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1. Recall: MDPs.

2. Value iteration.

3. Policy iteration.

4. Linear programming formulation.

5. Q: state-action utility function.
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Recall: Markov Decision Processes

Definition: A Markov Decision Process (MDP) consists of

1. A state spaceX ,

2. An action spaceA,

3. A set of Markov chains,M = (X , Pa), one for eacha ∈ A,

4. A reward distributionR : X ×A → ∆(R).

A policy is a sequence of functionsπt : X → ∆(A), one for each

time t. (A stationary policy is constant witht.)
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Recall: Value iteration

Definition: Define the operatorT : RX → R
X by

(TJ)(x) = max
a∈A

E [r0 + αJ(x1)|x0 = x, a0 = a] .

Theorem: For anyα < 1, there is a vectorJ∗ ∈ R
X such that

1. For allJ ∈ R
X , J∗ = limk→∞ T kJ .

2. J∗ is the unique solution toJ = TJ .

3. J∗ = maxπ J
π, where the max is over stationary (or non-

stationary) policiesπ.

4. J∗ = Jπ∗

, where

π∗(x) = argmax
a∈A

E [r0 + αJ∗(x1)|x0 = x, a0 = a] .
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Greedy policy

Notice thatπ∗ is thegreedy choice with respect to the value functionJ∗.

Definition: For a value function estimatêJ ∈ R
X , the corre-

sponding greedy policy isπ = GĴ , where we define the greedy

operatorG : RX → AX :

(GĴ)(x) := argmax
a∈A

E

[

r0 + αĴ(x1)
∣

∣

∣
x0 = x, a0 = a

]

.

It’s easy to show:

Lemma: For a value function estimatêJ ∈ R
X , if π = GĴ ,

‖J∗ − Jπ‖∞ ≤
2α

1− α
‖J∗ − Ĵ‖∞.
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Value iteration and (generalized) policy iteration

Value iteration:

Ĵk+1 := T Ĵk, πk+1 := GĴk+1.

Policy iteration:

πk+1 := GJπk .

Generalized policy iteration:

Jk+1 := T l
πk
Jk, πk+1 := GJk+1.
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(Generalized) policy iteration

Theorem:

Policy iteration generates a sequence of policies with distinct, in-

creasing values, terminating after a finite number of iterations

with an optimal policy, that is, for somek,

Jπ0 ≤ Jπ1 ≤ · · · ≤ Jπk = J∗.

Generalized policy iteration generates a sequence of policies

with Jk → J∗.
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Linear program

Bellman equations:

J = TJ.

Linear programming formulation:

Fix a probability distributionp with supportX .

min
J

pTJ

s.t. J ≥ TJ.

7



Linear program

Proof. Uses monotonicity:J ≥ J ′ impliesTJ ≥ TJ ′. SoJ ≥ TJ

impliesJ ≥ T kJ → J∗. Minimizing µTJ setsJ = J∗.
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Dual linear program

max
µ

∑

x∈X

∑

a∈A

µ(x, a)E [r0|x0 = x, a0 = a]

s.t. ∀x′ ∈ X ,
∑

a∈A

µ(x′, a) = p(x)

+ α
∑

x∈X

∑

a∈A

µ(x, a)P [x1 = x′|x0 = x, a0 = a].

View λ as discounted expected number of state-action visits, starting from

the distributionp. So criterion is expected discounted reward.

Primal-dual are related via optimal policy:π∗(x) = argmaxa∈A λ(x, a).
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Q values

Analogous toJ∗:

Q∗(x, a) := E

[

r0 + αmax
a′∈A

Q∗(x′, a′)

∣

∣

∣

∣

x0 = x, a0 = a

]

,

π∗(x) := argmax
a∈A

Q∗(x, a).

Q iteration:

Q̂k+1(x, a) := E

[

r0 + αmax
a′∈A

Q̂k(x
′, a′)

∣

∣

∣

∣

x0 = x, a0 = a

]

,

πk+1(x) := argmax
a∈A

Q̂k+1(x, a).
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