Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett

1. Contextual bandits.

Infinite comparison classes.

Examples: parameterized policies.

Recall: finitee-covers and Exp4.
Randome-covers for VC classes.

Greedy optimization of regularized regret.




\ Recall: Contextual bandits'

At each round:
SeeX; € X.
Choosel; € A, A={1,...,k}.
Receive reward7, ; € R.

Stochastic/adversarial model faK,Y) € X x R4,

Pseudo-regret:

wherell is comparison class of policiest : X — A (or the stochastic
version,r : X — A).




‘ Infinite comparison classej

For instance, linear threshold functions forC R¢:

m(x) = argmax é(z, j)'0.

wheref € R is a parameter vector and: X x A — R? is afeature
map.




‘ Infinite comparison classes: Finite cover'

Theorem: For a clasdI with Si(n) < Bn¢, there is a strateg
such that, under the i.i.d. stochastic modek;, Y;) ~ P, with

probability1 — ¢,

R, =0 (\/nkdlog %) |

This strategy take®(n%/2) time per round.




‘ Infinite comparison classes: Finite cover'

Approach:

1. Construct a finite-coverII of IT, with respect to the pseudo-metric

p(it,m) = Pr(n(Xy) # 7(Xy)) .

e.g., construct a covér of II from a cover of®.

e.g., construct a covéf of IT as the (random) set of
representatives of each element of

((n(X1), .. (X)) € TI) .

2. Use Exp4 odl.




\ Combinatorial dimensions.

The size ofil is no more than

N {(m(z1),...,m(x,)) : w11} .

Combinatorial dimensions (like the VC-dimension and its
generalizations té-valued functions) determine the rate of growth df
St(n): for d = dy o (11),

If n <d,
< (e/d)"n? if n> d.




‘VC-dimension bounds for parameterized familiei

Consider a parameterized classcefalued functions,

II={x~— f(z,0):0c R},

wheref : R™ x RP — {1,... k}.

Suppose thaf can be computed using no more thtavperations of the
following kinds:

1. arithmetic ¢, —, %, /),
2. comparisons¥, =, <),

3. output a constantifil, ..., k}

Theorem: dyc(I1) = O(ptlogk).

(And a similar story applies, with a worse dependence, dnve include
the exponential function in the set of operations.)




Summary: Infinite II C {1,... k}*

If any strategy can compete with an infinliefor all distributions on
X x [0,1]%, thenSp(n) must have polynomial growth, s@y(n?).

In that case, we can use i.i.d. data to buildeazover ofIl of size
O(Su(n)) = O(n?).

Running Exp4 with this class of experts gives regret

R, =0 <\/nkd log n) .

The drawback i€omputational: Sj(n) is polynomial inn, but
exponential in the dimensiah For example, for

— "9
m(x) argrjne%qﬁ(wd) ,

the computation grows exponentially with the number oftliezg.




An alternative approach: Reduction to classificatioﬂ

The high-level idea:

o Gather relevant datec;, a;, r:(at), p(az)). (Here, (¢, ry) are i.id)

» Transform data tgdz, /) € X x R4 pairs.

o Find ax? € II to minimize empirical risk,

%Z@S(Wt(xs)).

o User! to update how strategy makes subsequent choices.

Assumes we have access to an efficient empirical risk mi@itaz
oracle.




An alternative approach: Reduction to classificatiod

Example:e-greedy.
With probability e, explore: choose; uniformly.
Otherwise, choose, ~ .
Use exploration data for losses,

(1 —7r¢(ar))l]a = a4

Et(a,) N pt(&t)

= k(1 —ri(as))l]a

Uniform convergence ensure$ has per-trial regre®(1/+/et).
Regret from exploration trials i9(en).

o Optimizing givese ~ n~1/3, with R,, = O (n?/3).

(Or rune-greedy with the doubling trick—also callepoch-greedy.)

Separating exploration and exploitation gives sub-opti{@?/3) regret.




Combining exploration and exploitation'

Maintain distributiong; overII.

Observer;, chooser; ~ p; where
pi(a) = Ervg,m(alzy).

Gather relevant dat@:;, a:, r:(at), pe(az)).

Transform data tdz, /) € X x R4 pairs.

Find ar® € II to minimize empirical risk,

%Z@S(Wt(xs)).

User! to updatey;.




An alternative approach: Reduction to classificatiod

Exp4 used

(1 —re(ar))l]a = aq
pt(at)

and maintained exponential weights oVebased on cumulative sums of

li(a) =

Y

~

?jt (7'(') p— Eangt (Cl)
But this required enumeration ovHr Instead, we will

1. Give the strategy accesslioonly via empirical risk minimization.

2. Determine the distributiop. by the set ofrs.




Reduction to classificatiod

Assume we have access to an efficient empirical risk minitiozabracle.

e (Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampakas,
John Langford, Lev Reyzin, and Tong Zhang, 2011):
Ellipsoid method to choosg.

Polynomial (inn andk) number of calls to oracle.

o (Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford,dni
Li, Robert E. Schapire, 2014):
Gradient descent approach.
O(Vkn) calls to oracle.

We’'ll look at (Agarwal et al, 2014).




Reduction to classificatiod

Gradient Descent Strategy

for epochy
q; = distribution overI @pproximateyyMINIMIZING
ErgRe(n) + kpBodrcr, (U, ¢"(|2))).
for ¢ in epoche
observer,, playa; ~ p;, wherep,(a) = E g, m(a|z),
observer;(a;)




Reduction to classificatiod

Here,U is uniformonA = {1, ..., k},

(similar result with VC-dimension)

log (|T1]/9)
M _\/ k )

¢“(alr) = (1—p) ) q(m) = a] + pU(a)

mell

and theempirical per-trial regret is defined by

A

Ly(m) — %ﬁLt( ),




Reduction to cIassificatio:I

e The criterion forg combines empirical regret (exploitation) with
distance to uniform (exploration).

e It can be approximately minimized by a coordinate desceptcgzh:
choose ther € II that is best aligned with the negative gradient.

e Finding the descent direction is (roughly) equivalent toasing

. . o H
arg min (Rt( ) — E, (1 —p)g(mw(x)|z) + ,u/k>

whichis arg miﬁl E, ol(m(z))
TE

where ls(a) = ly(a) —




Reduction to classificatiod

Theorem: Under the i.i.d. stochastic modé€k;;,r;) ~ P, with
probability at least — 4,

R, = <\/knlog (@

(similar result with VC-dimension)

|dea of proof:
Solutiong; to optimization problem has

1. small empirical regret:
Eﬂ'Nth<7T) S Ck:uia

2. low variance: for allr € 11,

A /’L'L ‘ N
e et s < © (i + Rel®)




Reduction to classificatiod

Hence, once = Q(k log |I1|), with high probability, for allr € 11,

R(7) := min B, , (r(7*(z) — r(7(x))) < 2R (1) + O(kp;).

m*ell
So
B, R(1) = O(kpsy).

Summing across time gives the regret bound.




‘ Summary: Reduction to classificatiod

Maintain distributiong; overII.
Observer;, choosear; ~ py = Eqq, m(-|2y).

Transform relevant dat@c,, a., ¢ (a.), p:(a:)) to (z,£) € X x RA
pairs.

Find ax? € II to minimize empirical risk,

%Z@S(Wt(xs)).

User?! to updatey,:
coordinate descent of regularized empirical regret.

Regularization ensures empirical regret bounds regret.




