Introduction to Time Series Analysis. Lecture 20.

1. Review: Spectral density estimation, sample autocasas.
2. The periodogram and sample autocovariance.

3. Asymptotics of the periodogram.




Estimating the Spectrum: Outline'

We have seen that the spectral density gives an alternaéweof
stationary time series.

Given a realizationrq, . . ., z,, of atime series, how can we estimate
the spectral density?

One approach: replaeg-) in the definition

fw)y= > ~(h)e ™",

h=—o0

with the sample autocovarianég-).

Another approach, called tlperiodogram: compute/ (v), the squared
modulus of the discrete Fourier transform (at frequenciesk /n).




‘Estimating the spectrum: Outline'

These two approaches adentical at the Fourier frequencies= k£ /n.

The asymptotic expectation of the periodogram) is f(v). We can
derive some asymptotic properties, and hence do hypottessisg.

Unfortunately, the asymptotic variance k) is constant.
It is not a consistent estimator ¢fv ).




‘ Review: Spectral density estimation I

If a time series {X;} has autocovariancey satisfying
S0 lv(h)] < oo, then we define itspectral density as

f(V): Z ,y(h)e—27riz/h

h=—o0

for —oo < v < .




‘ Review: Sample autocovari ance'

|dea: use the sample autocovariah¢e, defined by

n—|h|
Z (2pn) — T) (¢ — ), for —n < h < n,

t=1

1
n

as an estimate of the autocovariange), and then use

fy= 3 Amezmen

h=—n-+1

for—1/2 <v <1/2.




\ Discrete Fourier transform I

For a sequencer, ..., z,), define thaliscrete Fourier transform (DFT) as
(X (v9), X(v1),..., X (vn_1)), Where

1 < .
X(Vk) = % the—%ml/kt7
t=1

andv = k/n (fork =0,1,...,n — 1) are called théourier frequencies.
(Think of {v, : K =0,...,n — 1} as the discrete version of the frequency
rangev € [0, 1].)

First, let's show that we can view the DFT as a representatianin a
different basis, th&ourier basis.




\ Discrete Fourier transform '

Consider the spacé™ of vectors ofn complex numbers, with inner produc
(a,b) = a*b, wherea™ is the complex conjugate transpose of the vector
a e C".

Suppose thata s¢t; : 7 =0,1,...,n — 1} of n vectors inC™ are
orthonormal:

1 ifj =k,
0 otherwise.

<¢j7¢k> —

Then thesg ¢, } span the vector spadé”, and so for any vectat, we can
write x in terms of this new orthonormal basis,

n—1
xr = Z<¢], ZC>¢] (picture)

J=0




\ Discrete Fourier transform '

Consider the following set of vectors inC":

1 . . . /
_ 2miv; 2mi2v; 2miny; .
{ej——(e 7,e Tooo.,€ 9) ]

NG

It is easy to check that these vectors are orthonormal:

<6j7€k> Z 2mit(ve—v;) Z <627ri(k—j)/n>t

’

if j =k,

1
2ni(k—7)/n\n .
Le 2mi(k—j)/nL1=(e )" otherwise

1— e27T’L(k5 )/ n

\
,
1 if j =k,

0 otherwise,

\




\ Discrete Fourier transform '

where we have used the fact thtaf = > ' | o satisfies
aS, =S, +a"™! —aandsaS, = a(l —a™) /(1 —«a)fora # 1.

So we can represent the real vectoe (x1,...,x,)" € C™interms of this
orthonormal basis,

n—1 n—1

T = Z(ej,x>ej = ZX(Vj)ej.

7=0 7=0

That is, the vector of discrete Fourier transform coeffitsen
(X (vg),...,X(vyp—1)) is the representation afin the Fourier basis.




\ Discrete Fourier transform '

An alternative way to represent the DFT is by separatelyidensg the
real and imaginary parts,

X(l/j): ej,x) = Z —27mt1/3x

1
\/, Z cos(2mtv;)xy — _n tzzl sin(2ntv;)x

— Xc(Vj) —iXs(v)),

where this defines the sine and cosine transforfnsand X ., of .
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Periodogram I

The periodogram is defined as

I(v;) =

1 n
Xs(vj) = NG Zsin(27rtyj)a}t.
t=1
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Periodogram I

Sincel(v;) = | X (v;)|? for one of the Fourier frequencies = j/n (for
j=0,1,...,n — 1), the orthonormality of the; implies that we can write

*
n—1

> X (e

7=0
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Periodogram I

This is the discrete analog of the identity

1/2
=20 = [ L)

—1/2

(Think of I(v;) as the discrete version ¢{v) at the frequency,; = j/n,
and think of(1/n) >, - as the discrete version ¢f -dv.)

Vi
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‘ Estimating the spectrum: Periodogram I

Why is the periodogram at a Fourier frequency (thatis; v;) the same as
computingf(v) from the sample autocovariance?

Almost the same—they are not the sameg@at 0 whenz # 0.

But if eitherz = 0, or we consider a Fourier frequengy with
jed{l,...,n—1},...
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‘ Estimating the spectrum: Periodogram I

2 n 2

1 | 1
- E :6_27mt1/j33t — E :6—27mt1/j <xt . CZ’)
n n

t=1 =
1 n
= E :6—27mt1/3 xt . $ E : 27rzt1/3 th . Qj)
n

t=1

n—1

1 : .
_ Ze—sz(s—t)yj ($8 . 3_7)(3775 . j) _ ,3/(h)6—27rzhz/j7
n s,t h=—n-+1

where the fact that; # 0 implies> ;" , e~ *™i = ( (we showed this
when we were verifying the orthonormality of the Fourieriepkas
allowed us to subtract the sample mean in that case.
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Asymptotic properties of the periodogram I

We want to understand the asymptotic behavior of the peg@do/(v) at
a particular frequency, asn increases. We'll see that its expectation
converges tg (v).

We’'ll start with a simple example: Suppose tiét, . . ., X,, are
i.i.d. N(0,0?) (Gaussian white noise). From the definitions,

1 n
Xc(v;) = \F Zcos 2ty )xy, Xo(vj) = NG Zsin(thz/j)xt,
t=1

we have thatX.(v;) and X (v;) are normal, with

EX.(v;) = EX(v;) = 0.
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Asymptotic properties of the periodogram I

Z cos? 27rtyt7

02 &
= — Y (cos(dmtr;)+1) = —
2n

t=1

Similarly, Var( X (v;)) = o2%/2.
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Asymptotic properties of the periodogram I

Cov(X.(v;), Xs(v;)) = % ZCOS(27Tth) sin(2mtv;)

t=1

Cov(X.(v;
Cov( X, (
Cov( X (

foranyj # k.
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Asymptotic properties of the periodogram I

Thatis, if X1,..., X, are i.i.d.N(0, o?)
(Gaussian white nois€f(v) = o), then theX.(v;) and X (v, ) are all
i.i.d. N(0,07%/2). Thus,

2 2

;I(Vj) = (X2 () + XZ(15)) ~ x5
So for the case of Gaussian white noise, the periodogram tlaissgiuared
distribution that depends on the varianrce(which, in this case, is the
spectral density).
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Asymptotic properties of the periodogram I

Under more general conditions (e.g., norfual, }, or linear proces$.X; }
with rapidly decaying ACF), th&.(v;), Xs(v;) are all asymptotically
independent andV (0, f(v;)/2).

Consider a frequency. For a given value of, let (™) be the closest
Fourier frequency (that ig;(™) = j /n for a value ofj that minimizes

v — j/n|). Asn increasesy™ — v, and (under the same conditions that
ensure the asymptotic normality and independence of tle¢caiaine
transforms) f (7(™) — f(v). (pcture)

In that case, we have

2
fw)

(0" =
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Asymptotic properties of the periodogram I

fv) 3

El(7") = = E (— (Xg(a<”>) + Xg(aw)))

)
- Wz 4 2) = jo).

whereZ,, Z, are independenv (0, 1). Thus, the periodogram is
asymptotically unbiased.
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Asymptotic properties of the periodogram I

Since we know its asymptotic distribution (chi-squaredg,aan compute
approximate confidence intervals:

Pr{ ;05 160™) > (@) |

where the cdf of a3 at y5(a) is1 — . Thus,

21 (™) 21 (™) .
P"{X%m/m <IW= 2 —a/2>} Lo
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‘ Asymptotic properties of the periodogram: Consistency I

Unfortunately, Vafl (v(™)) — f(v)?Var(Z? + Z2)/4, whereZ,, Z, are
1.i.d. N(0,1), that is, the variance approaches a constant.

Thus,I (™) is not a consistent estimator ¢fv). In particular, if
f(v) > 0, then fore > 0, asn increases,

Pr {|I(19(”)) — f(l/)| > e}

approaches a constant.
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‘ Asymptotic properties of the periodogram: Consistency I

This means that the approximate confidence intervals weroata
typically wide.

The source of the difficulty is that, asincreases, we have additional data

(then values ofx;), but we use it to estimate additional independent
random variables, (the independent values of.(v;), Xs(v;)).

How can we reduce the variance? The typical approach is ragee
Independent observations. In this case, we can take angavefdnearby”
values of the periodogram, and hope that the spectral geatsite
frequency of interest and at those nearby frequencies witlbse.
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