Introduction to Time Series Analysis. Lecture 19.

. Review: Spectral density, rational spectra.
. Linear filters.

. Frequency response of linear filters.

. Spectral estimation

. Sample autocovariance

. Discrete Fourier transform and the periodogram




Review: Spectral densitﬂ

If a time series {X;} has autocovariancey satisfying
> oo |v(h)] < oo, then we define itspectral densityas

f(V): Z ,y(h)e—27riz/h

h=—o0

for —oo < v < co. We have
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‘ Review: Rational spectre'

For a linear time series with? A(oc) polynomial,

2

fv)=oy | (™).
If it is an ARMA(p,q), we have

wherez, ..., z, are the zeros (roots (ﬁf(z))
andpy,...,p, are the poles (roots af(z)).




Time-invariant linear filters '

A filter is an operator; given a time seri€¢X; }, it maps to a time series
{Y;}. We can think of a linear process; = Z;?io y;Wy_; as the output of
acausal linear filterwith a white noise input.

A time series|Y; } is the output of a linear filter
A=A{a;:t,j€Z}withinput{X,} if

oo

Y;: Z at,ij.

j=—o0

If a;,—; Is independent of (a;:—; = 1;), then we say that th
filter is time-invariant
If ¢, = 0 for j < 0, we say the filter) is causal

We’'ll see that the name ‘filter’ arises from the frequency @amviewpoint.




‘Time-invariant linear filters: Examples I

1. Y, = X_, is linear, but not time-invariant.

2. Y; = £(X4—1 + Xt + Xy¢41) is linear, time-invariant, but not causal:

if 7] <1,

1
0=
S

otherwise.

3. For polynomialss(B), 8( B) with roots outside the unit circle,
Y(B) = 0(B)/¢(B) is a linear, time-invariant, causal filter.




Time-invariant linear filters I

The operation

Z Vi Xe—j

j=—00

IS called theconvolutionof X with .




Time-invariant linear filters '

The sequence is also called thempulse responseince the outpufY; } of
the linear filter in response toumit impulse,

1 ift=0,

0 otherwise,

X =

Vi =v(B)X; = Z Vi Xi—j = Py

j=—00




‘ Frequency response of a time-invariant linear fiIterI

Suppose that X;} has spectral densitf,. (v) and is stable that is,
> 2 o [t5] < oo. ThenY; = ¢(B) X, has spectral density

fo () = [ (™) | fo ().

The functionv — 1 (e*™") (the polynomiak)(z) evaluated on the unit
circle) is known as thérequency responsa transfer functiorof the linear
filter.

The squared modulus,+— [1)(e?™)|? is known as th@ower transfer
functionof the filter.




‘ Frequency response of a time-invariant linear fiIterI

For stabley, Y; = ¢(B) X, has spectral density

f,0) = [ ()| o).

We have seen that a linear procegs= (B) W3, is a special case, since
fy) = [9(e™) 2o, = [Y(e*™)[* fu (v).
When we pass a time seri¢X; } through a linear filter, the spectral densit

IS multiplied, frequency-by-frequency, by the squared alosl of the
frequency responser |y (e?™)|2.

This is a version of the equality VarX) = a*Var(X), but the equality is
true for the component of the variance at every frequency.

This is also the origin of the name filter.’




Frequency response of a filter: Detailj

Why is fy(y) — [y () |* f.(v)? First,

vy(h) =E Z Vi Xt Z Ve Xtth—k

j_—OO k=—o0

Z V; Z VrE [ Xt n—k Xt

J=—00 k=—o0

Z % Z wkﬂ/a: h+]_ Z % Z ¢h+] l')/a:

Jj=—00 k=—o0 J=—00 l=—o0

Itis easy to check thadt = || < ocoand) ;” |v.(h)| < ooimply
thatd >~ __ |y, (h)] < oo. Thus, the spectral density gfis defined.
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Frequency response of a filter: Detailj

DD W Y tnga (e

h=—oc0 j=—00 l=—00

o0
27T’I,U —27T7jul —2miv(h+7—1
E % g E ’7:1: § wh—hf—le miv(hti=1)

Jj=—00 [=—o0 h=—o0

_w 277@1/3 fm Z w 6—27T’I,Uh

h——oo

= |(2™™)|* fo(v)
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‘FWequencyresponse:Exanuﬂe'

For a linear process; = ¢(B)Wy, f,(v) = |¢ (™) ]2 o2
For an ARMA modely(B) = 0(B)/¢(B), so{Y;} has the rational

spectrum

2

9(6—271'2'1/)
¢ (6—27ri1/)
2 q —2miv )
_ o0l e —
— Tw o —2miv |2
pr Hj:l e — Dyl
wherep; andz; are the poles and zeros of the rational function

2= 0(2)/9(2).

fy(V) :O-’?U

‘ 2
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‘ Frequency response: Example'

Consider the moving average

This is a time invariant linear filter (but it is not causalp transfer function

IS the Dirichlet kernel

k

—2miv 1 —2migv
Y(e *™) = Dy (27v) 1 Z e 2T
j=—k

1 if v =0,

sin(27w(k+1/2)v)

(2k+1) sin(7v) otherwise.
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Example: Moving average'

Transfer function of moving average (k=5)

14



Example: Moving average'

Squared modulus of transfer function of moving average (k=5)
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This is alow-pass filter It preserves low frequencies and diminishes hig
frequencies. It is often used to estimate a monotonic tremtgpbonent of a
series.
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Example: Differencing'

Consider the first difference
Y; = (1 — B)X;.

This Is a time invariant, causal, linear filter.

Its transfer function is

w(e—Qij) —1— 6—277@'1/7

SO |Y(e *™)|? = 2(1 — cos(2mv)).
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Example: Differencing'

Transfer function of first difference
T

This is ahigh-pass filter It preserves high frequencies and diminishes lo
frequencies. It is often used to eliminate a trend compookatseries.
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Estimating the Spectrum: Outline'

We have seen that the spectral density gives an alternaéweof
stationary time series.

Given a realizationrq, . . ., z,, of atime series, how can we estimate
the spectral density?

One approach: replaeg-) in the definition

fw)y= > ~(h)e ™",

h=—o0

with the sample autocovarianég-).

Another approach, called tlperiodogram compute/ (v), the squared
modulus of the discrete Fourier transform (at frequenciesk /n).
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‘ Estimating the spectrum: Outline'

These two approaches adenticalat the Fourier frequencies= k /n.

The asymptotic expectation of the periodogram) is f(v). We can
derive some asymptotic properties, and hence do hypottessisg.

Unfortunately, the asymptotic variance i) is constant.
It is not a consistent estimator ¢fv ).

We can reduce the variance by smoothing the periodogramra@ing
over adjacent frequencies. If we average over a narroweeras
n — oo, We can obtain a consistent estimator of the spectral densit
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Estimating the spectrum: Sample autocovarianc’

ldea: use the sample autocovariari¢e, defined by

n—|h|
Z (2 n) — T) (2 — ), for —n < h < n,

t=1

1
n

as an estimate of the autocovariange), and then use a sample version of

fw)y= > ~(h)e ™",

h=—o0

Thatis, for—1/2 < v < 1/2, estimatef (v) with
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‘ Estimating the spectrum: Periodogram'

Another approach to estimating the spectrum is called thegagram. It
was proposed in 1897 by Arthur Schuster (at Owens Collegehwater
became part of the University of Manchester), who used myestigate
periodicity in the occurrence of earthquakes, and in suresglovity.

Arthur Schuster, “On Lunar and Solar Periodicities of Equidkes,Proceedings of
the Royal Society of Londp¥ol. 61 (1897), pp. 455-465.

To define the periodogram, we need to introducediserete Fourier
transformof a finite sequence., ..., x,.
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