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1. More contextual bandits.

• Recall: Bandits with expert advice.

• Infinite comparison classes.

− Examples: parameterized policies.

− Finite approximations:ǫ-covers and Exp4.

− Constructingǫ-covers:

(a) Lipschitz, bounded parameterization.

(b) Π with bounded VC-dimension.
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Recall: Contextual bandits

At each round:

• SeeXt ∈ X .

• ChooseIt ∈ A, A = {1, . . . , k}.

• Receive rewardYIt,t ∈ R.

Stochastic/adversarial model for(X, Y ) ∈ X × R
A.

Pseudo-regret:

Rn = sup
π∈Π

E

n
∑

t=1

Yπ(Xt),t − E

n
∑

t=1

YIt,t.

whereΠ is comparison classof policiesπ : X → A.
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Recall: Bandits with expert advice

Repeated game:

1. Adversary chooses rewards(y1,t, . . . , yk,t).

2. Adversary presents expert adviceξ1t , . . . , ξ
N
t ∈ ∆k.

3. Strategy chooses the distribution ofIt.

4. Strategy receives rewardyIt,t.
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Recall: Exp4

Strategy Exp4
setq1 uniform on{1, . . . , N}.

for t = 1, 2, . . . , n, observeξ1t , . . . , ξ
N
t ∈ ∆k;

chooseIt ∼ pt, wherepi,t = EJ∼qtξ
J
i,t; observeℓIt,t.

ℓ̃i,t =
ℓi,t
pi,t

1[It = i], ỹj,t = EI∼ξjt
ℓ̃I,t,

Ỹj,t =
t
∑

s=1

ỹj,t, qj,t+1 =
exp

(

−ηỸj,t

)

∑N
i=1 exp

(

−ηỸi,t

) .
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Recall: Exp4

Theorem: Regret of Exp4:

η =

√

2 logN

nk
, Rn ≤

√

2nk logN.

η =

√

logN

tk
, Rn ≤ 2

√

nk logN.
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Infinite comparison classes

More interesting cases allow the comparison classΠ to be infinite. For

instance, forX ⊆ R
d, we might consider linear threshold functions,

π(x) = arg max
j∈{1,...,k}

x′θj ,

whereθ1, . . . , θk are parameter vectors. Or linear threshold functions

defined in terms of features ofx andj ∈ A,

π(x) = argmax
j∈A

φ(x, j)′θ.

Or a probabilistic version,π : X → ∆A,

π(j|x) =
exp(φ(x, j)′θ)
∑

i exp(φ(x, i)
′θ)

.

(Or decision trees, or ...)
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Infinite comparison classes

Exp4 cannot be applied to an infiniteΠ for computational (can’t maintain

theqt distribution) and statistical (log |Π| = ∞) reasons.

But the cardinality ofΠ might not capture its complexity. A smaller class

might be essentially the same. Consider the following approach:

1. Construct a finite approximation̂Π toΠ.

2. Use Exp4 on̂Π.
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Infinite comparison classes

Consider an i.i.d. stochastic model:(Xt, Yt) ∼ P .

Suppose the approximation is such that, for everyπ ∈ Π, there is âπ ∈ Π

with

Pr (π(Xt) 6= π̂(Xt)) ≤ ǫ,

then forY ∈ [0, 1],

E
∣

∣Yπ(Xt),t − Yπ̂(Xt),t

∣

∣ ≤ ǫ.
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Infinite comparison classes

Rn(Π) = sup
π∈Π

E

n
∑

t=1

Yπ(Xt),t − E

n
∑

t=1

YIt,t

= sup
π∈Π

E

n
∑

t=1

Yπ(Xt),t − sup
π̂∈Π̂

E

n
∑

t=1

Yπ̂(Xt),t

+ sup
π̂∈Π̂

E

n
∑

t=1

Yπ̂(Xt),t − E

n
∑

t=1

YIt,t

= sup
π∈Π

inf
π̂∈Π̂

E

n
∑

t=1

(

Yπ(Xt),t − Yπ̂(Xt),t

)

+ sup
π̂∈Π̂

E

n
∑

t=1

Yπ̂(Xt),t − E

n
∑

t=1

YIt,t

≤ nǫ+Rn(Π̂).
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Infinite comparison classes

A setΠ̂ that canǫ-approximateΠ in this way is called anǫ-cover ofΠ in

the pseudometric

ρ(π̂, π) = Pr (π(Xt) 6= π̂(Xt)) .

The cardinality of the smallestǫ-cover ofΠ is called itsǫ-covering

number, and denotedNΠ(ǫ).
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Infinite comparison classes

Theorem: Under the i.i.d. stochastic model:(Xt, Yt) ∼ P , strat-

egy Exp4 on the clasŝΠ, which is a minimalǫ-cover ofΠ, where

ǫ is chosen to minimize

ǫ+

√

2k logNΠ(ǫ)

n
,

gives pseudo-regret

Rn ≤ nmin
ǫ≥0

(

ǫ+

√

2k logNΠ(ǫ)

n

)

.
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Infinite comparison classes

How could we construct anǫ-coverΠ̂ of Π?

If Π is a parametric class,Π = {πθ : θ ∈ Θ}, where, for allx ∈ X , the

mapθ → πθ(x) is a Lipschitz map:ρ(πθ, πθ′) ≤ c ‖θ − θ′‖, andΘ is

compact, then we can construct an(ǫ/c)-coverΘ̂ of Θ, and define

Π̂ =
{

πθ̂ : θ̂ ∈ Θ̂
}

.

(For instance, consider the parameterized class

πθ(j|x) =
exp(φ(x, j)′θ)
∑

i exp(φ(x, i)
′θ)

with bounded featuresφ and bounded parametersθ.)
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Infinite comparison classes

Another example: Suppose that theshattering coefficient

SΠ(n) := max
x1,...,xn∈X

|{(π(x1), . . . , π(xn)) : π ∈ Π}|

grows slowly withn (much slower than exponential inn). Then we can

use that to build a small cover.

High level idea:

1. Gather some dataX1, . . . , Xm (making arbitrary decisionsIt),

2. Construct̂Π containing one representative for each element of

{(π(X1), . . . , π(Xm)) : π ∈ Π}. (So that|Π̂| ≤ SΠ(m).)

3. Use Exp4 witĥΠ.
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Infinite comparison classes
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Theorem: Under the i.i.d. stochastic model:(Xt, Yt) ∼ P , with

probability1− δ, theΠ̂ constructed in this way is anǫ-cover forΠ

of size no more thanSΠ(m), for

ǫ =
2

m
log2

(

2SΠ(2m)2

δ

)

.

Thus, the pseudo-regret of this strategy satisfies

Rn ≤ m+ (n−m)δ + (n−m)ǫ+
√

2(n−m)k log(SΠ(m)).

If SΠ(m) = O
(

(m/d)d
)

, settingm =
√

nd log(n/d) andδ =

m/n gives

Rn = O

(
√

nkd log
n

d

)

.
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Infinite comparison classes

A symmetrization idea due to Vapnik and Chervonenkis, plus asimple

counting argument shows thatΠ̂ is anǫ-cover:

Lemma: Given i.i.d. dataDn = {X1, . . . , Xn}, and a setE of

events inX ,

Pn (∃E ∈ E , D ∩ E = ∅, P (E) ≥ ǫ) ≤ 2SE(2n)2
−ǫn/2,

whereSE(n) is the shattering coefficient of{1E : E ∈ E}.

DefiningE =
{

{x : π(x) = π̂(x)} : (π, π̂) ∈ Π2
}

, we have, with

probability at least1− δ overDm, the initialm-sample, for everyπ ∈ Π

there is âπ ∈ Π̂ (the one that equalsπ onDm) with

Pr(π(X) 6= π̂(X)) ≤ ǫ, that is,Π̂ is anǫ-cover forΠ.
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Infinite comparison classes

When doesSΠ(n) grow slowly withn?

Definition: A classΠ ⊆ {0, 1}X shatters {x1, . . . , xd} ⊆ X

means that|Π(xd
1)| = 2d.

The Vapnik-Chervonenkis dimension ofΠ is

dV C(Π) = max {d : somex1, . . . , xd ∈ X is shattered byΠ}

= max
{

d : SΠ(d) = 2d
}

.
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Vapnik-Chervonenkis dimension: “Sauer’s Lemma”

Theorem: [Vapnik-Chervonenkis]dV C(F ) ≤ d implies

SΠ(n) ≤
d
∑

i=0

(

n

i

)

.

If n ≥ d, the latter sum is no more than
(

en
d

)d
.

So the VC-dimension is a single integer summary of the shatter

coefficients: either it is finite, andSΠ(n) = O(nd), orSΠ(n) = 2n. No

other growth is possible.

SΠ(n)







= 2n if n ≤ d,

≤ (e/d)
d
nd if n > d.
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Vapnik-Chervonenkis dimension: “Sauer’s Lemma”

Stronger than this: finiteness of the VC-dimension is necessary. If the

VC-dimension is infinite, then there are distributions for which competing

with Π, even in the full information case, is impossible: for everystrategy,

there is a probability distribution such that with high probability, the

regret grows linearly.

(And it’s the same story fork-valued functions, modulolog k factors.)
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VC-dimension bounds for parameterized families

Consider a parameterized class ofk-valued functions,

Π = {x 7→ f(x, θ) : θ ∈ R
p} ,

wheref : Rm × R
p → {1, . . . , k}.

Suppose thatf can be computed using no more thant operations of the
following kinds:

1. arithmetic (+, −, ×, /),

2. comparisons (>, =, <),

3. output a constant in{1, . . . , k}

Theorem: dV C(F ) = O(pt log k).

(And a similar story applies, with a worse dependence ont, if we include
the exponential function in the set of operations.)
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Summary: Infinite comparison classes

Competing with infiniteΠ ⊆ {1, . . . , k}X :

• If we want to compete with an infiniteΠ for all distributions on

X × [0, 1]k, SΠ(n) must have polynomial growth, sayO(nd).

• We can use i.i.d. data to build anǫ-cover ofΠ of size

O(SΠ(n)) = O(nd).

• Running Exp4 with this class of experts gives regret

Rn = O
(

√

nkd logn
)

.

• The drawback iscomputational: SΠ(n) is polynomial inn, but

exponential in the dimensiond. For example, for

π(x) = argmax
j∈A

φ(x, j)′θ,
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the computation grows exponentially with the number of features.
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