
Stat 260/CS 294-102. Learning in Sequential Decision
Problems.

Peter Bartlett

1. Markov decision processes

and partially observable Markov decision processes.

2. Value functions,Q functions.

3. Finite horizon: dynamic programming.

4. Bellman operator.
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Markov Decision Processes

We can think of bandit problems as the simplest example of sequential

decision problems, which involve an exploitation/exploration tradeoff.

Contextual bandit problems also involve a notion ofstate: the best choice

of action depends on the context. But the evolution of the state is out of

the control of the strategy. In MDPs, the strategy’s actionsalso influence

the state, in a probabilistic way.
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Markov Decision Processes

Definition: A Markov Decision Process (MDP) consists of

1. A state spaceX ,

2. An action spaceA,

3. A set of Markov chains,M = (X , Pa), one for eacha ∈ A,

4. A reward distributionR : X ×A → ∆(R).

A policy is a sequence of functionsπt : X → ∆(A), one for each

time t. (A stationary policy is constant witht.)
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Markov Decision Processes

Examples:

• Inventory control.

• Backgammon.
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• Digital marketing.
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Partially Observable Markov Decision Processes

Definition: A Partially Observable Markov Decision Process

(POMDP) consists of

1. An MDP (X , A, P , R), and

2. An observation processν : X → ∆(Y), where∆(Y) is the

set of probability distributions on the observation spaceY.

A policy is a functionπ : Y∗ → ∆(A) that maps from observation

histories to distributions over actions.
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Some Objectives

What is the aim? (Here,rt ∼ R(xt, at).)

1. Maximize total expected reward,

Jn(x0) = E

[

n−1
∑

t=0

rt

∣

∣

∣

∣

∣

x0

]

.

2. Maximize discounted reward,

Jα(x0) = E

[

∞
∑

t=0

αtrt
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∣

∣

∣

∣

x0

]

.

3. Maximize average reward,

J(x0) = lim
n→∞

E

[

1

n

n
∑

t=0

rt
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∣

∣

x0

]

.
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Finite horizon dynamic programming

Consider a policyπ = (π0, . . . , πn−1).

xπ
0 , a

π
0 ∼ π0(x

π
0 ), r

π
0 ∼ R(xπ

0 , a
π
0 ), x

π
1 ∼ Paπ

0
(xπ

0 ),

. . . xπ
t , a

π
t ∼ πt(x

π
t ), r

π
t ∼ R(xπ

t , a
π
t ), x

π
t+1 ∼ Paπ

t
(xπ

t ), . . .

Expected total reward ofπ, starting atx0:

Jπ
n (x0) = E

[

n−1
∑

t=0

rπt

∣

∣

∣

∣

∣

x0

]

.

Optimal reward/policy fromx0:

J∗
n(x0) = max

π
Jπ
n (x0), π

∗ = argmax
π

Jπ
n (x0).
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Finite horizon dynamic programming

The value to go fromxi, underπ = (πi, . . . , πn−1):

Jπ
i,n(xi) = E

[

n−1
∑

t=i

rπt

∣

∣

∣

∣

∣

xi

]

.

Bellman’s Principle of optimality: For the optimal policy

π∗ = (π∗
0 , . . . , π

∗
n−1), and for anyxi, however it was reached, thetail

policy (π∗
i , . . . , π

∗
n−1) optimizes the value to go fromxi.

This motivatesdynamic programming, a backwards induction: findπ∗
n−1,

thenπ∗
n−2, etc.
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Finite horizon dynamic programming

First chooseπ∗
n−1:

J∗
n−1,n(xn−1) = max

an−1∈A
E [rn−1|xn−1, an−1] .

Then chooseπ∗
n−2:

J∗
n−2,n(xn−2) = max

an−2∈A
E
[

rn−2 + J∗
n−1,n(xn−1)

∣

∣xn−2, an−2

]

.
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Finite horizon dynamic programming: T

Definition: Define the operatorT : RX → R
X by

(TJ)(x) = max
a∈A

E [r0 + J(x1)|x0 = x, a0 = a] .

Then the optimal value is given byJ∗
n = J∗

0,n where

J∗
n,n(x) = 0,

J∗
t,n = TJ∗

t+1,n.
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Finite horizon policy evaluation: T
π

Similarly, to computeJπ
n : (e.g.:π stationary)

Definition: Define the operatorTπ : RX → R
X by

(TπJ)(x) = E [r0 + J(x1)|x0 = x, a0 = π(x0)] .

Then the value underπ is given byJπ
n = Jπ

0,n where

Jπ
n,n(x) = 0,

Jπ
t,n = TπJ

π
t+1,n.
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Infinite horizon discounted reward

J(x0) = E

[

∞
∑

t=0

αtrt

∣

∣

∣

∣

∣

x0

]

.

Definition: Define the operatorTπ : RX → R
X by

(TπJ)(x) = E [r0 + αJ(x1)|x0 = x, a0 = π(x0)] .

Theorem: For anyπ andα < 1, there is a vectorJπ ∈ R
X such

that

1. For allJ ∈ R
X , Jπ = limk→∞ T k

πJ .

2. Jπ is the unique solution toJ = TπJ .
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Infinite horizon optimal policy: Value iteration

Definition: Define the operatorT : RX → R
X by

(TJ)(x) = max
a∈A

E [r0 + αJ(x1)|x0 = x, a0 = a] .

Theorem: For anyα < 1, there is a vectorJ∗ ∈ R
X such that

1. For allJ ∈ R
X , J∗ = limk→∞ T kJ .

2. J∗ is the unique solution toJ = TJ .

3. J∗ = maxπ J
π, where the max is over stationary (or non-

stationary) policiesπ.

4. J∗ = Jπ∗

, where

π∗(x) = argmax
a∈A

E [r0 + αJ∗(x1)|x0 = x, a0 = a] .
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Infinite horizon discounted reward

Lemma: T andTπ are contractions:

‖TJ − TJ ′‖
∞

≤ α ‖J − J ′‖
∞

,

‖TπJ − TπJ
′‖

∞
≤ α ‖J − J ′‖

∞
.

This follows from:

1. J ≤ J ′ impliesTJ ≤ TJ ′ andTπJ ≤ TπJ
′.

2. For allc ∈ R, T k(J + c1) ≤ TJ + αkc1 and

T k
π (J + c1) ≤ TπJ + αkc1.
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