
to-go, dynamic programming immediately gives a strategy, albeit one that is typically computationally
intractable. By considering bounds on the value-to-go, [24] show how to derive many algorithms for
regret minimization. In some cases, the value-to-go can be calculated efficiently as a function of a
succinct summary of the history; examples include prediction in a Euclidean space [20], fixed design
linear regression [7], and online time series prediction [19].
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