
Introduction to Time Series Analysis. Lecture 20.

1. Review: Spectral density estimation, sample autocovariance.

2. The periodogram and sample autocovariance.

3. Asymptotics of the periodogram.
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Estimating the Spectrum: Outline

• We have seen that the spectral density gives an alternative view of

stationary time series.

• Given a realizationx1, . . . , xn of a time series, how can we estimate

the spectral density?

• One approach: replaceγ(·) in the definition

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh,

with the sample autocovarianceγ̂(·).

• Another approach, called theperiodogram: computeI(ν), the squared

modulus of the discrete Fourier transform (at frequenciesν = k/n).
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Estimating the spectrum: Outline

• These two approaches areidentical at the Fourier frequenciesν = k/n.

• The asymptotic expectation of the periodogramI(ν) is f(ν). We can

derive some asymptotic properties, and hence do hypothesistesting.

• Unfortunately, the asymptotic variance ofI(ν) is constant.

It is not a consistent estimator off(ν).
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Review: Spectral density estimation

If a time series {Xt} has autocovarianceγ satisfying
∑∞

h=−∞ |γ(h)| < ∞, then we define itsspectral density as

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν < ∞.
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Review: Sample autocovariance

Idea: use the sample autocovarianceγ̂(·), defined by

γ̂(h) =
1

n

n−|h|
∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n,

as an estimate of the autocovarianceγ(·), and then use

f̂(ν) =

n−1
∑

h=−n+1

γ̂(h)e−2πiνh

for −1/2 ≤ ν ≤ 1/2.
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Discrete Fourier transform

For a sequence(x1, . . . , xn), define thediscrete Fourier transform (DFT) as

(X(ν0), X(ν1), . . . , X(νn−1)), where

X(νk) =
1√
n

n
∑

t=1

xte
−2πiνkt,

andνk = k/n (for k = 0, 1, . . . , n − 1) are called theFourier frequencies.

(Think of {νk : k = 0, . . . , n − 1} as the discrete version of the frequency

rangeν ∈ [0, 1].)

First, let’s show that we can view the DFT as a representationof x in a

different basis, theFourier basis.
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Discrete Fourier transform

Consider the spaceCn of vectors ofn complex numbers, with inner product
〈a, b〉 = a∗b, wherea∗ is the complex conjugate transpose of the vector
a ∈ Cn.

Suppose that a set{φj : j = 0, 1, . . . , n − 1} of n vectors inC
n are

orthonormal:

〈φj , φk〉 =







1 if j = k,

0 otherwise.

Then these{φj} span the vector spaceCn, and so for any vectorx, we can
write x in terms of this new orthonormal basis,

x =

n−1
∑

j=0

〈φj , x〉φj . (picture)
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Discrete Fourier transform

Consider the following set ofn vectors inCn:
{

ej =
1√
n

(

e2πiνj , e2πi2νj , . . . , e2πinνj
)′

: j = 0, . . . , n − 1

}

.

It is easy to check that these vectors are orthonormal:

〈ej , ek〉 =
1

n

n
∑

t=1

e2πit(νk−νj) =
1

n

n
∑

t=1

(

e2πi(k−j)/n
)t

=







1 if j = k,
1
ne2πi(k−j)/n 1−(e2πi(k−j)/n)n

1−e2πi(k−j)/n otherwise

=







1 if j = k,

0 otherwise,
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Discrete Fourier transform

where we have used the fact thatSn =
∑n

t=1 αt satisfies

αSn = Sn + αn+1 − α and soSn = α(1 − αn)/(1 − α) for α 6= 1.

So we can represent the real vectorx = (x1, . . . , xn)′ ∈ Cn in terms of this

orthonormal basis,

x =
n−1
∑

j=0

〈ej , x〉ej =
n−1
∑

j=0

X(νj)ej .

That is, the vector of discrete Fourier transform coefficients

(X(ν0), . . . , X(νn−1)) is the representation ofx in the Fourier basis.
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Discrete Fourier transform

An alternative way to represent the DFT is by separately considering the

real and imaginary parts,

X(νj) = 〈ej , x〉 =
1√
n

n
∑

t=1

e−2πitνjxt

=
1√
n

n
∑

t=1

cos(2πtνj)xt − i
1√
n

n
∑

t=1

sin(2πtνj)xt

= Xc(νj) − iXs(νj),

where this defines the sine and cosine transforms,Xs andXc, of x.
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Periodogram

The periodogram is defined as

I(νj) = |X(νj)|2

=
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνjxt

∣

∣

∣

∣

∣

2

= X2
c (νj) + X2

s (νj).

Xc(νj) =
1√
n

n
∑

t=1

cos(2πtνj)xt,

Xs(νj) =
1√
n

n
∑

t=1

sin(2πtνj)xt.
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Periodogram

SinceI(νj) = |X(νj)|2 for one of the Fourier frequenciesνj = j/n (for

j = 0, 1, . . . , n − 1), the orthonormality of theej implies that we can write

x∗x =





n−1
∑

j=0

X(νj)ej





∗



n−1
∑

j=0

X(νj)ej





=
n−1
∑

j=0

|X(νj)|2 =
n−1
∑

j=0

I(νj).

For x̄ = 0, we can write this as

σ̂2
x =

1

n

n
∑

t=1

x2
t =

1

n

n−1
∑

j=0

I(νj).
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Periodogram

This is the discrete analog of the identity

σ2
x = γx(0) =

∫ 1/2

−1/2

fx(ν) dν.

(Think of I(νj) as the discrete version off(ν) at the frequencyνj = j/n,

and think of(1/n)
∑

νj
· as the discrete version of

∫

ν
·dν.)
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Estimating the spectrum: Periodogram

Why is the periodogram at a Fourier frequency (that is,ν = νj) the same as

computingf(ν) from the sample autocovariance?

Almost the same—they are not the same atν0 = 0 whenx̄ 6= 0.

But if eitherx̄ = 0, or we consider a Fourier frequencyνj with

j ∈ {1, . . . , n − 1}, . . .

14



Estimating the spectrum: Periodogram

I(νj) =
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνjxt

∣

∣

∣

∣

∣

2

=
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνj (xt − x̄)

∣

∣

∣

∣

∣

2

=
1

n

(

n
∑

t=1

e−2πitνj (xt − x̄)

)(

n
∑

t=1

e2πitνj (xt − x̄)

)

=
1

n

∑

s,t

e−2πi(s−t)νj (xs − x̄)(xt − x̄) =
n−1
∑

h=−n+1

γ̂(h)e−2πihνj ,

where the fact thatνj 6= 0 implies
∑n

t=1 e−2πitνj = 0 (we showed this

when we were verifying the orthonormality of the Fourier basis) has

allowed us to subtract the sample mean in that case.
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Asymptotic properties of the periodogram

We want to understand the asymptotic behavior of the periodogramI(ν) at

a particular frequencyν, asn increases. We’ll see that its expectation

converges tof(ν).

We’ll start with a simple example: Suppose thatX1, . . . , Xn are

i.i.d. N(0, σ2) (Gaussian white noise). From the definitions,

Xc(νj) =
1√
n

n
∑

t=1

cos(2πtνj)xt, Xs(νj) =
1√
n

n
∑

t=1

sin(2πtνj)xt,

we have thatXc(νj) andXs(νj) are normal, with

EXc(νj) = EXs(νj) = 0.
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Asymptotic properties of the periodogram

Also,

Var(Xc(νj)) =
σ2

n

n
∑

t=1

cos2(2πtνj)

=
σ2

2n

n
∑

t=1

(cos(4πtνj) + 1) =
σ2

2
.

Similarly, Var(Xs(νj)) = σ2/2.
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Asymptotic properties of the periodogram

Also,

Cov(Xc(νj), Xs(νj)) =
σ2

n

n
∑

t=1

cos(2πtνj) sin(2πtνj)

=
σ2

2n

n
∑

t=1

sin(4πtνj) = 0,

Cov(Xc(νj), Xc(νk)) = 0

Cov(Xs(νj), Xs(νk)) = 0

Cov(Xc(νj), Xs(νk)) = 0.

for anyj 6= k.
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Asymptotic properties of the periodogram

That is, ifX1, . . . , Xn are i.i.d.N(0, σ2)

(Gaussian white noise;f(ν) = σ2), then theXc(νj) andXs(νj) are all

i.i.d. N(0, σ2/2). Thus,

2

σ2
I(νj) =

2

σ2

(

X2
c (νj) + X2

s (νj)
)

∼ χ2
2.

So for the case of Gaussian white noise, the periodogram has achi-squared

distribution that depends on the varianceσ2 (which, in this case, is the

spectral density).
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Asymptotic properties of the periodogram

Under more general conditions (e.g., normal{Xt}, or linear process{Xt}
with rapidly decaying ACF), theXc(νj), Xs(νj) are all asymptotically

independent andN(0, f(νj)/2).

Consider a frequencyν. For a given value ofn, let ν̂(n) be the closest

Fourier frequency (that is,̂ν(n) = j/n for a value ofj that minimizes

|ν − j/n|). As n increases,̂ν(n) → ν, and (under the same conditions that

ensure the asymptotic normality and independence of the sine/cosine

transforms),f(ν̂(n)) → f(ν). (picture)

In that case, we have

2

f(ν)
I(ν̂(n)) =

2

f(ν)

(

X2
c (ν̂(n)) + X2

s (ν̂(n))
)

d→ χ2
2.
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Asymptotic properties of the periodogram

Thus,

EI(ν̂(n)) =
f(ν)

2
E

(

2

f(ν)

(

X2
c (ν̂(n)) + X2

s (ν̂(n))
)

)

→ f(ν)

2
E(Z2

1 + Z2
2 ) = f(ν),

whereZ1, Z2 are independentN(0, 1). Thus, the periodogram is

asymptotically unbiased.
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Asymptotic properties of the periodogram

Since we know its asymptotic distribution (chi-squared), we can compute

approximate confidence intervals:

Pr

{

2

f(ν)
I(ν̂(n)) > χ2

2(α)

}

→ α,

where the cdf of aχ2
2 atχ2

2(α) is 1 − α. Thus,

Pr

{

2I(ν̂(n))

χ2
2(α/2)

≤ f(ν) ≤ 2I(ν̂(n))

χ2
2(1 − α/2)

}

→ 1 − α.
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Asymptotic properties of the periodogram: Consistency

Unfortunately, Var(I(ν̂(n))) → f(ν)2Var(Z2
1 + Z2

2 )/4, whereZ1, Z2 are

i.i.d. N(0, 1), that is, the variance approaches a constant.

Thus,I(ν̂(n)) is not a consistent estimator off(ν). In particular, if

f(ν) > 0, then forǫ > 0, asn increases,

Pr
{∣

∣

∣I(ν̂(n)) − f(ν)
∣

∣

∣ > ǫ
}

approaches a constant.
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Asymptotic properties of the periodogram: Consistency

This means that the approximate confidence intervals we obtain are

typically wide.

The source of the difficulty is that, asn increases, we have additional data

(then values ofxt), but we use it to estimate additional independent

random variables, (then independent values ofXc(νj), Xs(νj)).

How can we reduce the variance? The typical approach is to average

independent observations. In this case, we can take an average of “nearby”

values of the periodogram, and hope that the spectral density at the

frequency of interest and at those nearby frequencies will be close.
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