Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett

1. Multi-armed bandit algorithms.

o Concentration inequalities.
~ P(X > ) < exp(—¢*(e))).

— Cumulant generating function bounds.
— Hoeffding’s inequality for sub-Gaussian random variables

e Upper confidence bound (UCB) algorithms.

— Compare upper bounds on means

(based on sample averages and concentration inequalities)
— Analysis: boundET;(n).

Compare gap\ ; to confidence interval width.




Recall: Concentration inequalities.'

Definition:  For a random variableX, the moment-generatir
function is

Mx(\) = Eexp(AX),

the cumulant-generating function is

FX(A) = lOgMX<>\).




Recall: Concentration inequalities.'

Definition: For a random variabl&’, ) : R — R is acumulant
generating function upper bound if, for A > 0,

Y(A) = max{l'x(A),T-x(A)},

(=) = p(A).

The Legendre transform (convex conjugate) of v is

" (€) = sup (e —(A)) .

AER




Concentration Inequalities.'

Theorem:

Ixie(A) = Ac+Tx(N),

Ixtele) =Tx (e o).

(Easy to check.)




Recall: Concentration Inequalities.'

Theorem: Fore > 0,P(X —EX > ¢) < exp (—¢%_gx(€)).




Recall: Concentration Inequalities.'

Theorem: If X, X5,...,X,, are mean zero, i...d. with cgf upp
boundy, thenX,, = = >"" | X; has cgf bound

o, ) =m0 (2]
vk, (€) = ny*(e),
P (X, > ¢) <exp(—ni*(e)),




Recall: Concentration Inequalities.'

And the exponent can’t be improved.

Theorem: [Crameér-Chernoff] If X, Xs,...,X,, are iid and
mean zero, and have cBf then fore > 0 andX,, = -+ > | X,

lim l1()g]P>()_(n >¢e) = —T"(e).

n—oo M,

(Lower bound is a change-of-measure argument plus cemtrl |
theorem.)




‘ Example: Gaussiad

For X ~ N(u,0?),

\2o? .
FX—,LL()\) — T4 FX—,LL(E) —

2 202"

ForXy,...,X, ~ N(u,o0?), it's easy to check that the bound is tight:

lim 1 P(X > t) s
im —In n— [ >t)=——.
n—o0 M H 2072




‘ Example: Bounded SupportI

Theorem: [Hoeffding’s Inequality] For a random variabl¥ <
la, bl with EX = o and) € R,

201 \2
In My_,(\) < 2 “’8 )

Note the resemblance to a Gaussian:

Ng?  A%(b—a)?
VS .
2 8

(And sinceP has support ifla, b], VarX < (b — a)?/4.)




Example: Hoeffding’s Inequality Proof'

A(N) = log (Ee*) = log ( / e dP(:z;)) ,

whereX ~ P. ThenA is the log normalization of the exponential family
random variableX , with reference measur and sufficient statistic.
SinceP has bounded suppor,(\) < oo for all A\, and we know that

Define

A/()\) = E(XA), A//()\) = Var(XA).

SinceP has support ifla, b], Var(X,) < (b — a)?/4. Then a Taylor
expansion about = 0 (at this value of\, X, has the same distribution as
X, hence the same expectation) gives

A (b —a)?

A(N) < AEX
(\) S XEX + T




\ Sub-Gaussian Random Variablej

Definition: X is sub-Gaussianwith parameter2 if, for all
A € R,

Ao?

2

IHMX_“(A) S

Note: Gaussian Is sub-Gaussian.sub-Gaussian if- X sub-Gaussian.
X sub-Gaussian implieB(X — pu > t) < exp(—t?/(20?)).




‘ Hoeffding Bound'

Theorem: For X,...,X,, independentEX,; = u, X, sub-
Gaussian with parametet, then for allt > 0,

P 1§:X >t < nt’
— P— > <exp|———=].
n = H p 2072




Back to the stochastic bandit probleml

k arms.

Arm j has unknown reward distributiaf , for 6; € ©.
Reward: X;; ~ P, .

Mean rewardy; = EX; ;.

Best: u* = max;—1

Gap: A, = p* — ;.

Number of playsT;(s) = > ;_, 1[Iz = j].

Pseudo-regret:

R, = nmax;»—




UCB strategy'

Define the sample averages
1 t
fi;(t) = st,sl[ls =7l
! T;(t) S:Zl

If X, — p; has c.g.f. upper bound,

1 n §
Pr| = L <i—e| <e ()
T <n E X; i, e) e

s=1

that is,

Pr (uj < %ZXJ,S + () (10%/5)) >1-4,

s=1




‘ UCB strategy.'

SupposeX; ; — p; has c.g.f. upper boungl.

-UCB Strategy:
. o 3logt
I; = arg max (Uj,t—1+(¢ )~ ( & ))

1<j<k T;(t—1)

e.g., X, sub-gaussian (with parametet),

62

lb*(e) — T‘_Qa

-1 [ 3logt \  [60%logt
W) (Tj(t— 1)) N \/Tj(t 1)




‘ UCB strategy.'

Theorem: If the reward distributions have cgf bound then the
1-UCB Strategy satisfies

e X (B )

J:A;>0

Example: Rewards if0, 1] are sub-Gaussian witi¥ = 1/4, so

Ro< Y (6125" —|—0(1)> |

J:A;>0 J

This is within a constant factor of optimak{(1 — p*) versusp).




‘ UCB strategy: Proof'

(Dropt indices.) Define; = (¢*)~* <%) So UCB chooses

arg max;(ji; + €;). If

:aj <:uj_|_6j7
Aj >2€j,

flj= + €5 > [l
=y T A
> iy — €+ Ay
> [1; + €,

so UCB will not choosd; = ;.




‘ UCB strategy: Proof'

{Ir = jandA; > 2e;} C {fij» < pj» — €5+ OT i = [ + €;}.

. 3logn 3logt
Note thatA,; > 2¢; for T;(t — 1) > m := w*(Agj/Q) > w*(A§/2)'




‘ UCB strategy: Proof'

P(iy < e — € ) <P (Is € {1, thiges + (7)) (3Int/s) < 1y-)

t
<SP (i 0 + (%) (3Int/s) < pije)
s=1

t
<) =t
s=1
Similarly for P(f1; > p; +€;5). So

3logn 1
BT;(n) < (A, TP (logn) |




‘ UCB strategy.'

Theorem: If the reward distributions have cgf bound then the
1-UCB Strategy satisfies

e X (B )

J:A;>0

for rewards inj0, 1].




‘ UCB strategy.'

e This bound is orexpected reward. Looking at the proof, the
probability of bad behavior decays only polynomially witHc.f.

Hoeffding’s inequality). This slow decay is not just an &tz of the
analysis.

o Forrewards in0, 1], the upper bound is

Ro< Y (6123” +o(1)) |

J:A;>0 J

However, the lower bound is smaller: the leading term is effdrm
Ajlogn
Dir(Py,, Po+)

This is achievable, by considering a better c.g.f. bounthe
Bernoulli c.g.f.




UCB strategy: Some history.'

Index strategies (which involve a comparison of the valuaroindex
for each arm, which depends only on observations at that\aerg
Introduced by Gittins and collaborators (in a Bayesian exit

The idea of UCB strategies, where the index has the intexjooatof
an upper confidence bound, goes back to Lai and Robbins. Tdawey

strategies and analysis where the leading term is asyroaligti
optimal (including the constant).

Agrawal (1995) considered simpler strategies based onth®n
sample mean, and used c.g.f. bounds and large deviationy tloe
give asymptotic results.

Auer, Cesa-Bianchi and Fischer (2002) used Hoeffding'quiadity
to give a finite time analysis.




