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1. Linear bandits.

• Full information: mirror descent.

• Bandit information: stochastic mirror descent.
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Full information online prediction games

• Repeated game:

Strategy playsat ∈ A
Adversary revealsℓt ∈ L

• Aim to minimizeregret:

Rn =

n
∑

t=1

ℓt(at)−min
a∈A

n
∑

t=1

ℓt(a).

2



Online Convex Optimization

• Choosingat to minimize past losses can fail.

• The strategy must avoid overfitting.

• First approach: gradient steps.

Stay close to previous decisions, but move in a direction of

improvement.
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Online Convex Optimization

1. Gradient algorithm.

2. Regularized minimization

• Bregman divergence

• Regularized minimization⇔ minimizing latest loss and

divergence from previous decision

• Constrained minimization equivalent to unconstrained plus

Bregman projection

• Linearization

• Mirror descent

3. Regret bound
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Online Convex Optimization: Gradient Method

a1 ∈ A,

at+1 = ΠA (at − η∇ℓt(at)) ,

whereΠA is the Euclidean projection onA,

ΠA(x) = argmin
a∈A

‖x− a‖.

Theorem: ForG = maxt ‖∇ℓt(at)‖ andD = diam(A), the gradient

strategy withη = D/(G
√
n) has regret satisfying

Rn ≤ GD
√
n.
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Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball)

A = {a ∈ R
d : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}. D = 2, G ≤ 1.

Regret is no more than2
√
n.

(And O(
√
n) is optimal.)

Example: (1-ball,∞-ball)

A = ∆(k), L = {a 7→ v · a : ‖v‖∞ ≤ 1}.

D = 2, G ≤
√
k.

Regret is no more than2
√
kn.

Since competing with the whole simplex is equivalent to competing with

the vertices (experts) for linear losses, this is worse thanexponential

weights (
√
k versuslog k).

6



Gradient Method: Proof

Define ãt+1 = at − η∇ℓt(at),

at+1 = ΠA(ãt+1).

Fix a ∈ A and consider the measure of progress‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇ℓt(at)‖2 − 2η∇t(at) · (at − a).

By convexity,

n
∑

t=1

(ℓt(at)− ℓt(a)) ≤
n
∑

t=1

∇ℓt(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2
2η

+
η

2

n
∑

t=1

‖∇ℓt(at)‖2
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Online Convex Optimization: A Regularization Viewpoint

• Supposeℓt is linear:ℓt(a) = gt · a.

• SupposeA = R
d.

• Then minimizing the regularized criterion

at+1 = argmin
a∈A

(

η
t
∑

s=1

ℓs(a) +
1

2
‖a‖2

)

corresponds to the gradient step

at+1 = at − η∇ℓt(at).
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Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

at+1 = argmin
a∈A

(

η
t
∑

s=1

ℓs(a) +R(a)

)

.

The regularizerR : Rd → R is strictly convex and differentiable.

• R keeps the sequence ofats stable: it diminishesℓt’s influence.

• We can view the choice ofat+1 as trading off two competing forces:

makingℓt(at+1) small, and keepingat+1 close toat.

• This is a perspective that motivated many algorithms in the literature.
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Properties of Regularization Methods

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance tothe previous
decision. The appropriate notion of distance is theBregman divergence
DΦt−1

:

Define

Φ0 = R,

Φt = Φt−1 + ηℓt,

so that

at+1 = argmin
a∈A

(

η
t
∑

s=1

ℓs(a) + R(a)

)

= argmin
a∈A

Φt(a).
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Bregman Divergence

Definition: For a strictly convex, differentiableΦ : Rd → R, the

Bregman divergence wrtΦ is defined, fora, b ∈ R
d, as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a, b) is the difference betweenΦ(a) and the value ata of the linear

approximation ofΦ aboutb. (PICTURE)
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Bregman Divergence

Example: For a ∈ R
d, the squared euclidean norm,Φ(a) = 1

2
‖a‖2,

has

DΦ(a, b) =
1

2
‖a‖2 −

(

1

2
‖b‖2 + b · (a− b)

)

=
1

2
‖a− b‖2,

the squared euclidean norm.
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Bregman Divergence

Example: Fora ∈ [0,∞)d, the unnormalized negative entropy,Φ(a) =
∑d

i=1
ai (ln ai − 1), has

DΦ(a, b) =
∑

i

(ai(ln ai − 1)− bi(ln bi − 1)− ln bi(ai − bi))

=
∑

i

(

ai ln
ai
bi

+ bi − ai

)

,

the unnormalized KL divergence.

Thus, fora ∈ ∆d, Φ(a) =
∑

i ai ln ai has

DΦ(a, b) =
∑

i

ai ln
ai
bi
.

13



Bregman Divergence

When the domain ofΦ is S ⊂ R
d, in addition to differentiability and

strict convexity, we make some more assumptions:

• S is closed, and its interior is convex.

• For a sequence approaching the boundary ofS, ‖∇Φ(an)‖ → ∞.

We say that such aΦ is aLegendre function.
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Bregman Divergence Properties

1. DΦ ≥ 0, DΦ(a, a) = 0.

2. DA+B = DA +DB.

3. Forℓ linear,DΦ+ℓ = DΦ.

4. Bregman projection, ΠΦ
A(b) = argmina∈ADΦ(a, b) is uniquely

defined for closed, convexA ⊂ S (that intersects the interior ofS).

5. Generalized Pythagorus: for closed, convexA, a∗ = ΠΦ
A(b), a ∈ A,

DΦ(a, b) ≥ DΦ(a, a
∗) +DΦ(a

∗, b).

6. ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

7. ForΦ∗ the Legendre dual ofΦ,

∇Φ∗ = (∇Φ)
−1

,

DΦ(a, b) = DΦ∗(∇Φ(b),∇Φ(a)).
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Legendre Dual

Here, for a Legendre functionΦ : S → R, we define the Legendre dual as

Φ∗(u) = sup
v∈S

(u · v − Φ(v)) .

(http://maze5.net/)
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Legendre Dual

Properties:

• Φ∗ is Legendre.

• dom(Φ∗) = ∇Φ(int domΦ).

• ∇Φ∗ = (∇Φ)−1.

• DΦ(a, b) = DΦ∗(∇Φ(b),∇Φ(a)).

• Φ∗∗ = Φ.
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Properties of Regularization Methods

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance (Bregman

divergence) to the previous decision.

Theorem: Defineã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(

ηℓt(a) +DΦt−1
(a, ãt)

)

.

Then

ãt+1 = arg min
a∈Rd

(

η
t
∑

s=1

ℓs(a) +R(a)

)

.
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Properties of Regularization Methods

Proof. By the definition ofΦt,

ηℓt(a) +DΦt−1
(a, ãt) = Φt(a)− Φt−1(a) +DΦt−1

(a, ãt).

The derivative wrta is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1
(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizesΦt.
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Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,

followed by Bregman projection:

Theorem: For

at+1 = argmin
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt

A
(ãt+1).
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Properties of Regularization Methods

Proof. Let a′t+1 denoteΠΦt

A
(ãt+1). First, by definition ofat+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,

DΦt
(a′t+1, ãt+1) ≤ DΦt

(at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt
(a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus,Φt(a
′
t+1) ≤ Φt(at+1).
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Properties of Regularization Methods

Example: For linearℓt, regularized minimization is equivalent to min-

imizing the last loss plus the Bregman divergencewrt R to the previous

decision:

argmin
a∈A

(

η
t
∑

s=1

ℓs(a) +R(a)

)

= ΠR
A

(

arg min
a∈Rd

(ηℓt(a) +DR(a, ãt))

)

,

because adding a linear function toΦ does not changeDΦ.
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Linear Loss

We can replaceℓt by∇ℓt(at), and this leads to an upper bound on regret.

Thus, for convex losses, we can work withlinearℓt.
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Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed asmirror

descent—taking a gradient step in a dual space:

Theorem: The decisions

ãt+1 = arg min
a∈Rd

(

η
t
∑

s=1

gs · a+R(a)

)

can be written

ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from̃at through∇R, then taking a step

in the direction−gt, then mapping back through(∇R)−1 = ∇R∗ to

ãt+1.
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Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

∇R(ãt+1) = −η
t
∑

s=1

gs,

∇R(ãt) = −η
t−1
∑

s=1

gs,

so∇R(ãt+1) = ∇R(ãt)− ηgt, which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .
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Mirror Descent

Given:

compact, convexA ⊆ R
d, closed, convexS ⊃ A, η > 0, S ⊃ A,

LegendreR : S → R. Seta1 ∈ argmina∈AR(a).

For roundt:

1. Playat; observeℓt ∈ R
d.

2. wt+1 = ∇R∗ (∇R(at)− η∇ℓt(at)).

3. at+1 = argmina∈ADR(a, wt+1).
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Exponential weights as mirror descent

ForA = ∆(k) andR(a) =
k
∑

i=1

(ai log ai − ai), this reduces to

exponential weights:

∇R(u)i = log ai,

R∗(u) =
∑

i

eui ,

∇R∗(u)i = exp(ui),

∇R(wt+1)i = log(wt+1,i) = log at,i − η∇ℓt(at)i,

wt+1,i = at,i exp (−η∇ℓt(at)i) ,

DR(a, b) =
∑

i

(

ai log
ai
bi

+ bi − ai

)

,

at+1,i ∝ wt+1,i.
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Mirror descent regret

Theorem: Suppose that, for alla ∈ A ∩ int(S), ℓ ∈ L,

∇R(a)− η∇ℓ(a) ∈ ∇R(int(S)). For anya ∈ A,

n
∑

t=1

(ℓt(at)− ℓt(a))

≤ 1

η

(

R(a)−R(a1) +
n
∑

t=1

DR∗

(

∇R(at)− η∇ℓt(at),∇R(at)
)

)

.

Proof: Fix a ∈ A. Since theℓt are convex,

n
∑

t=1

(ℓt(at)− ℓt(a)) ≤
n
∑

t=1

∇ℓt(at)
T (at − a).
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Mirror descent regret: proof

The choice ofwt+1 and the fact that∇R−1 = ∇R∗ show that

∇R(wt+1) = ∇R(at)− η∇ℓt(at).

Hence,

η∇ℓt(at)
T (at − a) = (a− at)

T (∇R(wt+1)−∇R(at))

= DR(a, at) +DR(at, wt+1)−DR(a, wt+1).

Generalized Pythagorus’ inequality shows that the projection at+1

satisfies

DR(a, wt+1) ≥ DR(a, at+1) +DR(at+1, wt+1).
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Mirror descent regret: proof

η
n
∑

t=1

∇ℓt(at)
T (at − a)

≤
n
∑

t=1

(

DR(a, at) +DR(at, wt+1)−DR(a, wt+1)

−DR(a, at+1)−DR(at+1, wt+1)
)

= DR(a, a1)−DR(a, an+1) +

n
∑

t=1

(DR(at, wt+1)−DR(at+1, wt+1))

≤ DR(a, a1) +
n
∑

t=1

DR(at, wt+1).
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Mirror descent regret: proof

= DR(a, a1) +

n
∑

t=1

DR∗(∇R(wt+1),∇R(at))

= DR(a, a1) +
n
∑

t=1

DR∗(∇R(at)− η∇ℓt(at),∇R(at))

= R(a)− R(a1) +
n
∑

t=1

DR∗(∇R(at)− η∇ℓt(at),∇R(at)).
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Linear bandit setting

• See onlyℓt(at); ∇ℓt(at) is unseen.

• Instead ofat, strategy plays a noisy version,xt.

• Strategy usesℓt(xt) to give an unbiased estimate of∇ℓt(at).
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Stochastic mirror descent

Given:

compact, convexA ⊆ R
d, η > 0, S ⊃ A, LegendreR : S → R.

Seta1 ∈ argmina∈AR(a).

For roundt:

1. Playnoisy versionxt of at; observeℓt(xt).

2. Compute estimatẽgt of ∇ℓt(at).

3. wt+1 = ∇R∗ (∇R(at)− ηg̃t).

4. at+1 = argmina∈ADR(a, wt+1).
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Regret of stochastic mirror descent

Theorem: Suppose that, for alla ∈ A ∩ int(S) and linearℓ ∈ L,

E[g̃t|at] = ∇ℓt(at) and∇R(a)− ηg̃t(a) ∈ ∇R(int(S)).
For anya ∈ A,

n
∑

t=1

(ℓt(at)− ℓt(a))

≤ 1

η

(

R(a)−R(a1) +
n
∑

t=1

EDR∗

(

∇R(at)− ηg̃t,∇R(at)
)

)

+
n
∑

t=1

E [‖|at − E[xt|at]‖ ‖g̃t‖∗] .
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Regret: proof

E

n
∑

t=1

(ℓt(xt)− ℓt(a))

= E

n
∑

t=1

(ℓt(xt)− ℓt(at) + ℓt(at)− ℓt(a))

= E

n
∑

t=1

(

E
[

ℓTt (xt − at)
∣

∣ at
]

+ ℓt(at)− ℓt(a)
)

≤ E

n
∑

t=1

‖at − E[xt|at]‖ ‖g̃t‖∗ + E

n
∑

t=1

∇ℓt(at)
T (at − a)

= E

n
∑

t=1

‖at − E[xt|at]‖ ‖g̃t‖∗ + E

n
∑

t=1

g̃Tt (at − a).
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Regret: proof

Applying the regret bound for the (random) linear lossesa 7→ g̃Tt a gives

≤ E

n
∑

t=1

‖at − E[xt|at]‖ ‖g̃t‖∗

+
1

η

(

R(a)− R(a1) +
n
∑

t=1

EDR∗ (∇R(at)− ηg̃t,∇R(at))

)

.
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Regret: Euclidean ball

ConsiderB = {a ∈ R
d : ‖a‖ ≤ 1} (with the Euclidean norm).

Ingredients:

1. Distribution ofxt, givenat:

xt = ξt
at
‖at‖

+ (1− ξt)ǫteIt ,

whereξt is Bernoulli(‖at‖), ǫt is uniform±1, andIt is uniform on

{1, . . . , d}, soE[xt|at] = at.

2. Estimatẽℓt of lossℓt:

ℓ̃t = d
1− ξt

1− ‖at‖
xT
t ℓtxt,

soE[ℓ̃t|at] = ℓt.
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Regret: Euclidean ball

Theorem: Consider stochastic mirror descent onA = (1− γ)B,

with these choices andR(a) = − log(1 − ‖a‖) − ‖a‖. Then for

ηd ≤ 1/2,

Rn ≤ γn+
log(1/γ)

η
+ η

n
∑

t=1

E

[

(1− ‖at‖)‖ℓ̃t‖2
]

.

Forγ = 1/
√
n andη =

√

logn/(2nd),

Rn ≤ 3
√

dn logn.
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