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1. Linear bandits.

Exponential weights with unbiased loss estimates.

Controlling loss estimates and their variance.




Linear bandits.

At roundt,
Strategy chooses, € A C R?.
Adversary chooses logs € A* C [-1,1]%.
Strategy sees logs(a).

Loss islinear in action.

Aim to minimize pseudo-regret:

En = EZEt(at) — 1
t=1




‘ Example: Packet routing'

Consider the problem of packet-routing in a netw@vk £'). At roundt,

Strategy chooses a paih € A c {0, 1}* from origin node to
destination node.

Adversary chooses delaysc £ = [0,1]*.
See losd; - a; (total delay).

Aim to minimize pseudo-regret:

Rn :Ezgt - At —iggEzgt - Qa.
t=1 t=1

Loss islinear in action.




Linear banditsvs k-armed bandits.

This problem is closely related to the classikarmed bandit problem:
At roundt:

Strategy chooses, € A ={1,..., k}.
Adversary choose& ¢ £ = [0, 1]
See los¥;(a;).

Aim to minimize pseudo-regret:

En = EZEt(at) — 1
t=1




Linear banditsvs k-armed bandits.

This is unchanged (up to a constant factor) if we instead defin
A={ei,...,ex} CR"
L=AN[-1,1"4,

(bounded linear functions a#d).

And allowing the strategy to choogsdan the convex hull of4 does not
change the pseudo-regret

ac A

En — EZEt(at) — inf Ez&(a)
t=1 t=1

(But it might make the game easier for the strategy sinceahghs the
iInformation that the strategy sees.)




Finite covers.

For a compactd C R<, we can construct artcover of sizeD(1/¢%).
Since we’re aiming fo)(,/n) regret, we can think afl as having
cardinality|A| = O(n%/?), solog |A| = O(dlogn).




Exponential weightsfor linear bandits'

Given A, distributiony on A, mixing coefficienty > 0, learning
raten > 0,
setg; uniform onA.
fort =1,2,...,n,
Lpp=0=va+
2. chooseu; ~ p;

3. observe!! a;

4, updateqt+1(a) X Qt(a) eXP(—Ug?a))’
where




Unbiased loss estimates'

Strategy observes' ¢; anday, So it can compute

Zt = (Ear‘vpt aaT)T ag (a?ﬁt) :

~

Eatwptgt = (EaNptCLCLT)T (Eatwpt&t&f) gt = gt-




Regret bound I

Theorem: Forsup,c 4 |Z;Fa‘ < landn < 1/2,

— log | A - ~ 0 2
R, < yn+ gn‘ | +(e=2)n ) Eanp, (z;‘”a) .
t=1

So we need to control the magnitude of the loss estimates,

sup EtTa|
acA

and the variance term,

N2
Egmp, <€tTa) :




Exponential weightsfor linear bandits'

o (Dani, Hayes, Kakade, 2008):
For 1 uniform overbarycentric spanner,

R,=0 (log AV dn + d3/2\/ﬁ) =0 (d3/2\/ﬁ> .

e (Cesa-Bianchi and Lugosi, 2009):
If smallest non-zero eigenvalue Bf,.,,[aa’] is Q(1/d),

R, = O (/dnlog|A]) = O (dv/n)

And for several interestingl, 1. uniform over.A suffices.

e (Bubeck, Cesa-Bianchi and Kakade, 2009):
Johns Theorem gives a suitable.

R, = O (y/dnlog|A]) = O (dv/n)




