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Recall: Concentration inequalities.'

Definition: Cumulant-generating function:
I'x(A) =logEexp(AX),

We consider upper bounds: R — R, satisfyingy(A) > I'x (\).
TheLegendre transform (convex conjugatd)) is

" (€) = sup (e —(A)) .

AER

Theorem: Fore > 0,P(X —EX > ¢) < exp (—¢%_gx(€)).




Recall: Concentration Inequalities.'

Theorem: If X, X5,...,X,, are mean zero, i...d. with cgf upp
boundy, thenX,, = = """ | X, satisfies

P (X, > €) <exp(—ny”(e)),

And the exponent can’t be improved.

Theorem: [Crameéer-Chernoff] If X, Xs,...,X,, are iid and
mean zero, and have cBf then fore > 0 andX,, = + > | X,

lim llog]P’(Xn >¢) = —T"(e).

n—o00 N,

(I'* sometimes calle@ramer function Lower bound is a
change-of-measure argument plus central limit theorem.)




\Outline. I

For an exponential family, we can compute the c.g.f. exattdyconvex
conjugate corresponds to a KL-divergence. For rewardibligions from
the exponential family, concentration inequalities imog the
KL-divergence define an upper confidence bound strategytJKIB.

If the reward distributions are bounded, the c.g.f. of aipaldr

exponential family (a scaled, shifted Bernoulli) gives aiba on the c.g.f.
And we can bound this, in turn, with a quadratic (like Hoaffgls
Inequality), which corresponds to another exponentialliata
Gaussian). KL-UCB for Bernoulli improves on KL-UCB for Gaaign.
(KL-UCB for Gaussian corresponds to the original UCB stygite

There’s also a non-parametric version of KL-UCB (called &rmoal
KL-UCB) for bounded rewards. It works with the set of distrilons with

finite support.




Exponential families.'

Definition: Canonical exponential family defined wrt measiye
@
dP

A(0) = log (/ exp (0x) dP(CC)) :
cO={0:A0) < oo}.

() = exp (0 — A(0)),




Exponential families.'




Exponential families.'

_ [ zexp (0z) dP(x)
exp(A(6))
= Ko X.

Te()\) = log ( / exp(\z + Oz — A(H))dP(a:))

A'(0)

= log (/ exp (A4 0)x) dP( )) — A(0)
= A0+ \) — A(0).




Exponential families.'

g, (n(62) sup (Ap(b2) — (A1 +A) — A(601)))
Maximum has  u(03) = pu(01 + N,
thatis, A =60,— 04,
so Ty (u(02)) = (02 — 01)u(02) + A(61) — A(02).

)
)




Exponential families.'

AP,

DKL(P917P92):/10g P,
2

AP,

- /((91 — 02)z) exp (6hx — A(6:)) dP ()
+ A(62) — A(6y)

— 11(01)(01 — 02) + A(62) — A(67)

=TIy, (1(01))




Exponential families.'

Example: Bernoulli:

Py(x) = exp (0z — A(6)), A(f) =log (1 + 69) :

0

w(0) = Po(1) = . 0 = log -

To(A) = log (1 — u(0) + p(0)e?), O =R.




Exponential families.'

Example: Bernoulli:

L9, (n2) = Sl)l\p (Apg —log (1 — puy + ,u16>\))

py e

1 — pq + pper’
p2(1 — p1)
p1 (1 — o)

Maximum has o =

that is, A = log

SO




KL-UCB for exponential families: Use i) = FI

Define the sample averages

t t
1 1
7 ) t == X 81 IS == ) 9 7 ) = — X S
lu]( ) Tj(t) ;_1: Is, [ .]] /’L],t t 8§_1 7,

If X; s has mean and c.g.fl',, anda < g,
Pr(fij, <a)< e (@)
that is,
Pr </)j,n < pandly (fij.,) >

Pr (,&j,n < U andD g, (P,&j,n7

(Note thatP, denotes,,).)




KL-UCB for exponential families. I

KL-UCB Strategy for an exponential familyf,, denotes?,,)):

I; =t fort=1,... k,

I; = arg max sup {,u(H) : 0 € © and

1<j<k

Dgr (P,

wheref(t) = logt + 3loglog(t).

Equivalent to UCB withy = T',,.




KL-UCB for exponential families. I

We can think ofDk 1, (P;,, ,,P,) as a divergence defined in terms of
means: for anyi, u € u(0),

d(ft, ) = Drer(Pp, Pu) = (0(ir) = 0(p)) p — A(0(f2)) + A(0(n)).

Thend(j, n) = 0iff o = p, d is strictly convex and differentiable. We
can extend it to the closure p{©), by taking limits, allowing infinite
values, and setting(, 1) = 0 at boundaries. (Consider, for example,
{1 = 0 for a Bernoulli.)




KL-UCB for exponential families. I

Theorem: KL-UCB for an exponential family satisfies:

< 8" 0(Viogn).

~ Dk (Puwpu*)

And the leading term is optimal (including the constant).




\ KL-UCB for bounded rewards. '

Theorem: ForX € [0, 1] with EX = p,
defineY ~ Bernoulli(x). Then

T (A) < Ty (\).

Notice that this gives a c.g.f. boundy , for X satisfying:

/

Vi, (W) = 10g% + (L —p')




\ KL-UCB for bounded rewards. '

Proof: Forz € [0, 1], exp(\z) lies below the line fron{0, ) to (1, e*):

exp(Ax) < x (6>‘ —e’) + ¢’

Eexp(AX) < p(e* —1) +1
exp(AY).




KL-UCB-Bernoulli for bounded rewards. I

KL-UCB-Bernoulli Strategy For the Bernoulli familyP,,:

I; =1 fort=1,...,k,

I, = arg max sup {,u € (0,1):

1<j<k

d (fi;(t —1),p) < Tj(ft(t_) 0 } :

whered (1, o) = pq log % + (1 — pq) log % and
f(t) =logt + 3loglog(t).




KL-UCB-Bernoulli for bounded rewards. I

Theorem: KL-UCB-Bernoulli satisfies:

ET;(n) < logn + O (\/logn) :

Whered(,ul, ,ug) = U1 10g % —+ <1 — ,ul) lOg %

The leading term is optimal for Bernoulli rewards, but migbt be
optimal, for example, if the variance is lower tha(l — u).




‘KL-UCB: More concentration inequalities. I

Now, Pinsker’s inequality gives

/

1 —p
— K

" u
Vi, (W) = Drr(', p) = p'log 21 (1 =) log -

> 2 — ).

which shows this is at least as good as Hoeffding’s inegualit

P (X, > p') <exp(=2n(y — p)?)
P (X'n > 1+ e) < exp (—2n62) .




Exponential families.'

Example: Gaussian:

exp(—2°/(20%)) exp ( N ) |

_$ —_—
o2 202
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Exponential families.'

With o2 = 1/4, Pinsker’s inequality corresponds to Hoeffding'’s
Inequality.

So we can view the UCB strategy (based on Hoeffding’s inetyaas a
special case of KL-UCB, modeling the reward distributiorsr [0, 1] as
N(p,1/4).




\ KL-UCB-Gaussian for bounded rewards..

KL-UCB-Gaussian Strategy For the Gaussian family,,:

I; =1t fort=1,....k,

I; = arg [max, sup {,u € (0,1):

d(:&j@ — 1):“) <

wheref(t) = logt + 3loglog(t) andd(u1, p2) = 2(p1 — p2)?.

This is equivalent to the UCB strategy (based on Hoeffdihg} tve saw
last time.




UCB for bounded rewards.'

Theorem: UCB satisfies:

ET;(n) < logn + O (\/logn) :

whered (1, p2) = 2(p1 — p2)?.

This result is weaker (because of Pinsker’s inequality tie result for
KL-UCB-Bernoulli.




‘ KL-UCB regret bounds: upper versus Iower.'

Denote the canonical exponential family defined wrt a measuby &, :

P
" dm

Em = {P () =exp(0z — A(F)), andA(0) < oo} :

where  A(f) = log ( / exp (0) dm(x)) |

Write P, ¢ for the element of,,, with parametet, andF,, , for the
element off,,, with meanu (and there’s a one-to-one map betwéend
1, So it's well-defined.) And define f&f,,, the relevant divergence as a

function of expectations:

A (pts 1) 2= D1, (Prnyus Pt ) -




‘ KL-UCB regret bounds: upper versus Iower.'

We have derived bounds atp, in terms oprmMj , for some exponential
familiesé&,,,. For instance, if we |leP denote the set of distributions on
0, 1], and consider two exponential families, the Bernoullil(taf z)

and the Gaussian with variante4 (call it £5), then we have:

For all P € P with PX = pu, and all),

Lp(A) <Tps ,,(A) <Tpg (N

And this is equivalent to: for ajl’,

p(p') >Tp, (1) >Th, (1),

that is,
Ip(p') > dp(p'sp) > da(p's ).




‘ KL-UCB regret bounds: upper versus Iower.'

We have seen upper bounds on regret based on these ineguaiithe

R,o< 3 A, (- ler +0(\/@)).

J:A; >0 dm(’uj”u*)

And we've seen lower bounds that are (roughly) of the form

_ logn
R,> Aj( —|—0(1)>.
Ao\ D (P )

To understand the gap between the upper bounds and the loweds
we can consider the I-projection &%« € £p., onto{P : PX = pu;}.




‘ KL-UCB regret bounds: upper versus Iower.'

Theorem: Fix a measuren and an exponential family,,. For all
Q € &, andP with PX = yp,

Dkr(P,Q) = Dkr(P, Py.u) + D (P, Q).

In particular,

inf{DKL(P, Q) : PX = u} = DKL<Pm,u7Q)-

We say thatP,, , is the I-projection of)) € &, onto{P : PX = u}.




‘ KL-UCB regret bounds: upper versus Iower.'

The negative KL-divergence

~Dir(P.Q) =~ [ log 5dP

S

is also called the entropy d? (defined with respect tQ), Hy(P). So the
result says that among all distributions satisfying the maEnstraint
PX = p, the one with maximum entropy (wrt aiy in &,,,) IS Py, ,, In
the exponential family,, .




‘ KL-UCB regret bounds: upper versus Iower.'

Using this fact, we can see that

Dk (Pj, Pj») > inf{Dgy (P, Pj+) : PX = pu;}
= Dkr, (PPj*,,ujapj*)

— F;j* (:uj) (both distributions are ircfpj* )
>Tp (k)
— dm <,u], :u* )7

whereé&,,, Is one of the exponential families that give the upper bounds
(Bernoulli or Gaussian).




‘ KL-UCB regret bounds: upper versus Iower.'

So the upper bound might be loose becabises further fromP;- than

the I-projection ofP;- on to{ PX = p;} (i.e., becausé’; is notinép . ),
or becausé'p,, . Is aloose upper bound drp.. (i.e., becausé’;- is
notiné&,,).




KL-UCB: Regret bounds. I

The KL-UCB strategies choode = 1, ..., I, = k, and then

I, — (¢
L41 argggja&%(),

where  U,(t) = sup {,u e uw(©)s.td(f;(t), n) <

For a suboptimal arm, we want to bound

ETj(n) =14 ) P{l41 = j}.
t=k

We might havel,, = j if either U;-(¢) is not an upper bound qun* (for
a suitable choice fof (), this has negligible probability), or it is an uppe

bound, butl;(t) is bigger (and so exceegs; this can’t happen too
often).




KL-UCB: Regret bounds. I

{t41 =7}
C{p" 2 U () U{ly1 = g andu™ < U;-(t) < Uj(t)}
CA{p" 2 Uj=(t)} U{liqr = jandp”™ <Uj(t)}

(7 < U0} = { i < sup { s € 1(©) st dls(0).10) <

C 3 a(t) > :u}k”(t)/Tj(t)}7
C {ﬂj (1) = M?(n)/Tj(t)}v

" . N
where  py ) ) = mm{,u cd(p, p*) < < ) :




KL-UCB: Regret bounds. I

n—1
ETj(n) =1+ ) P{L41 = j}.
=k

n—1
Z]P’{,u* > Uji«(t)} <--- <3+ 4eloglogn.
t=k

7

"~

times upper bound violated




KL-UCB: Regret bounds. I




KL-UCB: Regret bounds. I

n—k n—k

> P{ﬂjam = M?m)/m} < ) e (—’md (M?<n>/mv“a‘>)
m=M+1 m=M-+1

.: O ( f(n)) .

(Related (u}<n)/m, uj> tod(u;, p*), bound by integral, use Laplace’s
method.)




Empirical KL-UCB for rewards in [0, 1].

Empirical KL-UCB Strategy

I; =1 forte=1,...,k,

I, = arg max sup {EPX . | supp(P)| < oo,

1<j<k

A

Dy (P-(t _ 1),P) <

T;(t —

whereP;(t — 1) is the empirical distribution of th&; (¢t — 1) pulls
of armj up to timet — 1, andf(t) = logt + 3loglog(t).




Empirical KL-UCB for rewards in [0, 1].

It turns out that it’s always a finite convex optimization:

A

sup {EPX [ supp(P)[ < 00, Dk (P’<t_ 1)’P> = W}

= sup {Ep X : supp(P) C supp(P;(t — 1)) U {1},

A

Drr (P-(t 1), P) < 'y} .




Empirical KL-UCB for rewards in [0, 1].

Empirical KL-UCB Strategy

I; =1 forte=1,...,k,

I; = arg max sup {EPX - supp(P) C supp(P;(t — 1)) U {1},

1<j<k

: f(t)

Dt <P'(t_1)’P) = T;(t — 1)

whereP;(t — 1) is the empirical distribution of th&; (t — 1) pulls
of armj up to timet — 1, andf(t) = logt + 3 loglog(t).

b




Empirical KL-UCB for rewards in [0, 1].

Theorem: Empirical KL-UCB for rewards in0, 1] satisfies:

logn

KT <
](77/) o inf{DKL (P],P) : PX > ,u*}

+ O (log4/5 n log log n) :

providedu,; > 0 andp™ < 1.

The leading term is optimal (including the constant). Bt temainder
term is worse than in the parametric case.




