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1. Linear bandits.

• Exponential weights with unbiased loss estimates.

• Controlling loss estimates and their variance.
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Linear bandits

At roundt,

• Strategy choosesat ∈ A ⊂ R
d.

• Adversary chooses lossℓt ∈ A∗ ⊂ [−1, 1]d.

• Strategy sees lossℓt(at).

Loss islinear in action.

Aim to minimize pseudo-regret:

Rn = E

n
∑

t=1

ℓt(at)− inf
a∈A

E

n
∑

t=1

ℓt(a).
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Example: Packet routing

Consider the problem of packet-routing in a network(V,E). At roundt,

• Strategy chooses a pathat ∈ A ⊂ {0, 1}E from origin node to

destination node.

• Adversary chooses delaysℓt ∈ L = [0, 1]E .

• See lossℓt · at (total delay).

Aim to minimize pseudo-regret:

Rn = E

n
∑

t=1

ℓt · at − inf
a∈A

E

n
∑

t=1

ℓt · a.

Loss islinear in action.
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Linear bandits vs k-armed bandits

This problem is closely related to the classicalk-armed bandit problem:

At roundt:

• Strategy choosesat ∈ A = {1, . . . , k}.

• Adversary choosesℓt ∈ L = [0, 1]A.

• See lossℓt(at).

Aim to minimize pseudo-regret:

Rn = E

n
∑

t=1

ℓt(at)− inf
a∈A

E

n
∑

t=1

ℓt(a).
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Linear bandits vs k-armed bandits

This is unchanged (up to a constant factor) if we instead define

A = {e1, . . . , ek} ⊂ R
k,

L = A∗ ∩ [−1, 1]A,

(bounded linear functions onA).

And allowing the strategy to choosea in the convex hull ofA does not

change the pseudo-regret

Rn = E

n
∑

t=1

ℓt(at)− inf
a∈A

E

n
∑

t=1

ℓt(a).

(But it might make the game easier for the strategy since it changes the

information that the strategy sees.)
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Finite covers

For a compactA ⊆ R
d, we can construct anǫ-cover of sizeO(1/ǫd).

Since we’re aiming forO(
√
n) regret, we can think ofA as having

cardinality|A| = O(nd/2), solog |A| = O(d logn).
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Exponential weights for linear bandits

GivenA, distributionµ onA, mixing coefficientγ > 0, learning

rateη > 0,

setq1 uniform onA.

for t = 1, 2, . . . , n,

1. pt = (1− γ)qt + γµ

2. chooseat ∼ pt

3. observeℓTt at

4. updateqt+1(a) ∝ qt(a) exp(−ηℓ̃Tt a)),

where

ℓ̃t =
(

Ea∼pt
aaT

)†
ata

T
t ℓt.
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Unbiased loss estimates

Strategy observesaTt ℓt andat, so it can compute

ℓ̃t =
(

Ea∼pt
aaT

)†
at

(

aTt ℓt
)

.

Also,

Eat∼pt
ℓ̃t =

(

Ea∼pt
aaT

)† (
Eat∼pt

ata
T
t

)

ℓt = ℓt.
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Regret bound

Theorem: For supa∈A

∣

∣

∣
ℓ̃Tt a

∣

∣

∣
≤ 1 andη < 1/2,

Rn ≤ γn+
log |A|

η
+ (e− 2)η

n
∑

t=1

Ea∼pt

(

ℓ̃Tt a
)2

.

So we need to control the magnitude of the loss estimates,

sup
a∈A

∣

∣

∣
ℓ̃Tt a

∣

∣

∣

and the variance term,

Ea∼pt

(

ℓ̃Tt a
)2

.
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Exponential weights for linear bandits

• (Dani, Hayes, Kakade, 2008):
Forµ uniform overbarycentric spanner,

Rn = Õ
(

log |A|
√
dn+ d3/2

√
n
)

= Õ
(

d3/2
√
n
)

.

• (Cesa-Bianchi and Lugosi, 2009):
If smallest non-zero eigenvalue ofEa∼µ[aa

T ] is Ω(1/d),

Rn = Õ
(

√

dn log |A|
)

= Õ
(

d
√
n
)

.

And for several interestingA, µ uniform overA suffices.

• (Bubeck, Cesa-Bianchi and Kakade, 2009):
Johns Theorem gives a suitableµ.

Rn = Õ
(

√

dn log |A|
)

= Õ
(

d
√
n
)

.
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