Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett
1. Gittins Index:
Discounted, Bayesian (hence Markov arms).
Reduces to stopping problem for each arm.

Interpretation as (scaled) equivalent lump sum.

Computation.




‘ Gittins index for Bayesian bandits'

Attime ¢, armyj givesX; , ~Bernoullip,) reward. Aim to choose
sequence of armg, I, ..., SO as to maximize total expected discountep
reward:

EY 7'Xy, 4
t=0

where( < ~v < 1 is a discount factor that ensures limits exist.



‘ Gittins index for Bayesian bandits'

AssumeBeta(a;, ) prior onp;:

p* (1 —p)i!
B(a, 5) ’

m(plo, B) =
whereB Is thebeta function:

(a— DB —1)!
(a+p—1)!

for positive integersy, 5. This is a conjugate prior for the binomial
distribution: the posterior distribution @fgivenk successes out of is

P(plk, o, B) o< P(k|p)m(pla, B)
o p*(1—p)" Fp*t (1 —p)P,

which is aBeta(«a + k, 8 + n — k) distribution.

1
B(a,ﬁ)z/o N1 —2)Pde =




‘ Gittins index for Bayesian bandits'

Assumep; independent. Then if armhas been pulled times withk
successes, we can thinkof,, = (a + k, 8 + n — k) as the state of the
arm, and we know how the state evolves when the arm is pulled:

P (8jn+1 = 8jn + (1,0)[85n) = P(Xjn = 1[850).
And we also know the reward distribution
P[Xjn = 1]sjn]-

This is just the mean of the Beta posterior:

E[X)nlsjn = (o, B8)] = Elpjlsjn = (o, 8)] =

a+ B




‘ Gittins index for Bayesian bandits'

From now on, we’ll assume:

1. that the state;(¢) of armj is unchanged if we do not choose that
arm,

2. that we choose a single arm, its state evolves as a knowkoMar
chain when we choose it, and our actions do not affect thaugsen.

3. that given the statey, (¢) of the arm that is played, the rewakd, ;
IS conditionally independent of the past and of the othersastates:

Xft,t — RIt <SIt( ))
Choose a policyr to maximize the total expected discounted reward,

Ve(s) = Ex | Y 7' R (51,(1))] 5(0) = 8] -

We'll call a problem of this kind aliscounted Markov bandit problem.




‘ Gittins index for Bayesian bandits'

We might be tempted to use dynamic programming to find thevati
value:

V(s) =max { ER;(s;) +7 > Pi(sils;)V(s)

J

wheres = (s1,...,s;) ands’ = (s1,...,8-1,55, 8541, -+, k).
But the state space has size exponential in

Markov bandit problems are easier...




\Gittins Index: some Intuition I

If we knew the sequence of rewards, we could balance the széraing
of the rewards to maximizg_, v* Ry, .

Example:




\Gittins Index: some intuition I

Decreasing reward sequences are easy. How could we makextaris
decreasing?

If, once we've chosen an arm, we keep choosing it as long askisl at
least as good as it looked when we started playing it, then dnmod it
looks Is non-increasing.

(Of course, “how good it looks” at the start will depend on Howg we
anticipate playing it.)

Let’s consider a simpler problem, where we need to chooserther of
the arms (and we never return to an arm).




\Gittins Index: some Intuition I

Consider the related (simpler) problem of scheduling jatba anachine:
Job: takes time; and, on completion, gives reward
How should we order them, so as to maximize total discourage@nd?

1 then2:
t1+t2

1yt eyt TR Vs ey 4y

We should schedule before2 if

t1

o b2

1 — At

~

T > 1_7752

To.

So we can compute this index for each job, and schedule them in
decreasing order of the indices.




Gittins index I

Gittins’ work reduced discounted Markov bandit problemsttmpping
problems, and used a swapping argument to show the optyno@lt
‘dynamic allocation index’ (Gittins index).

Theorem: [Gittins Index Theorem] For any discounted Markov bandli
problem, define the “Gittins index”:

G;(sj) = sup {oz :sup E z_:vt (R;(s;(t)) —a)|s;(0) = Sj] > O} :

T t=0

wherer > 1 is astopping time. Then there is an optimal policy that,
timet, chooses
I, € argmax G(s;(1)).
J




‘Some properties of the Bernoulli casj

For s successes anfifailures:

Success helps:  G((s, f+1)) < G((s,f)) <G((s+ 1, f))

S

s+ f

Fors + f — oo, G((s, f)) —

Failure hurts for large:
Yk >0, v, Vy >, G((s+ k, f +1)) < G((s, f))




‘ Gittins index proof I

What does the index mean?

Gi(s;) =sup {a :sup E z_:'yt (R;(s(t)) —a)|s;(0) = sj] > O} :

T t=0

Fix an arm. Think ofr as a fixed tax. Consider a stopping game:
e Suppose the tax is.

e Attimet, if | haven't already stopped (that is,> t), | can choose to
keep playing, pay the tax and receive the rewarll; (s;(t)).

e 7is when | choose to stop. (Can depend only onsthte.)

Suppose | keep playing if the tax is at or below my subsequeeated
discounted reward, and stop as soon as the tax becomesiegcess




‘ Gittins index proof I

Crucial properties:

1. Expected total discounted profit is zero
(because of the way the tax is set for the starting state).

2. The value ofx can only decrease as this game progresses.
(If the fair tax level increases above | get to continue playing an
make a profit. It is only when it drops belawthat | stop playing.)




‘ Gittins index proof I

Multiple arms:

Each arm offers a fair game, provided that | play it optimally
(continue to play it while the tax is fair or favorable).
In that case, the expected total discounted profit is stith.ze

Expected discounted rewase expected discounted tax paid.

For each arm, the sequence of taxes is:
1. non-increasing,
2. random,

3. independent of the policy.

Non-increasing= there is a unique interleaving of these sequences intg
single non-increasing sequence of taxes, and this comespo the

largest total discounted tax paid (because of the disc@aandr).

14



‘ Gittins index proof I

The strategy that plays the arm with the highest tax (unéldptimal
stopping time) is equivalent to the strategy that plays thewith the

highest Gittins index7; (if G; was the highest and it increases, then wit
optimal stopping, we would continue to play. And this strategy will

pay the largest total discounted tax, that is, will have tlaimal total
discounted expected reward.




Gittins index: A retirement interpretation I

DI EU < <t>>|sj<o>=sj}
Gi(s;) =sup

T [ sj(0) = 89}
which is the maximal ratio (under optimal choice of stoppiinge ) of
expected discounted reward to expected discounted time.

If we definel1 = G,(sj)/(1 —), then since
(1-79)2i 0" L=(1-97)L

ivtRj(Sj@)) +77L|s;(0) = Sj] -

So this is the valud, for which we would consider receiving the lump

sum L now or receivingL after some optimal number of further rewards
to be equally good alternatives.




‘ Computing the Gittins index'

How do we calculaté&y;?

Offline Calculate the table of values of the index for each state.

Online Calculate the value of the index for the current state, aad th
corresponding stopping time (equivalently, stopping &etjhe
current state. This is convenient when the state spacage.lar

Notice that the optimal stopping problem is a problem of oalhhg a
Markov decision process. If the state space is not too lavgesould use
value iteration (iterate the Bellman optimality equatipms solve the
corresponding linear program. Chen and Katehakis (198&yst that
this can be extended to include the optimization of the valas part of
the LP. Another approach, due to Varaiya, Walrand and Buyckk
Involves properties of the stopping time: for a statéhe stopping set is
all states with Gittins index lower than




‘Computing the Gittins index: Offline I

Largest Remaining Index Algorithm:

1. Find states; with largest Gittins index(s1) = R(s1).
2. Given statesy, ..., s,_1 with largest Gittins indices,
find s, as follows:
(a) Define the continuation sét(sy;) = {s1,...,Sk_1}-
(b) Define the continuation transition matrix by
P =P, 1[s € C(s1)].

s’,s

(c) Compute the values and durations

VF = (I —~PMHYIR, 4B = (I —yPM)711,

(d) Sets, = arg max,ec(s,) V¥ /dS", with G(s;,) = V¥ /d.




Computing the Gittins index: Online I

Recall that, forL = G,(s;)/(1 — ),

L=E ivtRj(Sj(t)) +77L|s;(0) = Sj] -

For a fixedL, the optimal stopping time will achieve value from eachtstgr
state given by the unique vectosatisfyingv = max {R + vPv, L1}.

Suppose we want to compute s) for a single state. Observe that, it
IS the correct retirement payout ferthen either retiring or restarting i
will lead to the same subsequent total discounted expeeteard. So if
we allow, in each state, to restart in staféhe solution to the fixed point
equationv = max { R + yPv, 1R(s) + vP.v} givesG(s) = (1 — v)vs.
And we could solve this fixed point equation by formulatingsta linear
program, for example.




