Peter Bartlett

1. Minimax regret bounds
 - Upper bounds: worst case over Δ_j.
 - Lower bounds.
Recall

$$\overline{R}_n(P_\theta) = \max_{j^* = 1, \ldots, k} \mathbb{E} \left[\sum_{t=1}^n X_{j^*,t} - \sum_{t=1}^n X_{I_t,t} \right] = n\mu^* - \mathbb{E} \sum_{t=1}^n X_{I_t,t}.$$

We have seen pseudo-regret bounds for a particular strategy, of the form: For all reward distributions on $[0, 1]$ and all n,

$$\overline{R}_n(P) = \sum_{j=1}^k \Delta_j \mathbb{E} T_j(n) \leq c_1 \sum_{j=1}^k \frac{\Delta_j \log n}{d(\mu_j, \mu^*)} + c_2(\mu_1, \ldots, \mu_k),$$

where d is the KL-divergence between Bernoulli distributions with the given expectations. These are obtained by showing that

$$\Delta_j \mathbb{E} T_j(n) \leq \frac{c_1 \Delta_j \log n}{d(\mu_j, \mu^*)} + c_2(\mu_1, \ldots, \mu_k).$$
These bounds get worse as the Δ_j get smaller. We can also obtain regret bounds that are independent of the Δ_j, but the rate is worse.

Theorem: If a particular strategy satisfies:

for all reward distributions on $[0, 1]$ and all n,

$$
\mathbb{E} T_j(n) \leq c_1 \frac{\log n}{d(\mu_j, \mu^*)} + \frac{c_2}{\Delta_j^2}.
$$

then for all n,

$$
\sup_P \bar{R}_n(P) \leq \sqrt{kn \left(\frac{c_1}{2} \log n + c_2 \right)}.
$$
Minimax upper bounds

We know that, for a fixed distribution, we can achieve a much better regret rate (logarithmic in n), but the constant in that rate depends on the distribution. This bound holds uniformly across all distributions. It’s a minimax bound:

$$\min_S \max_P \overline{R}_n(P) \leq \sqrt{kn \left(\frac{c_1}{2} \log n + c_2 \right)},$$

where the min is over strategies.

These are also called distribution-free regret bounds.

(Note: the c_2/Δ_j^2 term was unimportant when we were treating the Δ_j as constants. But its dependence on Δ_j is important here.)
Pinsker’s inequality \(d(\mu_j, \mu^*) \geq 2\Delta_j^2 \) implies

\[
\Delta_j \mathbb{E} T_j(n) \leq \frac{1}{\Delta_j} \left(\frac{c_1}{2} \log n + c_2 \right).
\]

If we define \(p_j = \frac{\mathbb{E} T_j(n)}{n} \), so that \(\sum_j p_j = 1 \), then

\[
\overline{R}_n(P) = \sum_{j=1}^k \Delta_j \mathbb{E} T_j(n)
\]

\[
\leq \sum_{j=1}^k \min \left\{ \frac{1}{\Delta_j} \left(\frac{c_1}{2} \log n + c_2 \right), p_j n \Delta_j \right\}.
\]
Minimax upper bounds: proof

The minimum is maximized for
\[
\frac{1}{\Delta_j} \left(\frac{c_1}{2} \log n + c_2 \right) = p_j n \Delta_j,
\]
and solving for \(\Delta_j \) gives
\[
np_j \Delta_j = \sqrt{np_j \left(\frac{c_1}{2} \log n + c_2 \right)}.
\]
(And the two terms in the minimum are monotonically increasing and decreasing in \(\Delta_j \), so if this choice of \(\Delta_j \) is impossible—e.g., \(\Delta_j > 1 \)—then the minimum is only smaller.)
Thus,

\[\overline{R}_n(P) \leq \sqrt{n \left(\frac{c_1}{2} \log n + c_2 \right) \sum_{j=1}^{k} \sqrt{p_j}} \]

\[\leq \sqrt{n \left(\frac{c_1}{2} \log n + c_2 \right) \left(\sum_{j=1}^{k} p_j \right)^{1/2} \left(\sum_{j=1}^{k} 1 \right)^{1/2}} \]

\[= \sqrt{kn \left(\frac{c_1}{2} \log n + c_2 \right)}, \]

by Cauchy-Schwarz.
Minimax lower bound

Theorem: Let \mathcal{P} be the set of all Bernoulli reward distributions. Then for all n,

$$\inf_{\text{strategies}} \sup_{P \in \mathcal{P}^k} \overline{R}_n(P) \geq \frac{1}{18} \min\{\sqrt{nk}, n\}.$$

Note the order of quantifiers: fix any strategy, then for all n, there is a reward distribution for which the regret is $\Omega(\sqrt{nk})$. On the other hand, we know that there are strategies so that for any reward distributions, the regret grows like $O(\log n)$. The lower bound is saying that the envelope of all of these regret curves must be $\Omega(\sqrt{nk})$.

Minimax lower bound: intuition

After n rounds, some arm has not been pulled more than n/k times. For that arm, the deviations in the sample averages are of the order of $\sqrt{k/n}$, so we cannot hope to identify the best arm on a finer scale than this. So choosing a distribution so that the best arm is only $\sqrt{k/n}$ better than the others, the regret should be roughly $n\sqrt{k/n} = \sqrt{kn}$.
Minimax lower bound: proof

We’ll use the probabilistic method: randomly choose the reward distributions and show that, for any strategy, under that random choice,

$$\mathbb{E} \bar{R}_n(P) \geq \frac{1}{18} \min\{\sqrt{nk}, n\}.$$

This implies that, for that strategy, there must be a reward distribution that incurs at least that regret.
Rewards:
\[\mu^* = \frac{1}{2} + \epsilon, \quad \mu_j = \frac{1}{2} \quad \text{for } j \neq j^*. \]
(We’ll choose \(\epsilon \) later.)

Choose index \(j^* \) uniformly at random.

Fix a strategy. Let \(\mathbb{P}_{j^*} \) denote the distribution of the sequence of rewards
\(Y_t = X_{I_{t,t}} \) (and the expectation under that distribution) with the fixed
strategy and the choice of index \(j^* \).
Minimax lower bound: proof

\[
\frac{1}{k} \sum_{j^* = 1}^{k} R_n(\mathbb{P}_{j^*}) = \frac{1}{k} \sum_{j^* = 1}^{k} \mathbb{P}_{j^*} \sum_{j = 1}^{k} \Delta_j T_j(n) \\
= \frac{\epsilon}{k} \sum_{j^* = 1}^{k} \mathbb{P}_{j^*} \sum_{j \neq j^*} T_j(n) \\
= \epsilon \left(n - \frac{1}{k} \sum_{j^* = 1}^{k} \mathbb{P}_{j^*} T_{j^*}(n) \right).
\]
Minimax lower bound: proof

Let \mathbb{P} denote the distribution of the sequence of rewards $Y_t = X_{I_t,t}$ (and the expectation under that distribution) with the fixed strategy, when the rewards $X_{j,t}$ have $\mu_j = 1/2$ for all j. Then

$$\mathbb{P}_{j^*} T_{j^*}(n) \leq \mathbb{P} T_{j^*}(n) + n D_{TV}(\mathbb{P}, \mathbb{P}_{j^*}) \quad \text{(see (1) below)}$$

$$\leq \mathbb{P} T_{j^*}(n) + n \sqrt{\frac{1}{2} D_{KL}(\mathbb{P}, \mathbb{P}_{j^*})} \quad \text{(Pinsker (2))}$$

$$= \mathbb{P} T_{j^*}(n) + \frac{n}{2} \sqrt{\log \frac{1}{1 - 4\epsilon^2} \mathbb{P} T_{j^*}(n)} \quad \text{(chain rule (3))}. $$
Notice that $\sum_{j^* = 1}^{k} P_{T_{j^*}}(n) = n$:

$$\frac{1}{k} \sum_{j^* = 1}^{k} P_{j*} T_{j*}(n)$$

$$\leq \frac{1}{k} \sum_{j^* = 1}^{k} P_{T_{j*}}(n) + \frac{n}{2k} \sum_{j^* = 1}^{k} \sqrt{\log \frac{1}{1 - 4\epsilon^2} P_{T_{j*}}(n)}$$

$$\leq \frac{n}{k} + \frac{n}{2} \sqrt{\log \frac{1}{1 - 4\epsilon^2} \frac{1}{k} \sum_{j^* = 1}^{k} P_{T_{j*}}(n)} \quad \text{(Jensen)}$$

$$= \frac{n}{k} + \frac{n}{2} \sqrt{\frac{n}{k} \log \frac{1}{1 - 4\epsilon^2}}.$$
Minimax lower bound: proof

Combining,

\[\frac{1}{k} \sum_{j^* = 1}^{k} R_n(\mathbb{P}_{j^*}) \geq \epsilon n \left(1 - \frac{1}{k} - \frac{1}{2} \sqrt{\frac{n}{k} \log \frac{1}{1 - 4\epsilon^2}} \right). \]

Since \(\log(1 - x)\) is concave, the line between two points on its graph lies below the graph: \(\log(1 - x) \geq -\log(1 - c)x/c\) for \(0 \leq x \leq c\). So \(\log(1/(1 - 4\epsilon^2)) \geq c\epsilon^2\). Picking \(\epsilon = \min(\sqrt{k/n}, 1)/4\) gives

\[\frac{1}{k} \sum_{j^* = 1}^{k} R_n(\mathbb{P}_{j^*}) \geq \frac{1}{18} \min \left\{ \sqrt{kn}, n \right\}. \]
Lemma: If \(\sup_x f(x) - \inf_x f(x) = 1 \),

\[
|Pf - Qf| \leq DT_V(P, Q).
\]

\[
Pf - Qf = \int f \, dP - \int f \, dQ \\
\leq \int 1 \left[\frac{dP}{d(P + Q)} > \frac{dQ}{d(P + Q)} \right] \, d(P - Q) \\
= DT_V(P, Q).
\]
(2) Pinsker’s inequality

Lemma:

\[D_{KL}(P, Q) \geq 2D_{TV}(P, Q)^2. \]
Lemma: For P and Q distributions of sequences Y_1, \ldots, Y_n,

$$D_{KL}(P, Q) = P \sum_{t=1}^{n} D_{KL}(P(Y_t|Y^{t-1}), Q(Y_t|Y^{t-1})) .$$
Proof.

\[D_{KL}(\mathbb{P}, \mathbb{Q}) = \int \log \frac{d\mathbb{P}}{d\mathbb{Q}}(y^n) d\mathbb{P}(y^n) \]

\[= \int \int \log \left(\frac{d\mathbb{P}(x_n | y^{n-1})}{d\mathbb{Q}(x_n | y^{n-1})}(y_n) \times \frac{d\mathbb{P}(x^{n-1})}{d\mathbb{Q}(x^{n-1})}(y^{n-1}) \right) d\mathbb{P}(y_n | y^{n-1}) d\mathbb{P}(y^{n-1}) \]

\[= \int D_{KL}(\mathbb{P}(y_n | y^{n-1}), \mathbb{Q}(y_n | y^{n-1})) d\mathbb{P}(y^{n-1}) \]

\[+ D_{KL}(\mathbb{P}(y^{n-1}), \mathbb{Q}(y^{n-1})) \]

\[\vdots \]

\[\blacksquare \]
(3) Chain rule for KL-divergence

Here,

\[
\sum_{t=1}^{n} \mathbb{P} D_{KL} \left(\mathbb{P}(Y_t|Y^{t-1}), \mathbb{P}_{j^*}(Y_t|Y^{t-1}) \right) \\
= \sum_{t=1}^{n} \left(0 \times \mathbb{P}\{I_t \neq j^*\} + d \left(\frac{1}{2}, \frac{1}{2} + \epsilon \right) \mathbb{P}\{I_t = j^*\} \right) \\
= \sum_{t=1}^{n} \mathbb{P}\{I_t = j^*\} \frac{1}{2} \log \frac{1}{1 - 4\epsilon^2} \\
= \frac{1}{2} \log \left(\frac{1}{1 - 4\epsilon^2} \right) \mathbb{P} T_{j^*}(n).
\]