Introduction to Time Series Analysis. Lecture 16.

1. Review: ARIMA
2. Seasonal ARMA
3. Seasonal ARIMA models

4. Spectral Analysis




‘Review: Integrated ARMA Models. ARII\/IA(p,d,q)I

Forp,d,q > 0, we say that a time serigsX; } is an
ARIMA (p,d,q) processif V; = V4X, = (1 — B)4X, is
ARMA(p,q). We can write

o(B)(1 — B)*X, = 6(B)W,.




‘Building ARIMA models'

. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

. Nonlinearly transform data, if necessary

. ldentify preliminary values o, p, andg.

. Estimate parameters.

. Use diagnostics to confirm residuals are white/iid/ndrma

. Model selection.




‘ | dentifying preliminary values of d. Sample ACF I

Trends lead to slowly decaying sample ACF:
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| dentifying preliminary values of d, p, and q I

For identifying preliminary values af, a time plot can also help.

Too little differencing: not stationary.
Too much differencing: extra dependence introduced.

For identifyingp, ¢, look at sample ACF, PACF dfl — B)?X;:

Model: ACF: PACF:
AR(p) decays zero fok > p
MA(Q) zero forh > ¢q decays

ARMA(p,q) decays decays




\ Pure seasonal ARMA M odels'

For P, > 0 ands > 0, we say that a time serigsX; } is an
ARMA(P,Q); processif ®(B*)X; = O(B*)W;, where

P
O(B*)=1-) &;B*

j=1

Q@
O(B*) =1+ ) ©;B%.

g=1

It is causal iff the roots of®(z*) are outside the unit circle.
It is invertibleiff the roots of©(z*) are outside the unit circle.




\ Pure seasonal ARMA M odels'

Example:P =0, Q =1,s=12. X; = W; + O W;:_19.

7(0) = (1+ 67)as,
v(12) = ©102,
v(h) =0 forh=1,2,...,11,13,14,....

Example:P =1, =0,s =12. X; = &1 X;_15 + W,.
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\ Pure seasonal ARMA M odels'

The ACF and PACF for a seasonal ARMA(P,@Ye zero folh # si. For
h = si, they are analogous to the patterns for ARMA(p,q):

M oddl: ACF: PACF:
AR(P), decays zero for > P

MA(Q) zero fori > @) decays
ARMA(P,Q); decays decays




Multiplicative seasonal ARMA M odels'

Forp, ¢, P,Q > 0ands > 0, we say that atime seri¢s(; } is a
multiplicative seasonal ARMA model (ARMA(p,q)x(P,Q))
if &(B%)¢p(B)X; = O(B*)0(B)W,.

If, in addition,d, D > 0, we define thenultiplicative seasonal
ARIMA model (ARIMA(p,d,q)x(P,D,Q),)

®(B*)¢(B)VEVIX, = ©(B*)0(B)W,,

where theseasonal difference operator of order D is defined by

vPXx, =1 - B%PX,.




Multiplicative seasonal ARMA M odels'

Notice that these can all be represented by polynomials

®(B*)p(B)VSVE =E(B),  O(B*)d(B)

But the difference operators imply thatB) X; = A(B)W,; does not define
a stationary ARMA process (the AR polynomial has roots oruttié
circle). And representing(B?*)¢(B) andO©(B?)0(B) as arbitrary
polynomials is not as compact.

How do we choose, q, P, ), d, D?

First difference sufficiently to get to stationarity. Themdisuitable orders
for ARMA or seasonal ARMA models for the differenced timeissr The
ACF and PACF is again a useful tool here.
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‘ Spectral Analysis'

ldea: decompose a stationary time sefi&s } into a combination of
sinusoids, with random (and uncorrelated) coefficients.

Just as in Fourier analysis, where we decompose (detetmjrilgnctions
Into combinations of sinusoids.

This is referred to as ‘spectral analysis’ or analysis in‘leguency
domain,’ in contrast to the time domain approach we haveidered so far.

The frequency domain approach considers regression osasas) the time
domain approach considers regression on past values oftbeséries.
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A periodictimeseries'

ConsiderX; = Asin(2nwvt) + B cos(2nvt), whereA, B are uncorrelated,
mean zero, variancg” = 1.

Writing C% = A% + B? andtan ¢ = B/A, we can think of this as

X = Ccos ¢sin(2nvt) + C'sin ¢ cos(2mvt)
= C'sin(2nvt + ¢).

That is,A? + B? determines the amplitude, ait) A determines the phase
of X;.
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A periodictimeseries'

For X; = Asin(27vt) + B cos(2nvt), we have

ue = E[ X =0
v(t,t+ h) = Cov( Xy, Xi1p)
sin(27vt) sin(2wv(t + h)) + cos(2wvt) cos(2mv(t + h))
cos(2mvt — 2mv(t + h))
cos(2mvh).

So{X,} is a stationary time series. (But notice that it does nosBati

>_nv(h)] <o)
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An aside: Sometrigonometric identities'

sin 6
tan 0 = :
cos 6

sin® @ + cos® 6 = 1,

sin(a + b) = sina cos b + cos asin b,

cos(a 4+ b) = cosacosb — sinasin b.
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A periodictimeseries'

The random sinusoid’; = Asin(2wvt) + B cos(2wvt), with uncorrelated
A, B, has sinusoidal autocovarianegh) = cos(2wvh).

The autocovariance of the sum of two uncorrelated time s&ighe sum of
their autocovariances. Thus, the autocovariance of a suandbm
sinusoids is a sum of sinusoids with the corresponding faques:
k
Xy = Z (A; sin(27v;t) + B, cos(2mv,t))
j=1

k
v(h) = Z (732. cos(2mv;h),
j=1

whereA;, B; are all uncorrelated, mean zero, and

Var(A;) = Var(B;) = o7.
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A periodictimeseries'

k
Z jsin(2mv;t) + B, cos(2mvy;t)) Za cos(2mv;h)

Thus, we can representh) using a Fourier series. The coefficients are thg
variances of the sinusoidal components.

The gpectral density is the continuous analog: the Fourier transformy of

(The analogouspectral representation of a stationary procesk; involves

a stochastic integral—a sum of discrete components at a finite number of
frequencies is a special case. We won't consider this reptagon in this
course.)
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Spectral density'

If a time series X;} has autocovariance satisfying

> (k)] <,

h=—o0

then we define itspectral density as

fW)y= Y A(h)e >

h=—o0

for —oo < v < .
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