1. (Multi-class pattern classification) In the two-class pattern classification problem, we have seen that we can express the excess risk of a classifier \(f \) (that is, the amount by which its risk exceeds the Bayes risk) as

\[
R(f) - R^* = E \left(1 \left[f(X) \neq f^*(X) \right] | 2\eta(X) - 1 \right).
\]

It is easy to check that we can write this as

\[
R(f) - R(f^*) = E \left(\max_{y \in Y} P(Y = y|X) - P(Y = f(X)|X) \right).
\]

(1)

Consider the following multi-class problem: \(X \) is the observation space, \(Y = \{1, \ldots, k\} \) is the outcome space, and \(P \) is a probability distribution on \(X \times Y \). Write \(\eta_y(x) = P(Y = y|X = x) \). The Bayes decision function \(f^* : X \rightarrow Y \) (that is, the classifier that minimizes risk, \(R(f) = P(Y \neq f(X)) \)) is given by

\[
f^*(x) = \arg \max_{y \in Y} \eta_y(x).
\]

(a) Show that, for any \(f : X \rightarrow Y \), (1) is also true in this case.

(b) Given estimates \(\hat{\eta}_y \) of the conditional probability functions \(\eta_y \), the plug-in decision function is

\[
\hat{f}(x) = \arg \max_{y \in Y} \hat{\eta}_y(x).
\]

Derive an upper bound on the excess risk, \(R(\hat{f}) - R^* \), in terms of the function

\[
x \mapsto \max_{y \in Y} |\eta_y(x) - \hat{\eta}_y(x)|.
\]

2. (Perceptron algorithm) Implement the perceptron algorithm. Consider the following two data sets, which are labelled according to a linear threshold function. (Define \(e_i \in \{0, 1\}^d \) as the unit vector with the \(i \)th component equal to 1.)

(a) Choose \(x_i \in \{0, 1\}^{d+1} \) with \(x_i = e_i + e_{d+1}, \ y_i = 1 \) for \(i = 1, \ldots, d \), and \(x_{d+1} = e_{d+1}, \ y_{d+1} = -1 \).

(b) Construct a set \(S_n \subset \{0, 1\}^{2n} \) as follows. Set \(S_1 = \{01, 10, 11\} \), and for \(i \geq 1 \),

\[S_{i+1} = \{ x01 : x \in S_i \} \cup \{ 11 \ldots 100 \ldots 011 \}. \]

For each element \(b = (b_1 \cdots b_{2n}) \) of \(S_n \), define an associated boolean value \(v_b \in \{0, 1\} \) as

\[
v_b = b_{2n} \land (b_{2n-1} \lor (b_{2n-2} \land (b_{2n-3} \lor (\cdots (b_2 \land b_1) \cdots)))
\]

where \(\land \) denotes conjunction (\(b_1 \land b_2 \) is 1 only for \(b_1 = b_2 = 1 \)) and \(\lor \) denotes disjunction (\(b_1 \lor b_2 \) is 0 only for \(b_1 = b_2 = 0 \)). Finally, set

\[
\{(x_1, y_1), \ldots, (x_{2n+1}, y_{2n+1})\} = \{(b, 1), 2v_b - 1 : b \in S_n\}.
\]

Plot the number of updates made by the perceptron algorithm with these two data sets, as a function of \(n \) for \(d = 2n \). Comment on the difference. Explain why it occurs.

3. (Lower bounds on risk in pattern classification) We say that a class \(F \) of \(\{\pm1\} \)-valued functions defined on \(X \) shatters a set \(\{x_1, \ldots, x_n\} \subseteq X \) if

\[
\{(f(x_1), \ldots, f(x_n)) : f \in F\} = \{\pm1\}^n,
\]

that is, if \(F \) can compute all \(2^n \) dichotomies of the set. The Vapnik-Chervonenkis dimension of \(F \) is

\[
d_{VC}(F) = \max \{n : F \text{ shatters some } \{x_1, \ldots, x_n\} \subseteq X\}.
\]

We have seen the following minimax lower bound on expected risk for the class of linear threshold functions on \(\mathbb{R}^d \):

1
Theorem 1 For any classification rule f_n and any $n > 1$, there is a probability distribution P on $\mathcal{X} \times \{\pm 1\}$ for which some $f \in F$ has $R(f) = 0$ but

$$\mathbb{E}R(f_n) \geq \left(\frac{\min(n, d) - 1}{2n} \right) \left(1 - \frac{1}{n} \right)^n.$$

(a) Show that this result remains true for F an arbitrary set of functions with $d_{VC}(F) \geq d$.

(b) Hence prove minimax lower bounds on expected risk for the following classes of binary-valued functions.

i. **Decision stumps on** \mathbb{R}^d,

 $$F = \{ \theta_{H(i,a,s)} : 1 \leq i \leq d, a \in \mathbb{R}, s \in \{\pm 1\} \},$$

 where

 $$\theta_S(x) = \begin{cases} 1 & \text{if } x \in S, \\ -1 & \text{otherwise}, \end{cases}$$

 and $H(i,a,s)$, for $1 \leq i \leq d$, $a \in \mathbb{R}$ and $s \in \{\pm 1\}$, is the halfspace

 $$H(i,a,s) = \{ x \in \mathbb{R}^d : s(x_i - a) > 0 \}.$$

ii. **Indicators of unions of intervals** in \mathbb{R},

 $$F = \{ \theta_U : U \text{ is a union of up to } k \text{ intervals} \}.$$

iii. **Indicators of convex sets** in \mathbb{R}^2,

 $$F = \{ \theta_S : S \subseteq \mathbb{R}^2 \text{ and } S \text{ convex} \}.$$

iv. **Decision trees on** \mathbb{R}^d with m nodes. A decision tree is a binary tree T with nodes labeled with decision stumps on \mathbb{R}^d. It computes a function f_T defined recursively as follows. Suppose the root of T is a decision stump s. If the root has no descendants, $f_T = s$, otherwise if T has left and right subtrees L and R, then

 $$f_T(x) = \begin{cases} f_L(x) & \text{if } s(x) = -1, \\ f_R(x) & \text{if } s(x) = 1. \end{cases}$$