Introduction to Time Series Analysis. Lecture 17.

- 1. Spectral density: Facts and examples.
- 2. Spectral distribution function.
- 3. Wold's decomposition.

A periodic time series

Consider

$$X_t = A\sin(2\pi\nu t) + B\cos(2\pi\nu t)$$
$$= C\sin(2\pi\nu t + \phi),$$

where A,B are uncorrelated, mean zero, variance $\sigma^2=1$, and $C^2=A^2+B^2$, $\tan\phi=B/A$. Then

$$\mu_t = E[X_t] = 0$$
$$\gamma(t, t+h) = \cos(2\pi\nu h).$$

So $\{X_t\}$ is stationary.

An aside: Some trigonometric identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta},$$

$$\sin^2 \theta + \cos^2 \theta = 1,$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b,$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b.$$

A periodic time series

For $X_t = A \sin(2\pi\nu t) + B \cos(2\pi\nu t)$, with uncorrelated A, B (mean 0, variance σ^2), $\gamma(h) = \sigma^2 \cos(2\pi\nu h)$.

The autocovariance of the sum of two uncorrelated time series is the sum of their autocovariances. Thus, the autocovariance of a sum of random sinusoids is a sum of sinusoids with the corresponding frequencies:

$$X_{t} = \sum_{j=1}^{k} (A_{j} \sin(2\pi\nu_{j}t) + B_{j} \cos(2\pi\nu_{j}t)),$$

$$\gamma(h) = \sum_{j=1}^{\kappa} \sigma_j^2 \cos(2\pi\nu_j h),$$

where A_j, B_j are uncorrelated, mean zero, and $Var(A_j) = Var(B_j) = \sigma_j^2$.

A periodic time series

$$X_t = \sum_{j=1}^k (A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t)), \quad \gamma(h) = \sum_{j=1}^k \sigma_j^2 \cos(2\pi\nu_j h).$$

Thus, we can represent $\gamma(h)$ using a Fourier series. The coefficients are the variances of the sinusoidal components.

The *spectral density* is the continuous analog: the Fourier transform of γ .

(The analogous spectral representation of a stationary process X_t involves a stochastic integral—a sum of discrete components at a finite number of frequencies is a special case. We won't consider this representation in this course.)

Spectral density

If a time series $\{X_t\}$ has autocovariance γ satisfying $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$, then we define its **spectral density** as

$$f(\nu) = \sum_{h=-\infty}^{\infty} \gamma(h)e^{-2\pi i\nu h}$$

for $-\infty < \nu < \infty$.

Spectral density: Some facts

- 1. We have $\sum_{h=-\infty}^{\infty} \left| \gamma(h) e^{-2\pi i \nu h} \right| < \infty$. This is because $|e^{i\theta}| = |\cos \theta + i \sin \theta| = (\cos^2 \theta + \sin^2 \theta)^{1/2} = 1$, and because of the absolute summability of γ .
- 2. f is periodic, with period 1. This is true since $e^{-2\pi i\nu h}$ is a periodic function of ν with period 1. Thus, we can restrict the domain of f to $-1/2 \le \nu \le 1/2$. (The text does this.)

Spectral density: Some facts

3. f is even (that is, $f(\nu) = f(-\nu)$). To see this, write

$$f(\nu) = \sum_{h=-\infty}^{-1} \gamma(h)e^{-2\pi i\nu h} + \gamma(0) + \sum_{h=1}^{\infty} \gamma(h)e^{-2\pi i\nu h},$$

$$f(-\nu) = \sum_{h=-\infty}^{-1} \gamma(h)e^{-2\pi i\nu(-h)} + \gamma(0) + \sum_{h=1}^{\infty} \gamma(h)e^{-2\pi i\nu(-h)},$$

$$= \sum_{h=1}^{\infty} \gamma(-h)e^{-2\pi i\nu h} + \gamma(0) + \sum_{h=-\infty}^{-1} \gamma(-h)e^{-2\pi i\nu h}$$

$$= f(\nu).$$

4.
$$f(\nu) \ge 0$$
.

Spectral density: Some facts

5.
$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \nu h} f(\nu) d\nu.$$

$$\int_{-1/2}^{1/2} e^{2\pi i \nu h} f(\nu) d\nu = \int_{-1/2}^{1/2} \sum_{j=-\infty}^{\infty} e^{-2\pi i \nu (j-h)} \gamma(j) d\nu$$

$$= \sum_{j=-\infty}^{\infty} \gamma(j) \int_{-1/2}^{1/2} e^{-2\pi i \nu (j-h)} d\nu$$

$$= \gamma(h) + \sum_{j \neq h} \frac{\gamma(j)}{2\pi i (j-h)} \left(e^{\pi i (j-h)} - e^{-\pi i (j-h)} \right)$$

$$= \gamma(h) + \sum_{j \neq h} \frac{\gamma(j) \sin(\pi(j-h))}{\pi(j-h)} = \gamma(h).$$

Example: White noise

For white noise $\{W_t\}$, we have seen that $\gamma(0) = \sigma_w^2$ and $\gamma(h) = 0$ for $h \neq 0$.

Thus,

$$f(\nu) = \sum_{h=-\infty}^{\infty} \gamma(h)e^{-2\pi i\nu h}$$
$$= \gamma(0) = \sigma_w^2.$$

That is, the spectral density is constant across all frequencies: each frequency in the spectrum contributes equally to the variance. This is the origin of the name *white noise*: it is like white light, which is a uniform mixture of all frequencies in the visible spectrum.

For $X_t = \phi_1 X_{t-1} + W_t$, we have seen that $\gamma(h) = \sigma_w^2 \phi_1^{|h|} / (1 - \phi_1^2)$. Thus,

$$\begin{split} f(\nu) &= \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \nu h} = \frac{\sigma_w^2}{1 - \phi_1^2} \sum_{h=-\infty}^{\infty} \phi_1^{|h|} e^{-2\pi i \nu h} \\ &= \frac{\sigma_w^2}{1 - \phi_1^2} \left(1 + \sum_{h=1}^{\infty} \phi_1^h \left(e^{-2\pi i \nu h} + e^{2\pi i \nu h} \right) \right) \\ &= \frac{\sigma_w^2}{1 - \phi_1^2} \left(1 + \frac{\phi_1 e^{-2\pi i \nu}}{1 - \phi_1 e^{-2\pi i \nu}} + \frac{\phi_1 e^{2\pi i \nu}}{1 - \phi_1 e^{2\pi i \nu}} \right) \\ &= \frac{\sigma_w^2}{(1 - \phi_1^2)} \frac{1 - \phi_1 e^{-2\pi i \nu} \phi_1 e^{2\pi i \nu}}{(1 - \phi_1 e^{-2\pi i \nu})(1 - \phi_1 e^{2\pi i \nu})} \\ &= \frac{\sigma_w^2}{1 - 2\phi_1 \cos(2\pi \nu) + \phi_1^2}. \end{split}$$

Examples

White noise: $\{W_t\}$, $\gamma(0) = \sigma_w^2$ and $\gamma(h) = 0$ for $h \neq 0$.

$$f(\nu) = \gamma(0) = \sigma_w^2.$$

AR(1):
$$X_t = \phi_1 X_{t-1} + W_t$$
, $\gamma(h) = \sigma_w^2 \phi_1^{|h|} / (1 - \phi_1^2)$.

$$f(\nu) = \frac{\sigma_w^2}{1 - 2\phi_1 \cos(2\pi\nu) + \phi_1^2}.$$

$$f(\nu) = \frac{\sigma_w^2}{1 - 2\phi_1 \cos(2\pi\nu) + \phi_1^2}.$$

If $\phi_1 > 0$ (positive autocorrelation), spectrum is dominated by low frequency components—smooth in the time domain.

If $\phi_1 < 0$ (negative autocorrelation), spectrum is dominated by high frequency components—rough in the time domain.

$$X_t = W_t + \theta_1 W_{t-1}.$$

$$\gamma(h) = \begin{cases} \sigma_w^2 (1 + \theta_1^2) & \text{if } h = 0, \\ \sigma_w^2 \theta_1 & \text{if } |h| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\nu) = \sum_{h=-1}^{1} \gamma(h) e^{-2\pi i \nu h}$$

= $\gamma(0) + 2\gamma(1) \cos(2\pi \nu)$
= $\sigma_w^2 \left(1 + \theta_1^2 + 2\theta_1 \cos(2\pi \nu)\right)$.

$$X_t = W_t + \theta_1 W_{t-1}.$$

 $f(\nu) = \sigma_w^2 \left(1 + \theta_1^2 + 2\theta_1 \cos(2\pi\nu) \right).$

If $\theta_1 > 0$ (positive autocorrelation), spectrum is dominated by low frequency components—smooth in the time domain.

If $\theta_1 < 0$ (negative autocorrelation), spectrum is dominated by high frequency components—rough in the time domain.

Introduction to Time Series Analysis. Lecture 17.

- 1. Spectral density: Facts and examples.
- 2. Spectral distribution function.
- 3. Wold's decomposition.

Recall: A periodic time series

$$X_{t} = \sum_{j=1}^{k} (A_{j} \sin(2\pi\nu_{j}t) + B_{j} \cos(2\pi\nu_{j}t))$$

$$= \sum_{j=1}^{k} (A_{j}^{2} + B_{j}^{2})^{1/2} \sin(2\pi\nu_{j}t + \tan^{-1}(B_{j}/A_{j})).$$

$$E[X_{t}] = 0$$

$$\gamma(h) = \sum_{j=1}^{k} \sigma_{j}^{2} \cos(2\pi\nu_{j}h)$$

$$\sum_{k} |\gamma(h)| = \infty.$$

Discrete spectral distribution function

For $X_t = A\sin(2\pi\lambda t) + B\cos(2\pi\lambda t)$, we have $\gamma(h) = \sigma^2\cos(2\pi\lambda h)$, and we can write

$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \nu h} dF(\nu),$$

where F is the discrete distribution

$$F(\nu) = \begin{cases} 0 & \text{if } \nu < -\lambda, \\ \frac{\sigma^2}{2} & \text{if } -\lambda \le \nu < \lambda, \\ \sigma^2 & \text{otherwise.} \end{cases}$$

The spectral distribution function

For any stationary $\{X_t\}$ with autocovariance γ , we can write

$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \nu h} dF(\nu),$$

where F is the spectral distribution function of $\{X_t\}$.

We can split F into three components: discrete, continuous, and singular.

If γ is absolutely summable, F is continuous: $dF(\nu) = f(\nu)d\nu$.

If γ is a sum of sinusoids, F is discrete.

The spectral distribution function

For $X_t = \sum_{j=1}^k (A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t))$, the spectral distribution function is $F(\nu) = \sum_{j=1}^k \sigma_j^2 F_j(\nu)$, where

$$F_{j}(\nu) = \begin{cases} 0 & \text{if } \nu < -\nu_{j}, \\ \frac{1}{2} & \text{if } -\nu_{j} \leq \nu < \nu_{j}, \\ 1 & \text{otherwise.} \end{cases}$$

Wold's decomposition

Notice that $X_t = \sum_{j=1}^k (A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t))$ is deterministic (once we've seen the past, we can predict the future without error).

Wold showed that every stationary process can be represented as

$$X_t = X_t^{(d)} + X_t^{(n)},$$

where $X_t^{(d)}$ is purely deterministic and $X_t^{(n)}$ is purely nondeterministic. (c.f. the decomposition of a spectral distribution function as $F^{(d)} + F^{(c)}$.)

Example:
$$X_t = A \sin(2\pi\lambda t) + \frac{\theta(B)}{\phi(B)} W_t$$
.