Introduction to Time Series Analysis. Lecture 6. Peter Bartlett

Last lecture:

- 1. Causality
- 2. Invertibility
- 3. AR(p) models

Introduction to Time Series Analysis. Lecture 6. Peter Bartlett

- 1. Review: Causality, invertibility, AR(p) models
- 2. ARMA(p,q) models
- 3. Stationarity, causality and invertibility
- 4. The linear process representation of ARMA processes: ψ .

Review: Causality

A linear process $\{X_t\}$ is **causal** (strictly, a **causal function** of $\{W_t\}$) if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and
$$X_t = \psi(B)W_t$$
.

Review: Invertibility

A linear process $\{X_t\}$ is **invertible** (strictly, an **invertible** function of $\{W_t\}$) if there is a

$$\pi(B) = \pi_0 + \pi_1 B + \pi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\pi_j| < \infty$$

and
$$W_t = \pi(B)X_t$$
.

Review: AR(p), Autoregressive models of order p

An AR(p) process $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t,$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

Equivalently,
$$\phi(B)X_t = W_t$$
,
where $\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$.

Review: AR(p), Autoregressive models of order p

Theorem: A (unique) *stationary* solution to $\phi(B)X_t = W_t$ exists iff

$$|z| = 1 \implies \phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0.$$

This AR(p) process is causal iff

$$|z| \le 1 \Rightarrow \phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \ne 0.$$

Polynomials of a complex variable

Every degree p polynomial a(z) can be factorized as

$$a(z) = a_0 + a_1 z + \dots + a_p z^p = a_p (z - z_1)(z - z_2) \dots (z - z_p),$$

where $z_1, \ldots, z_p \in \mathbb{C}$ are called the roots of a(z). If the coefficients a_0, a_1, \ldots, a_p are all real, then the roots are all either real or come in complex conjugate pairs, $z_i = \bar{z}_j$.

Example:
$$z + z^3 = z(1 + z^2) = (z - 0)(z - i)(z + i)$$
, that is, $c = 1$, $z_1 = 0$, $z_2 = i$, $z_3 = -i$. So $z_1 \in \mathbb{R}$; $z_2, z_3 \notin \mathbb{R}$; $z_2 = \bar{z}_3$.

Recall notation: A complex number z = a + ib has Re(z) = a, Im(z) = b, $\bar{z} = a - ib$, $|z| = \sqrt{(a^2 + b^2)}$, $\text{arg}(z) = \tan^{-1}(b/a) \in (-\pi, \pi]$.

Introduction to Time Series Analysis. Lecture 6.

- 1. Review: Causality, invertibility, AR(p) models
- 2. Review: Calculating ψ for an AR(p) model
- 3. ARMA(p,q) models
- 4. Stationarity, causality and invertibility
- 5. The linear process representation of ARMA processes: ψ .

Calculating ψ for an AR(p): matching coefficients

Example:
$$X_t = \psi(B)W_t \Leftrightarrow (1 - 0.5B + 0.6B^2)X_t = W_t,$$

so $1 = \psi(B)(1 - 0.5B + 0.6B^2)$
 $\Leftrightarrow 1 = (\psi_0 + \psi_1 B + \psi_2 B^2 + \cdots)(1 - 0.5B + 0.6B^2)$
 $\Leftrightarrow 1 = \psi_0,$
 $0 = \psi_1 - 0.5\psi_0,$
 $0 = \psi_2 - 0.5\psi_1 + 0.6\psi_0,$
 $0 = \psi_3 - 0.5\psi_2 + 0.6\psi_1,$
:

Calculating ψ for an AR(p): example

$$\Leftrightarrow 1 = \psi_0, \quad 0 = \psi_j \quad (j \le 0),$$

$$0 = \psi_j - 0.5\psi_{j-1} + 0.6\psi_{j-2}$$

$$\Leftrightarrow 1 = \psi_0, \quad 0 = \psi_j \quad (j \le 0),$$

$$0 = \phi(B)\psi_j.$$

We can solve these *linear difference equations* in several ways:

- numerically, or
- by guessing the form of a solution and using an inductive proof, or
- by using the theory of linear difference equations.

Calculating ψ for an AR(p): general case

$$\phi(B)X_t = W_t, \qquad \Leftrightarrow \qquad X_t = \psi(B)W_t$$
so
$$1 = \psi(B)\phi(B)$$

$$\Leftrightarrow \qquad 1 = (\psi_0 + \psi_1 B + \cdots)(1 - \phi_1 B - \cdots - \phi_p B^p)$$

$$\Leftrightarrow \qquad 1 = \psi_0,$$

$$0 = \psi_1 - \phi_1 \psi_0,$$

$$0 = \psi_2 - \phi_1 \psi_1 - \phi_2 \psi_0,$$

$$\vdots$$

$$\Leftrightarrow \qquad 1 = \psi_0, \qquad 0 = \psi_j \qquad (j < 0),$$

$$0 = \phi(B)\psi_j.$$

Introduction to Time Series Analysis. Lecture 6.

- 1. Review: Causality, invertibility, AR(p) models
- 2. Review: Calculating ψ for an AR(p) model
- 3. ARMA(p,q) models
- 4. Stationarity, causality and invertibility
- 5. The linear process representation of ARMA processes: ψ .

ARMA(p,q): Autoregressive moving average models

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q},$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

- AR(p) = ARMA(p,0): $\theta(B) = 1$.
- MA(q) = ARMA(0,q): $\phi(B) = 1$.

ARMA processes

Can accurately approximate many stationary processes:

For any stationary process with autocovariance γ , and any k > 0, there is an ARMA process $\{X_t\}$ for which

$$\gamma_X(h) = \gamma(h), \qquad h = 0, 1, \dots, k.$$

ARMA(p,q): Autoregressive moving average models

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q},$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

Usually, we insist that $\phi_p, \theta_q \neq 0$ and that the polynomials

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p, \qquad \theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q$$

have no common factors. This implies it is not a lower order ARMA model.

ARMA(p,q): An example of parameter redundancy

Consider a white noise process W_t . We can write

$$X_{t} = W_{t}$$

$$\Rightarrow X_{t} - X_{t-1} + 0.25X_{t-2} = W_{t} - W_{t-1} + 0.25W_{t-2}$$

$$(1 - B + 0.25B^{2})X_{t} = (1 - B + 0.25B^{2})W_{t}$$

This is in the form of an ARMA(2,2) process, with

$$\phi(B) = 1 - B + 0.25B^2, \qquad \theta(B) = 1 - B + 0.25B^2.$$

But it is white noise.

ARMA(p,q): An example of parameter redundancy

ARMA model:
$$\phi(B)X_t = \theta(B)W_t,$$

with $\phi(B) = 1 - B + 0.25B^2,$
 $\theta(B) = 1 - B + 0.25B^2$
 $X_t = \psi(B)W_t$
 $\Leftrightarrow \qquad \psi(B) = \frac{\theta(B)}{\phi(B)} = 1.$

i.e., $X_t = W_t$.

Introduction to Time Series Analysis. Lecture 6.

- 1. Review: Causality, invertibility, AR(p) models
- 2. ARMA(p,q) models
- 3. Stationarity, causality and invertibility
- 4. The linear process representation of ARMA processes: ψ .

ARMA(p,q): Stationarity, causality, and invertibility

Theorem: If ϕ and θ have no common factors, a (unique) *stationary* solution to $\phi(B)X_t = \theta(B)W_t$ exists iff

$$|z| = 1 \Rightarrow \phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0.$$

This ARMA(p,q) process is causal iff

$$|z| \le 1 \Rightarrow \phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \ne 0.$$

It is invertible iff

$$|z| \le 1 \Rightarrow \theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \ne 0.$$

Recall: Causality and Invertibility

A linear process $\{X_t\}$ is **causal** if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \cdots$$

with $\sum_{j=0}^{\infty} |\psi_j| < \infty$ and $X_t = \psi(B)W_t$.

It is **invertible** if there is a

$$\pi(B) = \pi_0 + \pi_1 B + \pi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\pi_j| < \infty$$
 and $W_t = \pi(B)X_t$.

ARMA(p,q): Stationarity, causality, and invertibility

Example: $(1 - 1.5B)X_t = (1 + 0.2B)W_t$.

$$\phi(z) = 1 - 1.5z = -\frac{3}{2} \left(z - \frac{2}{3} \right),$$

$$\theta(z) = 1 + 0.2z = \frac{1}{5}(z+5).$$

- 1. ϕ and θ have no common factors, and ϕ 's root is at 2/3, which is not on the unit circle, so $\{X_t\}$ is an ARMA(1,1) process.
- **2.** ϕ 's root (at 2/3) is inside the unit circle, so $\{X_t\}$ is *not causal*.
- 3. θ 's root is at -5, which is outside the unit circle, so $\{X_t\}$ is *invertible*.

ARMA(p,q): Stationarity, causality, and invertibility

Example: $(1 + 0.25B^2)X_t = (1 + 2B)W_t$.

$$\phi(z) = 1 + 0.25z^2 = \frac{1}{4} (z^2 + 4) = \frac{1}{4} (z + 2i)(z - 2i),$$

$$\theta(z) = 1 + 2z = 2 \left(z + \frac{1}{2}\right).$$

- 1. ϕ and θ have no common factors, and ϕ 's roots are at $\pm 2i$, which is not on the unit circle, so $\{X_t\}$ is an ARMA(2,1) process.
- **2.** ϕ 's roots (at $\pm 2i$) are outside the unit circle, so $\{X_t\}$ is *causal*.
- 3. θ 's root (at -1/2) is inside the unit circle, so $\{X_t\}$ is not invertible.

Causality and Invertibility

Theorem: Let $\{X_t\}$ be an ARMA process defined by $\phi(B)X_t = \theta(B)W_t$. If all |z| = 1 have $\theta(z) \neq 0$, then there are polynomials $\tilde{\phi}$ and $\tilde{\theta}$ and a white noise sequence \tilde{W}_t such that $\{X_t\}$ satisfies $\tilde{\phi}(B)X_t = \tilde{\theta}(B)\tilde{W}_t$, and this is a causal, invertible ARMA process.

So we'll stick to causal, invertible ARMA processes.

Introduction to Time Series Analysis. Lecture 6.

- 1. Review: Causality, invertibility, AR(p) models
- 2. ARMA(p,q) models
- 3. Stationarity, causality and invertibility
- 4. The linear process representation of ARMA processes: ψ .

Calculating ψ for an ARMA(p,q): matching coefficients

Example:
$$X_t = \psi(B)W_t \Leftrightarrow (1 + 0.25B^2)X_t = (1 + 0.2B)W_t$$

so $1 + 0.2B = (1 + 0.25B^2)\psi(B)$
 $\Leftrightarrow 1 + 0.2B = (1 + 0.25B^2)(\psi_0 + \psi_1 B + \psi_2 B^2 + \cdots)$
 $\Leftrightarrow 1 = \psi_0,$
 $0.2 = \psi_1,$
 $0 = \psi_2 + 0.25\psi_0,$
 $0 = \psi_3 + 0.25\psi_1,$
 \vdots

Calculating ψ for an ARMA(p,q): example

$$\Leftrightarrow 1 = \psi_0, \quad 0.2 = \psi_1,$$

$$0 = \psi_j + 0.25\psi_{j-2}.$$

We can think of this as $\theta_j = \phi(B)\psi_j$, with $\theta_0 = 1$, $\theta_j = 0$ for j < 0, j > q.

This is a first order difference equation in the ψ_i s.

We can use the θ_j s to give the initial conditions and solve it using the theory of homogeneous difference equations.

$$\psi_j = \left(1, \frac{1}{5}, -\frac{1}{4}, -\frac{1}{20}, \frac{1}{16}, \frac{1}{80}, -\frac{1}{64}, -\frac{1}{320}, \ldots\right).$$

Calculating ψ for an ARMA(p,q): general case

$$\phi(B)X_t = \theta(B)W_t, \quad \Leftrightarrow \quad X_t = \psi(B)W_t$$
so
$$\theta(B) = \psi(B)\phi(B)$$

$$\Leftrightarrow \quad 1 + \theta_1 B + \dots + \theta_q B^q = (\psi_0 + \psi_1 B + \dots)(1 - \phi_1 B - \dots - \phi_p B^p)$$

$$\Leftrightarrow \quad 1 = \psi_0,$$

$$\theta_1 = \psi_1 - \phi_1 \psi_0,$$

$$\theta_2 = \psi_2 - \phi_1 \psi_1 - \dots - \phi_2 \psi_0,$$

$$\vdots$$

This is equivalent to $\theta_j = \phi(B)\psi_j$, with $\theta_0 = 1$, $\theta_j = 0$ for j < 0, j > q.

Introduction to Time Series Analysis. Lecture 6.

- 1. Review: Causality, invertibility, AR(p) models
- 2. ARMA(p,q) models
- 3. Stationarity, causality and invertibility
- 4. The linear process representation of ARMA processes: ψ .