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1. More contextual bandits.

Recall: Bandits with expert advice.

Infinite comparison classes.

Examples: parameterized policies.
Finite approximationse-covers and Exp4.
Constructing:s-covers:
(a) Lipschitz, bounded parameterization.
(b) II with bounded VC-dimension.




\ Recall: Contextual bandits.

At each round:
SeeX,; € X.
Choosel, € A, A={1,...,k}.
Receive reward7, ; € R.

Stochastic/adversarial model faK,Y) € X x R4,

Pseudo-regret:

En — SUPEZYW(Xt),t — EZYIt,t'
mell v t=1

wherell is comparison classf policiest : X — A.




Recall: Bandits with expert advice'

Repeated game:

1. Adversary chooses rewarQ ¢, ..., Yk.t)-

2. Adversary presents expert advige. .., N € Ay.

3. Strategy chooses the distribution/pf

4. Strategy receives rewayd, ;.




Recall: Exp4'

Strategy Exp4

setq; uniformon{1,..., N}.
fort =1,2,...,n,observet}, ... &N € Ay;
choosel; ~ p;, wherep; ; = E;,,&/,; observely, ;.




Recall: Exp4'

Theorem: Regret of Exp4:

~ |2log N
77_ nk y

~ Jlog N
77_ tk )

R, < \/2nklog N.

R, < 2y/nklogN.




‘ Infinite comparison Classej

More interesting cases allow the comparison cldde be infinite. For
instance, fort’ C R%, we might consider linear threshold functions,

m(x) = arg max 2’0,
() gje{l,...,k} J

wheref, ..., 0, are parameter vectors. Or linear threshold functions
defined in terms of features ofand;j € A,

m(x) = argmax ¢(z, j)'0.

Or a probabilistic versiony : X — A4,

o) — exp(¢(z,7)'0)
) = S~ cxp(o(a, iy0)

(Or decision trees, or ...)




‘ Infinite comparison Classej

Exp4 cannot be applied to an infinikefor computational (can’t maintain
the ¢; distribution) and statisticaldg |II| = oc) reasons.

But the cardinality ofill might not capture its complexity. A smaller class
might be essentially the same. Consider the following agqino

1. Construct a finite approximatidii to IT.

2. Use Exp4 onl.




‘ Infinite comparison Classei

Consider an i.i.d. stochastic modéK;, Y;) ~ P.

Suppose the approximation is such that, for every 11, there is ar € 11
with
Pr(m(Xy) # 71(X¢)) <,

then forY € [0, 1],

E|Yeix)e — Yax)e| <€




‘ Infinite comparison Classej

inf E Y, — Yz(x,
R




‘ Infinite comparison Classej

A setIl that cane-approximatdl in this way is called am-cover ofII in
the pseudometric

p(it,m) = Pr(m(Xy) # 7(Xy)).

The cardinality of the smallestcover ofll is called itse-covering
number, and denotelit; (¢).




‘ Infinite comparison classej

Theorem: Under the i.i.d. stochastic modé€lX;, Y;) ~ P, strat-
egy Exp4 on the clasd, which is a minimak-cover ofII, where
e IS chosen to minimize

. \/leog/\/n(e)

)
n

gives pseudo-regret

_ 2
R,, < nmin <e+\/ klOgNH(€)> .
e>0 n




‘ Infinite comparison Classej

How could we construct asrcoverlIl of I1?

If IT is a parametric clas$l = {my : § € ©}, where, for allz € X, the
mapl — my(x) is a Lipschitz mapp(mwy, me:) < c||6 — ¢’'||, andO is
compact, then we can construct @ric)-cover© of ©, and define

ﬁ:{ﬂ'é:ééé}.

(For instance, consider the parameterized class

Ly exp(o(x, 5)'0)
mo(jlw) = > exp(é(x,4)'0)

with bounded features and bounded parametéety




‘ Infinite comparison Classej

Another example: Suppose that wteattering coefficient
max__ |[{(w(z1),...,m(z,)) : 7 € T}

grows slowly withn (much slower than exponential ir). Then we can
use that to build a small cover.

High level idea:

1. Gather some dat&,, ..., X,,, (making arbitrary decisiong),

2. ConstruciI containing one representative for each element of
{(m(X1),...,m(X)) : 7 € O}. (So thatIl| < Si(m).)

3. Use Exp4 witHl.




‘ Infinite comparison classej




Theorem: Under the i.i.d. stochastic mod€lX,, Y;) ~ P, with
probability 1 — &, theIl constructed in this way is ancover forll
of size no more thasy;(m), for

Thus, the pseudo-regret of this strategy satisfies

R, <m+ (n—m)d+ (n—m)e+/2(n —m)klog(Smu(m)).

If Su(m) = O ((m/d)?), settingm = y/ndlog(n/d) andd =

m/n gives
R, =0 (\/nkdlog %) |




‘ Infinite comparison Classej

A symmetrization idea due to Vapnik and Chervonenkis, plsismple
counting argument shows thHtis ane-cover:

Lemma: Given i.i.d. dataD,, = {X4,...,X,}, and a set of
events inY,

Pr(3E€ & DNE =0, P(E) > ¢) < 25¢(2n)27"/2,

whereSg¢(n) is the shattering coefficientdfip : £ € £}.

Defining€ = {{z : n(z) = 7(x)} : (7, 7) € II*}, we have, with
probability at least — ¢ over D,,,, the initialm-sample, for everyr € 11
there is air € II (the one that equals on D,,,) with

Pr(m(X) # #(X)) < ¢, that is,II is ane-cover forIl.




‘ Infinite comparison classej

When doesSti(n) grow slowly withn?

Definition: A classIl C {0,1} shatters {z,...,24} C X
means thafll(z¢)| = 24.

The Vapnik-Chervonenkis dimension dfis

dyc(Il) = max {d : somezxy,...,z4 € X is shattered byI}
= max {d : Sn(d) = 2%}.




‘Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Theorem: [Vapnik-Chervonenkistly ¢ (F') < d implies

Si(n) < ido (j)

If n > d, the latter sum is no more tha(ﬁdﬂ)d.

So the VC-dimension is a single integer summary of the shatte
coefficients: either it is finite, anfl;(n) = O(n%), or Si(n) = 2™. No
other growth is possible.

If n <d,
< (e/d)n? ifn>d.




‘Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Stronger than this: finiteness of the VC-dimension is neags# the
VC-dimension is infinite, then there are distributions fdrigh competing

with II, even in the full information case, is impossible: for evsinategy,
there is a probability distribution such that with high pabidity, the
regret grows linearly.

(And it’s the same story fok-valued functions, modultvg & factors.)




‘VC-dimension bounds for parameterized familiei

Consider a parameterized classcefalued functions,

II={x~— f(z,0):0c R},

wheref : R™ x RP — {1,... k}.

Suppose thaf can be computed using no more thtavperations of the
following kinds:

1. arithmetic ¢, —, %, /),
2. comparisons¥, =, <),

3. output a constantifil, ..., k}

Theorem: dyc(F) = O(ptlogk).

(And a similar story applies, with a worse dependence, dnve include
the exponential function in the set of operations.)




Summary: Infinite comparison classej

Competing with infinitdl C {1, ..., k}:

o If we want to compete with an infinitH for all distributions on
X x [0,1]%, Si(n) must have polynomial growth, s&y(n?).

e We can use i.1.d. data to build arcover ofII of size
O(Su(n)) = O(n?).

e Running Exp4 with this class of experts gives regret

R, =0 (\/nkdlog n) .

e The drawback igomputational S;(n) is polynomial inn, but
exponential in the dimensiah For example, for

— W
() argrjngglm(wd) ,




the computation grows exponentially with the number ofiezg.




