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1. Contextual bandits.

• Infinite comparison classes.

− Examples: parameterized policies.

− Recall: finiteǫ-covers and Exp4.

∗ Randomǫ-covers for VC classes.

− Greedy optimization of regularized regret.
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Recall: Contextual bandits

At each round:

• SeeXt ∈ X .

• ChooseIt ∈ A, A = {1, . . . , k}.

• Receive rewardYIt,t ∈ R.

Stochastic/adversarial model for(X, Y ) ∈ X × R
A.

Pseudo-regret:

Rn = sup
π∈Π

E

n
∑

t=1

Yπ(Xt),t − E

n
∑

t=1

YIt,t.

whereΠ is comparison class of policiesπ : X → A (or the stochastic

version,π : X → ∆A).
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Infinite comparison classes

For instance, linear threshold functions forX ⊆ R
d:

π(x) = argmax
j∈A

φ(x, j)′θ.

whereθ ∈ R
d is a parameter vector andφ : X ×A → R

d is a feature

map.
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Infinite comparison classes: Finite covers

Theorem: For a classΠ with SΠ(n) ≤ Bnd, there is a strategy

such that, under the i.i.d. stochastic model:(Xt, Yt) ∼ P , with

probability1− δ,

Rn = O

(
√

nkd log
n

d

)

.

This strategy takes̃O(nd/2) time per round.
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Infinite comparison classes: Finite covers

Approach:

1. Construct a finiteǫ-coverΠ̂ of Π, with respect to the pseudo-metric

ρ(π̂, π) = Pr (π(Xt) 6= π̂(Xt)) .

• e.g., construct a cover̂Π of Π from a cover ofΘ.

• e.g., construct a cover̂Π of Π as the (random) set of

representatives of each element of

{(π(X1), . . . , π(Xm)) : π ∈ Π} .

2. Use Exp4 on̂Π.
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Combinatorial dimensions

• The size ofΠ̂ is no more than

SΠ(n) := max
x1,...,xn∈X

|{(π(x1), . . . , π(xn)) : π ∈ Π}| .

• Combinatorial dimensions (like the VC-dimension and its

generalizations tok-valued functions) determine the rate of growth of

SΠ(n): for d = dV C(Π),

SΠ(n)







= 2n if n ≤ d,

≤ (e/d)
d
nd if n > d.
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VC-dimension bounds for parameterized families

Consider a parameterized class ofk-valued functions,

Π = {x 7→ f(x, θ) : θ ∈ R
p} ,

wheref : Rm × R
p → {1, . . . , k}.

Suppose thatf can be computed using no more thant operations of the
following kinds:

1. arithmetic (+, −, ×, /),

2. comparisons (>, =, <),

3. output a constant in{1, . . . , k}

Theorem: dV C(Π) = O(pt log k).

(And a similar story applies, with a worse dependence ont, if we include
the exponential function in the set of operations.)
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Summary: Infinite Π ⊆ {1, . . . , k}X

• If any strategy can compete with an infiniteΠ for all distributions on
X × [0, 1]k, thenSΠ(n) must have polynomial growth, sayO(nd).

• In that case, we can use i.i.d. data to build anǫ-cover ofΠ of size
O(SΠ(n)) = O(nd).

• Running Exp4 with this class of experts gives regret

Rn = O
(

√

nkd logn
)

.

• The drawback iscomputational: SΠ(n) is polynomial inn, but
exponential in the dimensiond. For example, for

π(x) = argmax
j∈A

φ(x, j)′θ,

the computation grows exponentially with the number of features.
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An alternative approach: Reduction to classification

The high-level idea:

• Gather relevant data(xt, at, rt(at), pt(at)). (Here,(xt, rt) are i.i.d.)

• Transform data to(x, ℓ) ∈ X × R
A pairs.

• Find aπt ∈ Π to minimize empirical risk,

1

t

t
∑

s=1

ℓs(π
t(xs)).

• Useπt to update how strategy makes subsequent choices.

Assumes we have access to an efficient empirical risk minimization

oracle.
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An alternative approach: Reduction to classification

Example:ǫ-greedy.

• With probabilityǫ, explore: chooseat uniformly.

• Otherwise, chooseat ∼ πt.

• Use exploration data for losses,

ℓt(a) =
(1− rt(at))1[a = at]

pt(at)
= k(1− rt(at))1[a = at].

• Uniform convergence ensuresπt has per-trial regretO(1/
√
ǫt).

Regret from exploration trials isO(ǫn).

• Optimizing givesǫ ∼ n−1/3, with Rn = O
(

n2/3
)

.

(Or runǫ-greedy with the doubling trick—also calledepoch-greedy.)

Separating exploration and exploitation gives sub-optimal Ω(n2/3) regret.
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Combining exploration and exploitation

• Maintain distributionqt overΠ.

• Observext, chooseat ∼ pt where

pt(a) = Eπ∼qtπ(a|xt).

• Gather relevant data(xt, at, rt(at), pt(at)).

• Transform data to(x, ℓ) ∈ X × R
A pairs.

• Find aπt ∈ Π to minimize empirical risk,

1

t

t
∑

s=1

ℓs(π
t(xs)).

• Useπt to updateqt.
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An alternative approach: Reduction to classification

Exp4 used

ℓ̃t(a) =
(1− rt(at))1[a = at]

pt(at)
,

and maintained exponential weights overΠ based on cumulative sums of

ỹt(π) = Ea∼π ℓ̃t(a).

But this required enumeration overΠ. Instead, we will

1. Give the strategy access toΠ only via empirical risk minimization.

2. Determine the distributionqt by the set ofπts.

12



Reduction to classification

Assume we have access to an efficient empirical risk minimization oracle.

• (Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis,

John Langford, Lev Reyzin, and Tong Zhang, 2011):

Ellipsoid method to chooseqt.

Polynomial (inn andk) number of calls to oracle.

• (Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong

Li, Robert E. Schapire, 2014):

Gradient descent approach.

O(
√
kn) calls to oracle.

We’ll look at (Agarwal et al, 2014).
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Reduction to classification

Gradient Descent Strategy

for epochi

qi = distribution overΠ (approximately)minimizing

Eπ∼qR̂t(π) + kµÊxdKL (U, qµ(·|x))).
for t in epochi

observext, playat ∼ pt, wherept(a) = Eπ∼qiπ(a|xt),

observert(at)
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Reduction to classification

Here,U is uniform onA = {1, . . . , k},

µ =

√

log (|Π|/δ)
kt

, (similar result with VC-dimension)

qµ(a|x) = (1− µ)
∑

π∈Π

q(π)1[π(x) = a] + µU(a)

and theempirical per-trial regret is defined by

R̂t(π) = L̂t(π)−min
π∈Π

L̂t(π),

L̂t(π) = Ê(x,ℓ̃)ℓ̃(π(x)).
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Reduction to classification

• The criterion forq combines empirical regret (exploitation) with

distance to uniform (exploration).

• It can be approximately minimized by a coordinate descent approach:

choose theπ ∈ Π that is best aligned with the negative gradient.

• Finding the descent direction is (roughly) equivalent to choosing

argmin
π∈Π

(

R̂t(π)− Êx
µ

(1− µ)q(π(x)|x) + µ/k

)

which is argmin
π∈Π

Êx,ℓℓ(π(x))

where ℓs(a) = ℓ̃s(a)−
µ

(1− µ)q(π(xs)|xs) + µ/k
.
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Reduction to classification

Theorem: Under the i.i.d. stochastic model,(xt, rt) ∼ P , with

probability at least1− δ,

Rn = O

(
√

kn log

(

n|Π|
δ

)

+ k log

(

n|Π|
δ

)

)

.

(similar result with VC-dimension)

Idea of proof:

Solutionqi to optimization problem has

1. small empirical regret:

Eπ∼qR̂t(π) ≤ ckµi,

2. low variance: for allπ ∈ Π,

Êx
µi

(1− µi)q(π(x)|x) + µi
≤ c

(

kµi + R̂t(π)
)

.
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Reduction to classification

Hence, oncet = Ω(k log |Π|), with high probability, for allπ ∈ Π,

R(π) := min
π∗∈Π

Er,x (r(π
∗(x)− r(π(x))) ≤ 2R̂t(π) +O(kµi).

So

Eπ∼qiR(π) = O(kµi).

Summing across time gives the regret bound.
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Summary: Reduction to classification

• Maintain distributionqt overΠ.

• Observext, chooseat ∼ pt = Eπ∼qtπ(·|xt).

• Transform relevant data(xt, at, rt(at), pt(at)) to (x, ℓ) ∈ X × R
A

pairs.

• Find aπt ∈ Π to minimize empirical risk,

1

t

t
∑

s=1

ℓs(π
t(xs)).

• Useπt to updateqt:

coordinate descent of regularized empirical regret.

• Regularization ensures empirical regret bounds regret.
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