Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
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1. Markov decision processes
and partially observable Markov decision processes.

2. Value functions() functions.

3. Finite horizon: dynamic programming.

4. Bellman operator.




\ Markov Decision Processe.

We can think of bandit problems as the simplest example afesscal
decision problems, which involve an exploitation/exptana tradeoff.

Contextual bandit problems also involve a notiorstate: the best choice
of action depends on the context. But the evolution of thiessaout of
the control of the strategy. In MDPs, the strategy’s act@lss influence
the state, in a probabilistic way.




\ Markov Decision Processe.

Definition: A Markov Decision Process (MDP) consists of

1. A state spaced’,

2. An action space,

3. A set of Markov chainsM = (X', P,), one for eaclu € A,
4. Areward distribution? : X x A — A(R).

A policy is a sequence of functions : X — A(.A), one for eacl
timet. (A stationary policy is constant with)




\ Markov Decision Processe.

Examples:
Inventory control.

Backgammon.




Digital marketing.




Partially Observable Markov Decision Processe'

Definition: A Partially Observable Markov Decision Process
(POMDP) consists of

1. An MDP (X, A, P, R), and

2. An observation process: X — A()), whereA()) is the
set of probability distributions on the observation sp3ce

A policy is a functionrt : Y* — A(.A) that maps from observatic
histories to distributions over actions.




Some Objectivej

What is the aim? (Herey ~ R(x¢,a¢).)

1. Maximize total expected reward,

Jn($0) =3

3. Maximize average reward,

n—oo




Finite horizon dynamic programming I

Consider a policyr = (g, ..., Th_1).
CCZ)T?&Z)T ~ 77—0<$6T)77a(7)T ~ R(ajg,a,g),a;f ~ Pag (CCZ)T>7

oz af ~m(xf),rf o~ R(xf,af ), xf g ~ Pyr(xf), ...

Expected total reward of, starting atc:

n—1
Ji(xg) =E er :1;0] :

t=0

Optimal reward/policy fromx:

J>(xg) = max J| (xg), 7" = argmax J (x).




Finite horizon dynamic programming I

The value to go fromx;, underr = (m;, ..., 7T, _1):

n—1
Sl (x;) =E er xz] .

t=1

Bellman’s Principle of optimality: For the optimal policy
™ = (ng,..., 7 _1), and for anyr;, however it was reached, thal

policy (7},...,m;_) optimizes the value to go from.

y "n—1
This motivatesilynamic programming, a backwards induction: find* -,
thenw’ _,, etc.




Finite horizon dynamic programming I

First chooser*

n—1-

*

n—l,n(xn—1> = max [E [Tn—l‘xn—la an—l] .

an—1 EA
Then chooser; _:

;_an(afn—Q) — amaé( E [Tn_g + J;;—l,n(xn—l)’ Ln—2, an—Q} .
n—2




Finite horizon dynamic programming: TI

Definition: Define the operatdf’ : Rt — R by

(TJ)(x) = ]gleach[rO + J(x1)|xg = T,00 = a.

Then the optimal value is given by, = Jij,, where

S (1) =0,

* *
Jt,n =T t+1,n-




Finite horizon policy evaluation: 7, I

Similarly, to compute/”: (e.g..m stationary)

Definition: Define the operatdf, : RY — R+ by
(TrJ)(x) =E[rg+ J(x1)|x0 = 2,00 = 7(20)] .

Then the value under is given byJ7 = Jg,, where

‘]g,n<x) = 0,

s s
Jt T7T t+1,n-

7n_




Infinite horizon discounted reward '

J(xg) =E ZOétTt oy
t=0

Definition: Define the operatdf,. : R* — R by

(TrJ)(x) =E[ro+ aJ(z1)| xg = 2,00 = 7(x0)] .

Theorem: For anyr anda < 1, there is a vectod™ € R such
that

1. ForallJ € RY, J™ = limy o T%J.
2. J7™ Is the unique solutiontd = T, J.




‘ Infinite horizon optimal policy: Value iteration I

Definition: Define the operatdf : RY — R+ by

(TJ)(x) = meaj(E (70 + aJ(z1)| zog = 2,00 = a] .

Theorem: For anya < 1, there is a vectog* € R such that

. ForallJ € RY, J* = limy_, o T%J.
. J* is the unique solutiontd = T'J.
. J* = max,; J™, where the max Is over stationary (or nc

stationary) policiesr.

. J* = J7  where

() = argmaj(E (70 + aJ™ (x1)| 20 = 2,00 = a.
ac




Infinite horizon discounted reward I

Lemma: 7 and7, are contractions:

ITT ~TT | <@l =T
|Td = T || < @l = ).

This follows from:
1. J < J'impliesTJ <TJ andT,J <T.J' .

2. Foralle € R, Tk(J +cl)<TJ+ a*cl and
TE(J +cl) < T J + afel.




