Question 4 revised Sat Mar 1 13:37:28 PST 2014

1. (Adapting to T)

We saw in lecture 9 that the Hedge algorithm with learning rate \(\eta = \sqrt{\frac{8 \ln \log K}{T}} \) has regret after \(T \) rounds bounded by \(\sqrt{\frac{T}{2 \ln K}} \). In practice, we may not know \(T \) in advance, or we may even desire an algorithm that has good guarantees for all \(T \) simultaneously, i.e. that keeps on operating forever. Consider the following idea, called the **doubling trick**, to accomplish this. We run Hedge with \(\eta \) tuned for 1 round. After that, we restart Hedge, now with \(\eta \) tuned for 2 rounds. After that, we restart Hedge again with \(\eta \) tuned for 4 rounds, and so on.

(a) Prove that the overall accumulated regret of Hedge with the doubling trick is bounded above by \((1 + \sqrt{2}) \sqrt{T \ln K}\).

(b) What about the **tripling trick** and friends? Prove a regret bound for restarting at exponentially sized segments, where the \(i \)th segment is of size \(\phi^i - 1 \) for some basis \(\phi > 1 \). Judging from your bound, what is the best choice of basis \(\phi \)?

2. (Why FTL fails)

Consider the dot-loss game (Figure 1) with \(K \) experts and \(T \) rounds.

(a) The Follow-the-Leader (FTL) strategy plays \(w_t = e_{k_t} \), where \(k_t \in \arg \min_k \sum_{s=1}^{t-1} \ell_s,k \), breaking ties arbitrarily. Construct a strategy for the adversary (that is, a recipe to choose the next loss vector given the past weights and losses, and the weights played by FTL in the current round) that ensures that FTL incurs regret \(T \frac{K-1}{K} \).

(b) We call a strategy for Learner **deterministic** if, at each round, its action \(w_t \) is concentrated on a single expert, i.e. for all \(t \) there is an expert \(k \) such that \(w_t = e_k \). Show that any deterministic strategy can be made to suffer regret \(T \frac{K-1}{K} \).

3. (An especially lucky case)

In this question we investigate the effect of having a **perfect** expert in the dot-loss game (Figure 1). We implement this as a restriction on the Adversary, that is, the Adversary has to ensure that at least one expert keeps zero cumulative loss. Construct a strategy for the Learner that, under this restriction, keeps the regret below \(R_T \leq \ln K \) for all \(T \).
4. (FPL as Hedge)

Recall that Follow the Perturbed Leader with learning rate \(\eta > 0 \) chooses the expert \(k \) that minimizes \(L_k + X_k/\eta \), where \(X_k \) are i.i.d. perturbations. Here we consider the standard Gumbel distribution, which has CDF

\[
P(X \leq x) = \exp(-\exp(-x)).
\]

Show that the probability that FPL with negative standard Gumbel perturbations selects expert \(k \) is given by

\[
P\left\{ k = \arg\min_j \left(L_j + \frac{-X_j}{\eta} \right) \right\} = \frac{e^{-\eta L_k}}{\sum_j e^{-\eta L_j}}.
\]

5. (NML, SNML, KT)

Let \(\{P_\theta | \theta \in \Theta\} \) be a parametric model. Recall that the Normalized Maximum Likelihood strategy for \(T \) rounds assigns to data \(x_1, \ldots, x_T \) probability

\[
P_{\text{NML}}(x_1, \ldots, x_T) = \frac{\sup_{\theta \in \Theta} P_\theta(x_1, \ldots, x_T)}{\sum_{x_1, \ldots, x_T} \sup_{\theta \in \Theta} P_\theta(x_1, \ldots, x_T)}.
\]

In this question we consider the model of i.i.d. Bernoulli distributions. That is, \(\mathcal{X} = \{0, 1\} \), \(\Theta = [0, 1] \) and \(P_\theta(x_1, \ldots, x_T) = \prod_{t=1}^T \theta^{x_t} (1 - \theta)^{1-x_t} \).

(a) Compute a closed-form expression for \(P_{\text{NML}}(x_1, \ldots, x_T) \). For \(1 \leq t \leq T \), write an expression for the prediction \(P_{\text{NML}}(x_t = 1 | x_1, \ldots, x_{t-1}) \).

(b) The Sequential Normalized Maximum Likelihood (or Last Step Minimax) strategy predicts with

\[
P_{\text{SNML}}(x_t | x_1, \ldots, x_{t-1}) = \frac{\sup_{\theta \in \Theta} P_\theta(x_1, \ldots, x_t)}{\sum_{x_t} \sup_{\theta \in \Theta} P_\theta(x_1, \ldots, x_t)}
\]

Simplify the expression for the prediction \(P_{\text{SNML}}(x_t | x_1, \ldots, x_{t-1}) \) as far as possible.

(c) For \(T = 1, \ldots, 200 \), graph the worst-case regret of NML, SNML and the Krichevsky-Trofimov estimator, defined by \(P_{\text{KT}}(x_t = 1 | x_1, \ldots, x_{t-1}) = \frac{1}{t} \left(\sum_{s=1}^{t-1} x_s + \frac{1}{2} \right) \), which predicts with the \(\frac{1}{2} \)-smoothed empirical frequency.

To compute the worst-case regret of SNML and KT, use the observation that the prediction of either depends on the past data sequence only through the number of zeros and ones. Let

\[
M_P(n_0, n_1) = \max_{x_1, \ldots, x_{n_0+n_1}} \sum_{t=1}^{n_0+n_1} -\ln P(x_t | x_1, \ldots, x_{t-1})
\]

be the maximum loss of strategy \(P \) on sequences with \(n_0 \) zeros and \(n_1 \) ones. The value of \(M_P \) can be computed by making use of the recurrence

\[
M_P(n_0, n_1) = \max \{ M_P(n_0 - 1, n_1) - \ln P(0 | n_0 - 1, n_1), M_P(n_0, n_1 - 1) - \ln P(1 | n_0, n_1 - 1) \}\]

when \(n_0 > 0 \) and \(n_1 > 0 \).