Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett

1. Linear bandits.

Full information: mirror descent.

Bandit information: stochastic mirror descent.




Full information online prediction games.

Repeated game:

Strategy plays; € A

Adversary revealg; € L

Aim to minimizeregret

R, = ;Et(at) — Erélﬁ;&(a).




Online Convex Optimization'

Choosinga; to minimize past losses can fail.

The strategy must avoid overfitting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
Improvement.




Online Convex Optimization'

1. Gradient algorithm.

2. Regularized minimization
Bregman divergence

Regularized minimizatiors minimizing latest loss and
divergence from previous decision

Constrained minimization equivalent to unconstrained plu
Bregman projection

Linearization

Mirror descent

3. Regret bound




Online Convex Optimization: Gradient Method I

a1 € A,

At41 = 114 (Clt — nvgt(at)) )

wherell 4 is the Euclidean projection oA,

II = ' — all.
A(z) = argmin [z — al

Theorem: ForG = max; ||V (as)|| and D = diam(A), the gradien
strategy withn = D /(G+/n) has regret satisfying

R, < GD+/n.




Online Convex Optimization: Gradient Method I

Example: (2-ball, 2-ball)
A={aeR?: || <1}, L={a—v-a:|v]|<1}.D=2,G<1.
Regret is no more thay/n.

(And O(y/n) is optimal.)

Example: (1-ball,cc-ball)
A=Ak),L={a—v-a:|v|| <1}
D=2,G <k

Regret is no more thatw/kn.

Since competing with the whole simplex is equivalent to cetmg with
the vertices (experts) for linear losses, this is worse thgoonential
weights (/% versuslog k).




Gradient Method: Proof I

Define ar41 = ar — NVl (a),
aty1 = I a(Gry1).

Fix a € A and consider the measure of progréss— al|.

lacsr —all® < flaer — all®

= ||la; — @\\2 -+ 772||V€t(at)||2 —2nVi(ay) - (ar — a).

By convexity,

n

Z(gt(at — 5t

t=1




Online Convex Optimization: A Regularization Viewpoint

Supposé; is linear:4;(a) = g+ - a
Supposed = R4,

Then minimizing the regularized criterion

— ls( Zlall2
Qp+1 = arg min (nz a||>

corresponds to the gradient step

at4+1 = Q¢ — nVﬁt <Cbt>.




‘ Online Convex Optimization: Regularization'

Regularized minimization

Consider the family of strategies of the form:

t
Q41 = arg zrgé‘l <1782:1€8(a) + R(a)) .

The regularize? : R? — R is strictly convex and differentiable.
e R keeps the sequence @fs stable: it diminisheg;’s influence.

e We can view the choice af; . as trading off two competing forces:
making/;(a:+1) small, and keeping,.; close toa;.

This is a perspective that motivated many algorithms initeeature.




Properties of Regularization Methodz'

In the unconstrained casd (= R?), regularized minimization is
equivalent to minimizing the latest loss and the distandbeqrevious
decision. The appropriate notion of distance isBnegman divergence

Dg, .:
Define
dy = R,
Py = Oy 1 + nly,

SO that

ac A

a;11 = arg min <77 Zﬁs(a) + R(a))

= in ®.(a).
arggrélﬂ t(a)




Bregman Divergencﬂ

Definition: For a strictly convex, differentiable : RY — R, the
Bregman divergence wik is defined, for, b € R, as

Dg(a,b) = ®(a) — (®(b) + V®(D) - (a —D)).

Dgs(a,b) is the difference betweeh(a) and the value at of the linear
approximation ofd aboutb. (PICTURE)




Bregman Divergencﬂ

Example: Fora € R%, the squared euclidean nord(a) = 3||a|?,
has

Do(a,t) = 3lal* = (10 +b-(a~ 1))

1
— Zlla — bl
5 lla = ol%

the squared euclidean norm.




Bregman Divergencﬂ

Example: Fora € [0, c0)?, the unnormalized negative entro@a) =
2?21 a; (Ina; — 1), has

Dg(a,b) = (a;(Ina; — 1) = bi(Inb; — 1) — Inb;(a; — b;))

:Z(ailn%—l—bi—ai),

the unnormalized KL divergence.
Thus, fora € A%, ®(a) = 3, a;Ina; has




Bregman Divergencﬂ

When the domain ob is S ¢ R?, in addition to differentiability and
strict convexity, we make some more assumptions:

S IS closed, and its interior IS convex.

For a sequence approaching the boundai§,dfV®(a,,)|| — oc.

We say that such @ is aLegendre function.




‘ Bregman Divergence Propertiej

. Dy >0, Dg(a,a) = 0.
. Darp =D+ Dg.
. Forllinear,Dg.¢y = Dg.

. Bregman projection, I1% (b) = arg minge 4 D (a, b) is uniquely
defined for closed, conved C S (that intersects the interior df).

. Generalized Pythagorus: for closed, convex4, a* = T1%(b), a € A,
D<I><CL7 b) > D@(av CL*) + D<I><CL*7 b)

6. VoDg(a,b) = VP®(a) — VO(b).
. For®* the Legendre dual cb,
Vo = (Vo) ',
Dg(a,b) = Dg-(VP®(b), VO(a)).




Legendre DualI

Here, for a Legendre functioh : S — R, we define the Legendre dual as

O*(u) = ilég (u-v—®(v)).

4
same slope m
s I

s &7

biggest gap, A

sup achieved here

up/down shift of ' X
supporting line

=f(m) /

(http://maze5.net/)




Legendre Dual'

Properties:
®* is Legendre.
dom(®*) = V& (int dom ).
Vo = (Vo) .
Dg(a,b) = Dg«(V®(b), VP(a)).
O** = P,




Properties of Regularization I\/Iethodil

In the unconstrained casd (= RY), regularized minimization is
equivalent to minimizing the latest loss and the distancedBian
divergence) to the previous decision.

Theorem: Definea; viaVR(ay) = 0, and set

Qr+1 = arg min (1fy(a) + Da,_, (a,a1)) .

t
Gt+1 = arg min (n;&(a) + R(Cl)) -




Properties of Regularization MethodEI

Proof. By the definition of®,,
nti(a) + De,_,(a,a:) = Pi(a) — Pe-1(a) + Do, _, (a, ).
The derivative wrt is

V&,(a) — VPi_1(a) + VDo, . (a,as)
— V(Dt(a) — VCIDt_l(a) -+ V([)t_l(a) — V(I)t_l(&t)

Setting to zero shows that

vq)t(&ﬁ—l) — V(I)t—l(&t) - = VCI)O(&l) — VR(&l) =0,

Soa; 1 minimizes®;,.




Properties of Regularization I\/Iethodil

Constrained minimization is equivalent to unconstrainegimmzation,
followed by Bregman projection:

Theorem: For

— in ®
At+1 arggrélﬂ t(a),

Qi1 = arg HEI%R% P4 (a),
a

we have

Cl,t_|_1 = Hi)lt (CNLH_l ) .




Properties of Regularization Methodil

Proof. Leta; denotell’y (a;+1). First, by definition ofa; 1,

®4(arr1) < Pilag q)-

Conversely,

Do, (ay11,Gt+1) < Do, (ars1, @rr1).

But V(I)t(CNLH_l) =0, so
Do, (a,at1) = Pi(a) — Pr(ar+1).

ThUS,(I)t(GJ:H_l) S (I)t(at_|_1).




Properties of Regularization I\/Iethodil

Example: Forlinear/,;, regularized minimization is equivalent to mi
Imizing the last loss plus the Bregman divergemst R to the previous

decision:

arg min (77 > l(a) + R(Cl))

= I (arg min (nl;(a) + Dg(a, &t))) ,

acRd

because adding a linear functiond®odoes not chang®.




Linear Loss'

We can replacé; by V/;(a;), and this leads to an upper bound on regref.

Thus, for convex losses, we can work wiittear ¢, .




‘ Regularization Methods: Mirror Descent'

Regularized minimization for linear losses can be vieweghggor
descent-taking a gradient step in a dual space:

Theorem: The decisions

t
Gert = 8T8 T (77 D 9s-a+t R(a))
s=1

can be written

ar11 = (VR) ™ (VR(ar) — ng:) -

This corresponds to first mapping fraipthroughV R, then taking a step
in the direction—g,, then mapping back througiVR)~! = VR* to

iyt




‘ Regularization Methods: Mirror Descent'

Proof. For the unconstrained minimization, we have

soVR(a;11) = VR(a;) — ng:, which can be written

ar41 = VR (VR(a:) —nge) -




Mirror Descent '

Given:

compact, convexd C R, closed, convexs D A, n > 0,S D A,
LegendreR : S — R. Seta; € arg mingc 4 R(a).

For roundt:
1. Playa;; observel, € RY.
2. Wt41 = VR* (VR(CLt> — nVEt(at))

3. arr1 = argminge 4 Dr(a, wir1).




Exponential weights as mirror descen]

ForA = A(k) andR(a) = (a; log a; — a;), this reduces to
=1
exponential weights:

VR*(u); = exp(u;),

VR(wit1)i = log(weyi,i) =logar; — nVei(ar),

Wi41,5 = G5 €XP (_Uvgt(at)i) )

Dgr(a,b) = Z (ai log % + b; — az) :

)

At41,5 X We41,5-




‘ Mirror descent regret I

Theorem: Suppose that, for all € ANint(S), ¢ € L,
VR(a) —nVi(a) € VR(int(S)). For anya € A,

n

> (b(ar) — ti(a))

t=1

Ui

< ! (R(CL) — R(a1) + ZDR* <VR(at) — Vil (ay), VR(at)>> .

t=1

Proof: Fix a € A. Since the/; are convex,

n

Z(ﬁt CLt _gt < ngt Clt Clt — Cl).

t=1




Mirror descent regret: proof I

The choice ofw,; and the fact that R~! = VR* show that
VR(wii1) = VR(ay) — nVili(ay).

Hence,

NVl (ar)" (ar —a) = (a — a;)" (VR(wis1) — VR(ayr))

= Dr(a,at) + Dr(at, wi+1) — Dr(a, weir).

Generalized Pythagorus’ inequality shows that the prmeet;
satisfies

Dr(a,wt+1) > Dr(a,at+1) + Dr(at+1, wiy1).




Mirror descent regret: proof I

n Y Via)" (a; — a)

< Z (DR(C% at) + DR(at, wt—l—l) — DR(C% wt—l—l)
t=1

- DR(C% at+1) - DR(at+1> ’wt+1))

= Dgr(a,a1) — Dgr(a,a,11) + Z (Dr(at, wiy1) — Dr(ai41, wig1))
t=1

< Dg(a,a1) + ZDR(%, W)
t=1




Mirror descent regret: proof I

= Dg(a,a1) + Z Dpr«(VR(ws1), VR(ay))

t=1

= Dp(a,a1) + Y Dr-(VR(ar) — nVei(a;), VR(a,))

t=1

= R(a) — R(a1) + »  Dp-(VR(ar) — nVi(ar), VR(ayr)).

t=1




Linear bandit setting I

See onlyl;(a:); Vi (ay) IS unseen.

Instead ofa;, strategy plays a noisy version,.

Strategy useé; (x;) to give an unbiased estimate G¥; (a;).




\ Stochastic mirror desceng
Given:

compact, conved C R4, n > 0,S O A, LegendreR : S — R.
Seta; € argmingc 4 R(a).
For roundt:

1. Playnoisy versionz; of a;; observel; (x;).
2. Compute estimatg of V/;(ay).
3. Wt41 = VR* (VR(CLt) — 77§t)

4. a;11 = argminge 4 Dr(a, weyq).




Regret of stochastic mirror descen]

Theorem: Suppose that, for all € AN int(S) and linear € L,
E[§t|at] — Vﬁt(at) andVR(CL) — ngt(a) c VR(lIlt(S))
For anya € A,

n

> (b(ar) = ti(a))

t=1

< (R(a) — R(a1) + Y EDg- (VR(at) — N9t VR(at))>

t=1

+ > Elllar — Efze|ag]|l 1ge],]-
t=1




‘ Regret: proof'

E  (b(ze) — ()

t=1

=E Z (e(we) — Liar) + be(ar) — Ci(a))

E [ (ze — at)| ar] + Ci(ar) — Li(a))

Elzt|ad]|| 1|, +EZV@ ay)' (ay — a)

t=1

Elzt|ad]|| 1|, +Ezgt (ar — a).
t=1




‘ Regret: proof'

Applying the regret bound for the (random) linear losses §! a gives

< EZ lar — Elzt|ad]|| [|gell,

+ ! <R(a) — R(a1) + > EDg+ (VR(ar) — nis, VR(CLt))) :

n t=1




Regret: Euclidean baIII

ConsiderB = {a € R? : ||a|| < 1} (with the Euclidean norm).

Ingredients:

1. Distribution ofx;, givenay:

a
e = &4 t” + (1 — & )ecer,,
¢

la

whereé; is Bernoulli||a¢||), €; is uniform+1, and/; is uniform on
{1, e ooy d}, SOE[QZ‘t|&t] — Q.

2. Estimate/; of loss/;:




Regret: Euclidean baIII

Theorem: Consider stochastic mirror descentdn= (1 — v)B,
with these choices an(a) = —log(1 — ||a||) — ||a||. Then for
nd <1/2,

_ log(1 - .
By <+ B0y S [0 - arlIE?).
t=1

Fory =1/y/n andn = /logn/(2nd),

R, < 3+\/dn log n.




