Introduction to Time Series Analysis. Lecture 14.

Last lecture: Yule-Walker estimation
1. Maximum likelihood estimation

2. Large-sample distribution of MLE




Parameter estimation: Maximum likelihood estimator'

One approach:

Assume thaf X, } is Gaussian, that igy(B)X; = 60(B)W;, whereW, is
1.i.d. Gaussian.
Choosep;, 6, to maximize theikelihood:

L(g,0,0%) = f(X1,...,X,),

wheref is the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probwglufithe data.)




Maximum likelihood estimation '

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,)’ under the
Gaussian model with those parameters:

1 1
L(¢7 670-%0) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.




Parameter estimation: Maximum likelihood estimator'

Advantages of MLE:

Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.

Even if { X;} is not Gaussian, the asymptotic distribution of the estmat
(¢,0,52) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.
Need to choose a good starting point (often use other estisfdr this).




Preliminary parameter estimates'

Yule-Walker for AR(p) : RegressX; ontoX;_1,..., X;_,.
Durbin-Levinson algorithm withy replaced byy.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(qQ): with v replaced by.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.
2. Use to estimate (unobserved) noige.
3. Regress\, onto X, _1, ..., X¢_p, Wi_1,..., Wi_,.
4. Regress again with improved estimate$16f




Recall: Maximum likelihood estimation I

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,)’ under the
Gaussian model with those parameters:

1 1
L(¢7 670-%0) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.




Maximum likelihood estimation '

We can simplify the likelihood by expressing it in terms of thnovations.

Since the innovations are linear in previous and currentesglwe can write

(Xl\ [ Xl—.Xi) )

=C

%) Leoxy

A\ . \

U

whereC' is a lower triangular matrix with ones on the diagonal.
Take the variance/covariance of both sides to see that

I, =CDC’  whereD = diag(Py,...,P" 1.




Maximum likelihood estimation '

Thus,|T',,| = |C|?PY--- P 1 =PP... P»~1 and
XT 'x=v'cr tcu=vcc*p*tctcu=UD'U

So we can rewrite the likelihood as

n

L(¢,0,02) = ! )1/2 exp (—% Z(Xi — X!71)?

((2m)nPp - - Pyt i=1

1 . p( S( 9))
p— X _— ,
((2m02)msy o) 2 2

1...""n

wherer!~' = P/~! /o2 and

S<¢,e>=§j(

1=1




Maximum likelihood estimation '

The log likelihood of¢, 0, o2 is

1 .
S log(2mo2) — 5 Zlogrg_l —

2 ;
1=1




‘Summary: Maximum likelihood estimation I

The MLE (¢, 0, 62 satisfies

wherer!™' = P/~! /o2 and

S0 =3 F XD

i=1 i
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Maximum likelihood estimation '

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:
e Unconditional least squares. Drop thelog r!~' terms.

e Conditional least squares. Also approximate the computation of ' by
dropping initial terms inS. e.g., for AR(2), all but the first two terms i$i
depend linearly o, ¢-, SO we have a least squares problem.

The differences diminish as sample size increases. Formram
Pt — o2 sor; ! — 1,and thuss 1 3" logr: ™" — 0.
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Maximum likelihood estimation: Confidence intervals.

For an ARMA(p,q) process, the MLE and un/conditional least
sguares estimators satisfy

Tys T
? ¢ ~ AN |0, 2w [ TO0 90
n

/\

Loy Loe,

Lo Lo

) — Cov((X,Y), (X,Y)),

I'gy  1ge,
X =(X1,....X,)  ¢(B)X; =W,
—(Yi,...,Y,)  O0(B)Y:=W,
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Introduction to Time Series Analysis. Lecture 14.

1. Maximum likelihood estimation: Gaussian model.
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