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1. Discrete decision problems with partial monitoring

Definition: loss and feedback. Stochastic and adversarial.

Examples.

Minimax regret: algorithms and lower bounds.




Discrete decision problems with partial monitoring'

Example:Dynamic pricing

A vendor has products to sell one by one to a stream of cussonher
each, she offers the product at a certain ppice [0.00,0.01, ..., 1.00].
The customer has in mind a maximal prieg that he’s willing to pay. If
p: < my, the customer buys the product, otherwise he does not (and |
neither case does he reveal his maximal price). The lossofghdor is
missed earnings plus a fixed cost per customer:

Lp,m, = (me — pe)Lpy < ma] +c.

The feedback the vendor receives is

Fpt,mt — 1[pt < mt]‘




Discrete decision problems with partial monitoring'

Example:Label efficient prediction

Aim is to predict a sequence of outcomes € {1,...,k}). At roundt:

1. A prediction strategy either predigjsand incurs a loss

Ly, 4, = 1|9+ # y:] (but the outcomey, is not revealed), or

2. The strategy buys the labég} (= 0), incurs loss: € [0, 1], and the
outcomey; is revealed.

F@t,yt — 1[3//\75 — O]yt




Discrete decision problems with partial monitoring'

Sequential decision problem. At each step:

1. strategy chooses (distribution df) € {1, ..., k} and
environment chooses (distribution of) € {1, ..., m}.

2. strategy incurs losky, ;, (but does not see it).

3. strategy receives feedbaglk, ;, .
Two flavors:
Stochastic The environment can choogde.1.d.

Adversarial The environment choosek with full knowledge of all
previous choices.




Discrete decision problems with partial monitoring'

The loss matrix, € R¥*™ and feedback matri¥ € N**™ are fixed
and known.

The aim of the strategy Is to minimize regret,

n n
Rn = E L[t’Jt — mjn E Li’Jt,
1

(in expectation or with high probability) or pseudo-regret

R, = Ezn:LIt,Jt -~ minEi:Lz-’Jt.
t=1 t=1




Partial monitoring: Examples I

Dynamic pricing:

Lpt,mt — (mt _pt)l[pt S mt] _|_ C7
Fpt,mt — l[pt < mt]‘

Dynamic pricing variant:

memt — C _ptl[pt S mt];

Fpt,mt — 1[pt < mt]‘

(bandit!)




Partial monitoring: Examples I

Label efficient prediction:

L,y = 10t # ytl,
F@t,yt — 1[:&15 — O]yt

General bandit problem:

L. ; = losses for outcomg,
Fij=Li;.

Full information: F; ; = j.




Partial monitoring: Regret I

For full information problems, the stochastic minimax efgand the

adversarial regret a®(,/n).

For bandit problems, these are af86,/n). (But with worse dependence
on the number of arms.)

What is achievable for other partial monitoring problems?




Partial monitoring: Regret I

F =

Regret i9): never need to try the first action.

Example:

2
1 2

F =

Regret ix2(n): adversary’s choice between last two actions is always
hidden.




Partial monitoring: Regret I

Stochastic minimax regret:

0 If trivial (only one nondegenerate action)

n'/?2  if nontrivial and locally observable

n?/3  if observable but not locally observable

n If not observable

(ignoring log factors).




Partial monitoring: Regret I

(Oblivious) adversarial regret:
If trivial
If nontrivial
If nontrivial, NDD, locally observable

If observable, NDD, not locally observable

If observable

If not observable

(ignoring log factors). ‘NDD’ means ‘no degenerate or doale actions.’




Partial monitoring: Definitions I

DefineL® as theith row of L.

Definition: The optimal cell for action: is the subset of then-
simplex on which it gives the least expected loss:

N;={peA,:Vj, L' # L’ = L'p< L'p}.

Action i is dominated if N; is empty.

Clearly, if all but one action is dominated, it suffices toypthat action to
get zero regret. But we can also avoid playing actions tleafibmost
dominated...




Partial monitoring: Degenerate actionil

Lemma: If we define theopen optimal cell for action: as

Si={peN,:Vj, L' #L = L'p<Lp},

then for anyp € A,,, there is ank with S; non-empty such that
p < Nz

Hence, we don’t need to worry about exploitidggenerate actions (but
we might need to use them to distinguish losses of otherreitio

Definition: An action: is degenerate if S; Is empty.




‘ Partial monitoring: Regret lower bounds'

Why does nontrivial imph2(y/n)?

When the problem is nontrivial, there is a boundary betwgemal

cells. By choosing a distribution for the adversary (ranfgrinat ise to

one side or the other of that boundary, the regret of mistattie optimal
action is of ordeen. But even if the adversary’s actions are observed, tlpe
fluctuations in their relative frequency will scale likg/n (and things
certainly cannot be improved by seeing limited feedback)dsinge of

this scale will give the/n lower bound.
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Partial monitoring: O(n?/?) regret

To illustrate the idea, we’ll look first at a weaker resultpBase we can
write L = K F for some matrixk € R¥**, Then

Lij=> KiiF;,
l

) I I
l rj,’(]t 1,1¢ taJt

Pr1, ¢t
as an unbiased estimate of the ldss;,, and it only needs to see the
feedbackrr, ..




Partial monitoring: O(n?/?) regret

The idea is to use this estimate with an exponential weighdseg)y,
where the exponential distribution is mixed with a uniforrstdbution
over actions (the mixture component decreases slowly, d$; this
constraing /p;, +, and can be viewed as an exploration
component—we’ll see why it's essential in general).

Theorem: Forn = Q(k?log® 1/6), with probability at least — 4,
R, < ck?*3 (log k)3 n2/3\/log 1/6.




Partial monitoring: O(n?/?) regret

e Constants involve size of entries Af matrix.

e Notice poor dependence @n If there is a revealing action (one that
reveals action of adversary), then by playing it randombyghly a
proportionn—1/3 of the time) and using the revealed adversary actipn
to estimate the cumulative losses, it is possible to obtah h
probability regret bounds that grow as

n?/31og/3(k /4).

e How to extend beyond = K F?
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Partial monitoring: Regret I

Recall L’ is theith row of L, and defineF'* as theith row of .

Definition:  For each: € {1,...,k} if the entries of I are
fi,..., fm,, define thesignal matrix S* € R™:*™ as

;',l — [in = f;l-

(L, F') is observable if, for all nondegeneratg, j,

L' — I’ € span (U{rows ofS’“}) .

k

The L = KF idea extends in this case to estimating the nondegeneratg
rows of L using the feedback. This approach gives? regret bound for
the observable case.




‘ Partial monitoring: Regret lower bounds'

If (L, F') is not observable, the regret(Xn).

High level idea:

There are two nondegenerate actions,:sayd j, whose average losses
cannot be distinguished via observing feedback. Then castaat two
different values of the adversary’s distributippone inS; and one InS;,
that lie in the subspace orthogonal to the observed space

span <U{rows ofS’“}) ,

k

but have a non-zero inner product with — L7 (that is, the expected
losses differ). Then the distinction between these two vl
probability distributions will never be observed. So theested regret
(under a random choice of those two) will grow linearly.




Partial monitoring: Local observability I

We are concerned with distinguishing adversary distranginear a
boundary between cells of nondegenerate actions. To gelt goo
performance while distinguishing between these distioimst we must be

able to estimate differences of losses using actions teat@rmal at the
boundary.

Definition: Actions ¢, 5 are locally observable if they are no

degenerate, their optimal cells share a boundary thahis- 2)-
dimensional, and

L' — L7 € span (U{rows of S* : NV; N N; C Nk}) :




Partial monitoring: Local observability I

It turns out that without local observability, the regretie stochastic
(hence adversarial) setting grows(a'/3): distinguishing the losses of
two nondegenerate actions that are not locally observablgnes an
action that is far from optimal. This requires a separatibexploration
and exploitation, which leads to thé/3 regret:

Suppose that we explore a proportmoif the time, incurring a constant
regret for each exploration trial, and exploit the remagtime, incurring
a regret per trial that decreases no faster thar) ~'/2. Then regret will
scale like

which is minimized fory ~ n~=1/3, giving regret of orden?/3.




Partial monitoring: Local observability I

With local observability in the stochastic setting, an upganfidence
bound strategy can be constructed that works separategatdr ‘local

pair.’ In the (oblivious) adversarial setting, it sufficesansure a bound on
‘local’ internal regret (internal regret means the deceaassumulative
loss that would have resulted from consistently substigutine action for
another; local means only substituting neighboring asfion




