1. Lower bounds on regret for multi-armed bandits.
Stochastic bandit problem: notation.

- k arms.
- Arm j has unknown reward distribution P_{θ_j}, for $\theta_j \in \Theta$.
- Reward: $X_{j,t} \sim P_{\theta_j}$.
- Mean reward: $\mu_j = \mathbb{E} X_{j,1}$.
- Best: $\mu^* = \max_{j^* = 1, \ldots, k} \mu_{j^*}$.
- Gap: $\Delta_j = \mu^* - \mu_j$.
- Number of plays: $T_j(s) = \sum_{t=1}^{s} 1[I_t = j]$.
Lower bounds on regret.

Because

\[\overline{R}_n = n \max_{j^* = 1, \ldots, k} \mathbb{E}\mu_{j^*} - \mathbb{E}\sum_{t=1}^n X_{I_{t,t}} = \sum_{j=1}^k \mathbb{E}T_j(n)\Delta_j, \]

we need to understand how \(\mathbb{E}T_j(n) \) behaves for \(j \neq j^* \).

We’ll see that (asymptotically)

\[\mathbb{E}T_j(n) \gtrsim \frac{\log n}{D_{KL}(P_{\theta_j}, P_{\theta^*})}. \]

Here, when \(P \ll Q \),

\[D_{KL}(P, Q) = \int \log \frac{dP}{dQ} dP. \]
Key insight: Consider two bandit problems:

\[\theta = (\theta_1, \theta_2, \ldots, \theta_k), \]
\[\theta = (\theta_1, \theta_2', \ldots, \theta_k), \]

with \[\mu_1 > \mu_2 \geq \mu_3 \geq \cdots \geq \mu_k, \]
\[\mu_2' \geq \mu_1 > \mu_3 \geq \cdots \geq \mu_k. \]

If a strategy performs well for \(\theta \), and \(P_{\theta_2} \) and \(P_{\theta_2'} \) are close, then the same data is likely under both, so it must perform poorly for \(\theta' \).

The lower bound will require the strategy to perform well for all \(\theta \) (c.f. a stopped clock).

(And the right way of measuring “close” is via a change of measure between \(P_{\theta_2} \) and \(P_{\theta_2'} \approx P_{\theta_1} \), which leads to the KL-divergence.)
Lower bounds on regret.

[Radon-Nikodym derivative] For any event A,

$$P_{\theta'}(A) = \int_A \frac{dP_{\theta'}}{dP_{\theta}} dP_{\theta}.$$

Need to have $P_{\theta'} \ll P_{\theta}$.
(i.e., $P_{\theta'}$ is absolutely continuous wrt P_{θ}, i.e., if $P_{\theta}(E) = 0$ then $P_{\theta'}(E) = 0$.)
Lower bounds on regret.

Fix a strategy, and write:

- \(X_{j,s} \) = outcome from pull \(s \) of arm \(j \),
- \(\mathbb{P} \) = joint distribution over \(\{I_t, X_{j,s}\} \) under distribution \(P_\theta \),
- \(\mathbb{P}' \) = joint distribution under distribution \(P_{\theta'} \).
Lower bounds on regret.

For an event $A \subseteq \{ T_2(n) = n_2 \}$, we can write

$$
P'(A) = \int_A \prod_{s=1}^{n_2} \frac{dP'_{\theta_2}}{dP_{\theta_2}}(X_{2,s}) \, d\mathbb{P}$$

$$= \int_A \exp \left(\sum_{s=1}^{n_2} \log \frac{dP'_{\theta_2}}{dP_{\theta_2}}(X_{2,s}) \right) \, d\mathbb{P}$$

$$= \int_A e^{-L_{n_2}} \, d\mathbb{P},$$

where

$$L_{n_2} = \sum_{s=1}^{n_2} \log \frac{dP_{\theta_2}}{dP'_{\theta_2}}(X_{2,s}).$$

So if $A \subseteq \{ T_2(n) = n_2 \text{ and } L_{n_2} \leq c_n \}$, (data from θ could plausibly have come from θ')
then $P'(A) \geq e^{-c_n} P(A)$, that is, $P(A) \leq e^{c_n} P'(A)$.

7
Fix sequences f_n and c_n (we’ll pick them later).

$$
\mathbb{P}(T_2(n) < f_n) \leq \mathbb{P}(T_2(n) < f_n \& L_{T_2(n)} \leq c_n) + \mathbb{P}(T_2(n) < f_n \& L_{T_2(n)} > c_n) \\
\leq e^{c_n} \mathbb{P}'(T_2(n) < f_n \& L_{T_2(n)} \leq c_n) + \mathbb{P}(T_2(n) < f_n \& L_{T_2(n)} > c_n) \\
\leq e^{c_n} \mathbb{P}'(T_2(n) < f_n) + \mathbb{P}(T_2(n) < f_n \& L_{T_2(n)} > c_n).
$$

(suboptimal arm not chosen too often)

(optimal arm not chosen often)

(and data from θ unlikely to have come from θ')
Under \mathbb{P}', arm 2 is optimal, so the first probability,

$$\mathbb{P}' \left(T_2(n) < f_n \right),$$

is the probability that the optimal arm is not chosen too often. This should be small whenever the strategy does a good job (and f_n quantifies what a good job means). We’ll ensure $f_n = o(n)$. Then if we assume that, for any $\alpha > 0$, the expected number of pulls that the strategy wastes on sub-optimal arms is $o(n^{\alpha})$, that is,

$$\mathbb{E}' \left(n - T_2(n) \right) = o(n^{\alpha}),$$

Markov’s inequality shows that

$$\mathbb{P}' \left(T_2(n) < f_n \right) \leq \frac{\mathbb{E}'(n - T_2(n))}{n - f_n} = o(n^{\alpha-1}).$$
Lower bounds on regret.

The second term is
\[
P \left(T_2(n) < f_n & \sum_{s=1}^{T_2(n)} \log \frac{dP_{\theta_2}}{dP_{\theta_2'}}(X_{2,s}) > c_n \right).
\]

But notice that the expectation (under \(P\)) of each \(\log \frac{dP_{\theta_2}}{dP_{\theta_2'}}(X_{2,s})\) term is \(D_{KL}(P_{\theta_2}, P_{\theta_2'})\), the KL-divergence of \(P_{\theta_2}\) from \(P_{\theta_2}\).

If \(c_n\) is a little bigger than \(f_n D_{KL}(P_{\theta_2}, P_{\theta_2'})\), the law of large numbers will ensure that this term will go to zero.
Choosing (for a suitable $\delta > 0$)

$$f_n = (1 - \delta) \frac{\log n}{D_{KL}(P_{\theta_2}, P_{\theta'_2})}$$

ensures $\mathbb{P}(T_2(n) < f_n) = o(1)$. Hence choosing $P_{\theta'_2}$ suitably close to P_{θ_1} gives

$$\lim_{n \to \infty} \inf \frac{\mathbb{E}T_2(n)}{\log n} \geq \frac{1}{D_{KL}(P_{\theta_2}, P_{\theta^*})}.$$
Lower bounds on regret.

Theorem: [Lai-Robbins, 1985] Suppose P_θ and Θ are such that:

1. Whenever $\mu(\theta_1) > \mu(\theta_2)$, $0 < D_{KL}(P_{\theta_2}, P_{\theta_1}) < \infty$, and
2. (denseness condition on $\mu(\Theta)$)
3. (continuity condition on $\theta_1 \mapsto D_{KL}(\theta_2, \theta_1)$)

If a strategy has, for all $\theta = (\theta_1, \ldots, \theta_k)$ and all $\alpha > 0$, $R_n(\theta) = o(n^\alpha)$, then

\[
\lim_{n \to \infty} \inf \frac{R_n(\theta)}{\log n} \geq \sum_{j: \mu_j < \mu^*} \frac{\mu^* - \mu_j}{D_{KL}(P_{\theta_j}, P_{\theta^*})}.
\]
Lower bounds on regret.

Example: Bernoulli. Parameter is \(\mu \).

\[
D_{KL}(p, q) = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q}.
\]

The lower bound implies

\[
\lim_{n \to \infty} \inf \frac{\overline{R}_n(\theta)}{\log n} \geq \mu^* (1 - \mu^*) \sum_{j: \mu_j < \mu^*} \frac{1}{\mu^* - \mu_j}.
\]
Lower bounds on regret.

To see this, use the upper bound $\log(x) \leq x - 1$ to give

$$D_{KL}(p, q) = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q}$$

$$\leq p \frac{p - q}{q} + (1 - p) \frac{q - p}{1 - q}$$

$$= \frac{(p(1 - q) - (1 - p)q)(p - q)}{q(1 - q)}$$

$$= \frac{(p - q)^2}{q(1 - q)}.$$

Then the lower bound becomes

$$\sum_{j: \mu_j < \mu^*} \frac{\mu^* - \mu_j}{D_{KL}(P_{\theta_j}, P_{\theta^*})} \geq \mu^*(1 - \mu^*) \sum_{j: \mu_j < \mu^*} \frac{1}{\mu^* - \mu_j}.$$
Lower bounds on regret.

Also, this form of the inequality for Bernoulli distributions does not lose much:

Theorem: [Pinsker’s inequality]

\[
D_{KL}(P, Q) \geq 2d_{TV}(P, Q)^2,
\]

where the total variation distance is defined as

\[
d_{TV}(P, Q) = \sup\{|P(A) - Q(A)| : A \text{ measurable}\}.
\]

For Bernoulli distributions, \(d_{TV}(p, q) = |p - q|\), so

\[
D_{KL}(P_{\theta_j}, P_{\theta^*}) \geq 2(\mu^* - \mu_j)^2.
\]
Lower bounds on regret.

An aside:

To prove Pinsker’s inequality for Bernoulli, it suffices to calculate the partial derivative of $D_{KL}(p, q) - 2(p - q)^2$ wrt q. Actually, this leads to the proof of Pinsker’s inequality for any distribution:

$$d_{TV}(P, Q) = P(A) - Q(A) = d_{TV}(P_A, Q_A)$$

for

$$A = \left\{ \frac{dP}{d(P + Q)} > \frac{dQ}{d(P + Q)} \right\}$$

and P_A and Q_A are the induced (Bernoulli) distributions on the elements of the partition $A = \{A, \bar{A}\}$. But the partition inequality for KL-divergence shows that, for any partition,

$$D_{KL}(P, Q) \geq D_{KL}(P_A, Q_A).$$