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These notes present some properties of chordal graphs, a set of undirected graphs
that are important for undirected graphical models.

Definitions

We consider undirected graphs G = (V, E), where V is the vertex set and the
edge set E is a set of unordered distinct pairs from V . We say that vertices
u, v ∈ V are neighbors if {u, v} ∈ E.

A cycle in a graph is a vertex sequence v1, . . . , vn where v1 = vn but all other
pairs are distinct, and {vi, vi+1} ∈ E. A cycle is chordless if all pairs of vertices
that are not adjacent in the cycle are not neighbors (that is, any {va, vb} with
|a − b| 6= 1 is not in E). That is, there is no chord, or shortcut, for the cycle.

A graph is chordal (also called triangulated) if it contains no chordless cycles
of length greater than 3.

A graph is complete if E contains all pairs of distinct elements of V .
A graph G = (V, E) is decomposable if either

1. G is complete, or

2. We can express V as V = A ∪ B ∪ C where

(a) A, B and C are disjoint,

(b) A and C are non-empty,

(c) B is complete,

(d) B separates A and C in G, and

(e) A ∪ B and B ∪ C are decomposable.

A path is a sequence v1, . . . , vn of distinct vertices for which all {vi, vi+1} ∈ E.
A tree is an undirected graph for which every pair of vertices is connected
by precisely one path. A clique of a graph G is a subset of vertices that are
completely connected. A maximal clique of G is a clique for which every superset
of vertices of G is not a clique.

A clique tree for a graph G = (V, E) is a tree T = (VT , ET ) where VT is a
set of cliques of G that contains all maximal cliques of G.

We’ll label each edge e = (C1, C2) of a clique tree with the corresponding
separator set, C1 ∩C2. (But notice that these labels might not uniquely specify
an edge.)

A junction tree for a graph G is a clique tree for G that satisfies the following
condition. For any cliques C1 and C2 in the tree, every clique on the path
connecting C1 and C2 contains C1 ∩ C2.
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A vertex is simplicial in a graph if its neighbors form a complete subgraph.
A graph is recursively simplicial if it contains a simplicial vertex v and when v

is removed the subgraph that remains is recursively simplicial.

Equivalence Theorem

Theorem 1. The following properties of G are equivalent.

1. G is chordal.

2. G is decomposable.

3. G is recursively simplicial.

4. G has a junction tree.

We shall present the proof as a series of lemmas (1 =⇒ 2 =⇒ 3 =⇒ 4
=⇒ 1).

Lemma 1. G is chordal implies G is decomposable.

Proof. We prove by induction that every chordal graph with n vertices is de-
composable. This is trivially true for n = 1. If it is true for any n, then the
following argument shows that it is true for a graph G with n + 1 vertices.

Step 1: If G is complete, it is decomposable. So suppose that G is not
complete.

Step 2: We can express V as the disjoint union V = A ∪ B ∪ S, where
S separates A from B in G and A, B are nonempty. Indeed, since G is not
complete, V contains a, b that are not neighbors. Let S ⊂ V be a minimal set
that separates a from b. (Notice that S might be empty). Let A be the subset
of V − S connected to a by some path in V − S, and let B be the remainder,
B = V − S − A. Clearly, S separates A from B in G.

Step 3: S is complete.
3a: We may assume that S has cardinality at least 2, for otherwise it is

trivially complete.
3b: For any two distinct nodes u, v in S, there are paths u, a1, . . . , an, v and

u, b1, . . . , bm, v with ai ∈ A, bi ∈ B and n, m ≥ 1. Indeed, since S was a minimal
set that separates a from b, there must be a path from a to u and from a to v,
since the absence of one of these paths would imply that S was not minimal.

3c: u and v are neighbors. To see this, take the path from u to v through
A that has minimal length, and similarly the path from u to v through B of
minimal length. This pair of paths forms a cycle, which must have a chord. To
see that the chord must be between u and v, notice that the minimality of the
paths implies that the chord cannot be between vertices that are both in A,
nor can it be between vertices that are both in B. In addition, the fact that S

separates A from B implies the chord cannot be between a vertex in A and one
in B.

Step 4: The subgraphs induced by A ∪ S and B ∪ S are chordal. Indeed, if
one of these subgraphs contains a chordless cycle, then so does G.
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Step 5: By the inductive hypothesis, these subgraphs are strictly smaller
than G and hence decomposable.

Lemma 2. G decomposable implies G is recursively simplicial.

Proof. We prove by induction that every decomposable graph with n vertices is
recursively simplicial. This is trivially true for n = 1.

Step 1: G decomposable implies that G contains a simplicial vertex. To see
this, we prove by induction the stronger statement that any decomposable graph
is either complete or has two nonadjacent simplicial vertices. This is trivially
true for graphs with |V | = 1, and for the induction step, we notice that any
decomposable G is either complete, or V can be decomposed as sets A, B, C. If
A∪B is complete, then any a ∈ A is simplicial. Otherwise, the subgraph induced
by A ∪ B has two non-adjacent simplicial nodes, by the inductive hypothesis.
Since B is complete, one of these must be in A. Similarly, there is a simplicial
c ∈ C.

Step 2: G decomposable implies that the subgraph corresponding to a
subset of the vertices is decomposable. Again, we prove this by induction. It
is trivially true for graphs with |V | = 1. For the induction step, the result is
trivially true if G is complete, otherwise we consider the usual decomposition of
V into A, B, C, where B is complete and A ∪ B and B ∪ C are decomposable.
By the inductive hypothesis, removing a node from B leaves A ∪ B and B ∪ C

decomposable. Removing a node from A leave B ∪ C unchanged, and either
leaves A empty, in which case the remaining subgraph, B∪C, is decomposable,
or leaves A ∪ B decomposable by the inductive hypothesis.

Thus, the subgraph that remains when we remove a simplicial vertex v from
a decomposable G is also decomposable.

Lemma 3. G recursively simplicial implies G has a junction tree.

Proof. We prove by induction that every recursively simplicial graph with n

vertices has a junction tree. This is trivially true for n = 1.
Consider a simplicial vertex v of G, and let G′ be the subgraph that remains

when we remove v. By the inductive hypothesis, G′ has a junction tree T ′, and
this can be extended to give a junction tree for G. To see this, let C′ be a
maximal clique in T ′ containing all neighbors of v in G. If C′ is precisely the
set of neighbors of v, then we can add v to C′ to give a junction tree for G (it
contains all maximal cliques, and v is not in any other clique, so the junction
tree property is trivially satisfied). If not, that is, if C′ contains the neighbors
of v as a proper subset, then we add a new clique containing v and its neighbors
to T ′, with an edge to C′. Since v is in no other clique and C − {v} is a subset
of C′, this is a junction tree for G.

Lemma 4. If G has a junction tree then G is chordal.

Proof. We prove by induction that the statement is true for junction trees with
n nodes. If the clique tree has only one node, then G is complete, hence chordal.
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Assuming that the statement is true for some value of n, consider a graph with
a junction tree T containing n + 1 nodes.

Fix a leaf C of T , and let C′ be the neighbor of C in T , and let T ′ be the
tree that remains when C is removed.

Step 1: If C ⊆ C′, then T ′ is a junction tree for G.
Step 2: On the other hand, if C ∩ C′ ⊂ C, removing the nonempty set

R = C − C′ from V leaves a subgraph G′ that is chordal. To see this, notice
that R has an empty intersection with every clique in T ′. It is easy to see that
T ′ is a junction tree for G′, and so G′ is chordal.

Step 3: It follows that G contains no chordless cycles. Indeed, if a cycle
is entirely in G′, it is not chordless. If the cycle is entirely in the complete
subgraph defined by C, it is not chordless. If the cycle intersects R, C ∩C′, and
V − C, then since the subgraph defined by C ∩ C′ is complete, the cycle has a
chord.

Undirected graphical models with chordal graphs

Theorem 2. The following properties of G are equivalent.

1. G is chordal.

2. There is an elimination ordering for which the graph G is a fixed point of
the UndirectedGraphEliminate algorithm.

3. There is an orientation of the edges of G that gives a directed acyclic graph
whose moral graph is G.

4. There is a directed graphical model with conditional independencies iden-
tical to those implied by G.

We sketch the proof of these implications.
Define a simplicial vertex sequence as an ordering of the nodes of a recursively

simplicial graph that exhibits the recursively simpliciality of the graph. That is,
as we progressively remove the nodes in this order, the next node in the order
is simplicial in the remaining subgraph.

Elimination ordering: Eliminating a node leaves the graph unchanged iff the
node is simplicial. Thus, the existence of an elimination ordering that leaves
the reconstituted graph identical is equivalent to the existence of a simplicial
vertex sequence.

DAG with same moral graph: Given a recursively simplicial graph G, we can
construct a DAG GD as follows. Fix a simplicial vertex sequence (v1, . . . , vn)
for G. Define G1 = G. At step t, add vt and its neighbors in Gt to GD (if
they are not already present), and add the corresponding edges to GD so that
they are directed towards vt. Then set Gt+1 to the subgraph of Gt that remains
when vt is removed.

It is clear that GD is acyclic, since the edges are directed in a fixed order.
Also, by construction, the moral graph requires no additional edges.
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To see that the existence of a DAG GD with moral graph G implies that G

is recursively simplicial, fix a reverse topological order of the nodes in GD (that
is, children before parents). Set G0 = G. At step t, remove vt from Gt−1 to give
the subgraph Gt. The ordering ensures that the neighbors of vt in Gt−1 are its
parents. Since the moral graph is the same, these parents must be connected in
Gt−1. Hence, we have specified a simplicial vertex sequence.

Theorem 3. Suppose G has a junction tree T = (C, S). Fix some s = {c1, c2} ∈
S, and let T1 = (V1, E1) (T2 = (V2, E2)) be the maximal subtree with root c1

(c2) that does not contain s. Then for

A1 = V1 − (c1 ∩ c2)

B = (c1 ∩ c2)

A2 = V2 − (c1 ∩ c2),

we have
A1⊥⊥A2|B.

Proof. Since T is a junction tree, any v in A1 is not in A2. Since C contains
the maximal cliques, the neighbors of any v in A1 are all in A1 ∪ B. It follows
that A1 is separated from A2 by B.

Theorem 4. If G has a junction tree T = (C, S), then any probability distribu-
tion that satisfies the conditional independencies implied by G can be factorized
as

p(x) =

∏
c∈C

p(xc)∏
s∈S

p(xs)
,

where if s = {c1, c2} then xs denotes xc1∩c2 .

Proof. Fix a root node of T and suppose that C = {c1, . . . , cn} is a topological
ordering of the nodes of T (that is, each node’s parent appears earlier in the
ordering). Then we have

p(x) =
∏

i

p(xci
|xc1 , . . . , xci−1)

=
∏

i

p(xci
|xcπ(i)∩ci

)

=
∏

i

p(xci
)

p(xcπ(i)∩ci
)

=

∏
c∈C

p(xc)∏
s∈S

p(xs)
,

where the second equality follows from the previous theorem.
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