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Review: Causality'

A linear procesq X; } is causal(strictly, acausal function
of {W,}) if there is a

$(B) = o + 1 B + 2B + -




Review: Invertibility I

A linear procesg X;} is invertible (strictly, aninvertible
function of {W,}) if there is a

7T<B):7TO+7TlB+7TQB2+"'




Review: AR(p), Autoregressive models of ordep'

An AR(p) process{ X, } is a stationary process that satisfies

Xe — 1 Xp—1 — - — QpXy—p = Wi,

where{W,} ~ WN(0, c?).

Equivalently, ¢(B)X; = W4,
where ¢(B)=1—¢p1B—---— ¢,B".




Review: AR(p), Autoregressive models of ordep'

Theorem: A (unique)stationarysolution top(B) X; = W;
exists iff

=1 = ¢(z) =1 — 1z — - — §p2" £0.

This AR(p) process isausaliff

2] S1= @(2) = 1= iz — - — §pa” #0.




‘ Polynomials of a complex variablﬂ

Every degree polynomiala(z) can be factorized as
a(z) =ap+aiz+---+apl =ap(z—21)(2 —22) - (2 — 2p),

wherezy, ..., z, € C are called the roots af(z). If the coefficients
ap,a1,...,a, are all real, then the roots are all either real or come in
complex conjugate pairs; = z;.

Example: z + 23 = z(1 + 2%) = (2 = 0)(z — @) (2 + 1),
that iS,C =1,21 =0,29 =1, 23 = —1. SOZl c R; 29,23 ¢ R; 2o = Z3.

Recall notation: A complex number= a + ib hasRe(z) = a, Im(z) = b,
z=a—1b, |z| = \/(a® +b?), arg(z) = tan~1(b/a) € (-, 7).
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‘ Calculating v for an AR(p): matching coefficients'

Example: X, = ¢(B)W, & (1 —-0.5B +0.6B%) X, = W,,
so 1=1(B)(1-05B+0.6B%)
& 1= (o + U1 B+ B +---)(1 —0.5B + 0.6B%)

< 1 = o,
0 =11 — 0.5,
0 =2 — 0.5¢1 + 0.6¢o,
0 = 15 — 0.5t + 0.6t}




Calculating v for an AR(p): example'

l=1o, 0=v; (1<0),
0=1; —0.5¢;1 +0.69 2

1 =1y, 0 =1 (4 <0),
0= o(B)y;.

We can solve thedeear difference equations several ways:

e numerically, or

e by guessing the form of a solution and using an inductive fpiao
e by using the theory of linear difference equations.
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‘ Calculating v for an AR(p): general casﬂ

¢(B) Xt = Wr, A
0 1=1(B)o(B)
< 1= (po+1B+---)1—¢B—--—¢,BP)
A 1 = 1o,
0 =11 — 1o,
0 =12 — ¢191 — Pa2tbo,

L=1o, 0=1v¢; (j<0),
0 = ¢(B)y;.
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‘ARMA(p,q): Autoregressive moving average model’

An ARMA(p,q) process{ X, } is a stationary process that
satisfies

Xi—1 Xy 1— = Qp Xy p =W +O W1+ - - +0, Wiy,

where{W,;} ~ WN(0, c?).

o AR(p) = ARMA(p,0): §(B) = 1.
e MA(q) = ARMA(0,q): ¢(B) = 1.
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‘ARMA processeﬂ

Can accurately approximate many stationary processes:

For any stationary process with autocovariancand anyk >
0, there is an ARMA procesEX; } for which

h=01,.... k.
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‘ARMA(p,q): Autoregressive moving average model’

An ARMA(p,q) process{ X, } is a stationary process that
satisfies

Xi—1 Xy 1— = Op Xy p =W +O W1+ - - +0, Wiy,

where{W,;} ~ WN(0, c?).

Usually, we insist thad,,, 0, # 0 and that the polynomials
¢(2)=1—r1z2— - — Pp2P, 0(z2) =14+01z2+--- 46,21

have no common factors. This implies it is not a lower ordeivdRkRmodel.
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ARMA(p,q): An example of parameter redundancy'

Consider a white noise proceHds. We can write

Xy =W,
Xt - Xt—l -+ 0.25Xt_2 — Wt - Wt_l + 0.25Wt_2
(1—-B+0.25B*)X,; = (1 - B+ 0.25B*W,

This is in the form of an ARMA(2,2) process, with

¢(B) =1— B+ 0.25B, 0(B)=1— B+ 0.25B.

But it is white noise.
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ARMA(p,q): An example of parameter redundancy'

ARMA model: = 0(B)W4,
with —1— B+ 0.25B%,
—1— B+ 0.25B%
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ARMA(p,q): Stationarity, causality, and invertibility

Theorem: If ¢ andf have no common factors, a (uniqsta-
tionary solution to¢p(B) X; = 0(B)W;
exists iff

2| =1 = ¢(2) =1—12— - — ¢p2P #0.
This ARMA(p,q) process isausaliff

2 <1 = d(z) =1 — iz — - — dpP £0.
It is invertibleiff

2| <1 =0(z)=1+012+---+0,27#0.
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Recall: Causality and Invertibility I

A linear procesq X;} is causalif there is a
(B) = o + 1B+ B + - -

Xt — w(B)Wt

It is invertible if there is a

7T<B):7T0—|—7TlB—|—7TQB2‘|‘°"

and W, =mn(B)X;.
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ARMA(p,q): Stationarity, causality, and invertibility

Example: (1 —-1.5B)X; = (1+0.2B)W4.

o(z) =1—1.5z = —g

1
H(z):1+0.2z:5(z+5).

1. ¢ andf have no common factors, ards root is at2 /3, which is not on
the unit circle, sd X} is an ARMA(1,1) process.

2. ¢'s root (at2/3) is inside the unit circle, s¢.X,} is not causal

3. #’s root is at—>5, which is outside the unit circle, SoX,} is invertible
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ARMA(p,q): Stationarity, causality, and invertibility

Example: (1 +0.25B%*)X; = (1 +2B)W;.

#(z) =1+0.252" = i (2" +4) = i(” 2)(z — 2i),

9(2):1+2z:2<z—|—%>.

1. ¢ andfd have no common factors, amds roots are at-2¢, which is not
on the unit circle, sq X;} is an ARMA(2,1) process.

2. ¢'s roots (at+2¢) are outside the unit circle, SoX; } is causal

3. #'s root (at—1/2) is inside the unit circle, s .X.} is not invertible
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‘Causality and Invertibility I

Theorem: Let {X;} be an ARMA process defined I
¢(B)X: = 0(B)W;. Ifall |z| = 1 haved(z) # 0, then there

are polynomialsy andf and a white noise sequentg, such
that { X, } satisfiesp(B)X, = 6(B)W,, and this is a causa
invertible ARMA process.

So we’ll stick to causal, invertible ARMA processes.
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‘ Calculating v for an ARMA(p,q): matching coefficients'

Example: X, = ¢(B)W, & (1+0.25B*)X, = (1+0.2B)WW,
so 1+0.2B = (1+0.25B*)y(B)
& 1+0.2B = (14 0.25B%)(¢g + Y1 B+ o B* + - )

& 1 = o,
0.2 = 1y,

0 = 1Py 4 0.257),

0 = 43 + 0.25¢1,
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‘Calculating y for an ARMA(p,q): example I

1 =1y, 0.2 = 1),
0= ¢j + 0.25¢j_2.
We can think of this a8; = ¢(B)vy;, withfy =1,0;, =0forj < 0,5 > q.

This is afirst order difference equatiom thev;s.

We can use thé;s to give the initial conditions and solve it using the theo
of homogeneous difference equations.

L),
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‘ Calculating vy for an ARMA(p,q): general case.

o(B) Xy =0(B)Wy, & Xy =9(B)W;
so  0(B) =v(B)¢(B)
< 1+60B+--+0,B'=(Yo+ 1B+ )(1—¢1B—---—¢,B")
& 1 = 1o,
01 = 11 — P10,
02 = o — P11 — - -+ — Patho,

This is equivalenttd; = ¢(B)w,, withfy, =1,60; =0forj <0, 5 > g.
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