Introduction to Time Series Analysis. Lecture17.

1. Spectral density: Facts and examples.
2. Spectral distribution function.

3. Wold’s decomposition.




A periodictimeseries'

Consider

Xy = Asin(2nvt) + B cos(2mut)
= C'sin(2nvt 4 ¢),

whereA, B are uncorrelated, mean zero, varianée= 1, and
C? = A%? + B?,tan¢ = B/A. Then

1 = E[X,] = 0
v(t,t + h) = cos(2mrh).

So{X,} is stationary.




An aside: Sometrigonometric identities'

sin 6
tan 0 = :
cos 6

sin® @ + cos® 6 = 1,

sin(a + b) = sina cos b + cos asin b,

cos(a 4+ b) = cosacosb — sinasin b.




A periodictimeseries'

For X; = Asin(2nvt) + B cos(2wvt), with uncorrelated, B
(mean 0, variance?), y(h) = o2 cos(2mvh).

The autocovariance of the sum of two uncorrelated time s&ithe sum of
their autocovariances. Thus, the autocovariance of a suandbm
sinusoids is a sum of sinusoids with the corresponding fagues:

k
X Z (A; sin(27v;t) + B, cos(2mv,t))
=1

2
0} cos(2mv;h),
=1

whereA;, B; are uncorrelated, mean zero, and (Vi) = Var(B;) = o7.




A periodictimeseries'

k
Z jsin(2mv;t) + B, cos(2mvy;t)) Za cos(2mv;h)

Thus, we can representh) using a Fourier series. The coefficients are thg
variances of the sinusoidal components.

The gpectral density is the continuous analog: the Fourier transformy of

(The analogouspectral representation of a stationary procesk; involves

a stochastic integral—a sum of discrete components at a finite number of
frequencies is a special case. We won't consider this reptagon in this
course.)




Spectral density'

If a time series {X;} has autocovariancey satisfying
S0 lv(h)] < oo, then we define itspectral density as

f(V): Z ,y(h)e—27riz/h

h=—o0

for —oo < v < .




‘Spectral density: Somefacts'

1. We haved ;2 |y(h)e ?™"| < oo
This is becausg®| = | cos 6 + isin 6| = (cos? 6 + sin” 6)V/2 = 1,

and because of the absolute summability of
. f Is periodic, with period.
This is true since 27" is a periodic function of with period1.

Thus, we can restrict the domain pto —1/2 < v < 1/2. (The text
does this.)




‘Spectral density: Somefacts'

3. fiseven (thatisf(v) = f(—v)).
To see this, write




‘Spectral density: Somefacts'

1/2 |
/ e%“’hf(z/) dv.

—1/2

oo

1/2 1/2
627Tzuhf :/ Z —2miv(j— h) )d

—1/2 1/2 ;2"

1/2

e—27‘r’il/(j—h) dv
—1/2

v(j) ( ri(i—h) —wi('—h))
h j—h) _ J
)+ Z omi(j — h) \" c

_|_ny sin(w(j — h)) — (),

j#h —h)




‘Example: White noise'

For white noise{1/; }, we have seen that(0) = o2 and~(h) = 0 for
h 0.

Thus,

fW)= Y A(h)e >

h=—o0

=(0) = oy,

That is, the spectral density is constant across all fregjgeneach
frequency in the spectrum contributes equally to the vamaithis is the
origin of the nameavhite noise: it is like white light, which is a uniform
mixture of all frequencies in the visible spectrum.
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‘ Example: AR(1) I

For X; = ¢1 Xy 1 + W;, we have seen that(h) = o2 (b'h'/(l — @%). Thus,

fv)

. @)

- . ]
—2mivh h| —2mivh
E ’Y(h)e — 1 €

h=—o0

2

_ — ¢2 (1 4+ Z(/bl —2mivh 4+ 27m'1/h)>
2

6—27rzz/ 627Tz'1/
(1+ ¢1 R )

1 — ¢1€—27mz/ 1 — ¢1€27rzz/

1 — ¢16—27m'1/¢1627m'u

T (1= ¢2) (1= dre2m)(1 — Gre2mv)

w

T 1o 2¢1 cos(2mv) + @2
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‘ Examples'

White noise:{W;}, v(0) = o2 and~(h) = 0 for h # 0.
f(v) =~(0) = o3,
AR(L): X; = d1Xoo1 + Wi, 7(h) = 0%y /(1= 67),

f<V) — 124, cos?%ru)—i—gb%'
If »1 > 0 (positive autocorrelation), spectrum is dominated by low
frequency components—smooth in the time domain.

If 1 < 0 (negative autocorrelation), spectrum is dominated by high
frequency components—rough in the time domain.
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Example: AR(1)

Spectral density of AR(1): Xt =+0.9 Xt_l + Wt

| |

0.3 0.4
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Example: AR(1)

Spectral density of AR(1): Xt =-0.9 Xt_l + Wt

| Il

0.1 0.2
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Example: MA(1) I

Xt — Wt —|— 91Wt_1.

(62(1+62) if h=0,
v(h) = { 026, if |h| = 1,

w

L0 otherwise.

1

fw)y= > ~(h)e ™"

h=—1
= v(0) + 2v(1) cos(27v)

= oo (1 + 607 + 20, cos(27v)) .

w
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Example: MA(1) I

Xe =W +01Wi_y.
f(v) = o5, (14 67 + 26, cos(2nv)) .

If 6; > 0 (positive autocorrelation), spectrum is dominated by low
frequency components—smooth in the time domain.
If 6, < 0 (negative autocorrelation), spectrum is dominated by high

frequency components—rough in the time domain.
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Example: MA(1)

Spectral density of MA(1): Xt = Wt +0.9 Wt_l

0.1 0.2 0.3 0.4
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Example: MA(1)

Spectral density of MA(1): Xt = Wt -0.9 Wt_l

0.1 0.2 0.3 0.4
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Recall: A periodictimeseries'

X = Z (A, sin(27v;t) + B, cos(2mv;t))

(A2 + B2)'/?sin(2mv;t + tan™ ' (B;/A;)).

- cos(2mvjh)
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‘ Discrete spectral distribution function I

For X; = Asin(2w\t) + B cos(2mAt), we havey(h) = o2 cos(2n\h), and
we can write

1/2 |
W)= [ emitap),

—1/2
wherefF' is the discrete distribution

’

0 If v < =),
If -\ < v <),

otherwise.
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The gpectral distribution function I

For any stationary X, } with autocovariance, we can write

1/2 |
W)= [ emitap),
—1/2

whereF' is thespectral distribution function of { X, }.

We can splitF” into three components: discrete, continuous, and singular
If v is absolutely summablé is continuousdF'(v) = f(v)dv.

If vis a sum of sinusoiddg;’ is discrete.
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The spectral distribution function I

For X; = Z;?:l (A, sin(2mv,t) + B, cos(2mv;t)), the spectral distribution

function isF(v) = Zle 05 F;(v), where
(0 ifv< -

Fi(v) =935 iIf —v; <v <y,

1
2
\ 1 otherwise.
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Wold’s decomposition'

Notice thatX; = Z?Zl (A, sin(27v;t) + B, cos(2mv;t)) is deterministic

(once we've seen the past, we can predict the future withoai)e

Wold showed that every stationary process can be represaste

X, = x4+ x™,

whereXt(d> IS purely deterministic andt(m IS purely nondeterministic.
(c.f. the decomposition of a spectral distribution funotasF (4 + F(c) )

Example: X; = Asin(2w\t) + % £
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